Exemplary embodiments pertain to the art of fuel cells, and in particular to fuel cell configurations having high power density for use in, for example, aircraft applications.
The increased use of electrical power in aircraft systems and propulsion requires advanced electrical storage systems and/or a chemical to electrical power conversion system to generate adequate amounts of electrical power. Both high system efficiency and high power density of the conversion system are required.
Fuel cell based power systems, such as solid oxide fuel cell (SOFC) based power systems, are able to achieve electrical efficiencies of 60% or greater. Further, SOFC power systems can operate with a variety of fuels and are scalable to achieve different power levels. Current, state of the art SOFC systems, however, have relatively low power densities of below 500 watts per kilogram, and relatively slow startup times typically exceeding 30 minutes. For aircraft and aerospace applications, increased power densities and reduced startup times are required.
In one embodiment, a fuel cell includes a plurality of fuel cell layers stacked along a stacking axis. Each fuel cell layer includes a stacked arrangement of elements including a cathode, an anode, an electrolyte positioned between the anode and the cathode, a support layer positioned at the anode opposite the electrolyte, and a separator plate located at the support layer opposite the anode. The support layer is configured to contact the cathode of an adjacent fuel cell layer of the plurality of fuel cell layers. The separator plate defines a plurality of anode flow channels configured to deliver a fuel therethrough and a plurality of cathode flow channels configured to deliver an air flow therethrough.
Additionally or alternatively, in this or other embodiments the electrolyte is formed from a solid oxide material.
Additionally or alternatively, in this or other embodiments the separator plate defines the plurality of anode flow channels at a first side of the separator plate and the plurality of cathode flow channels at a second side of the separator plate opposite the first side.
Additionally or alternatively, in this or other embodiments the separator plate includes a plurality of curved portions separated by flat support portions, with the support portions interfacing with the support layer and curved portions contacting the cathode of the adjacent fuel cell layer.
Additionally or alternatively, in this or other embodiments the wherein the plurality of anode flow channels at least partially overlap the plurality of cathode flow channels along the stacking axis.
Additionally or alternatively, in this or other embodiments the support layer includes a porous portion located at the anode flow channels configured to allow fuel flow from the anode fuel channels to the anode through the porous portion.
Additionally or alternatively, in this or other embodiments the support layer further includes a non-porous portion surrounding the porous portion.
Additionally or alternatively, in this or other embodiments one or more manifolds are located in the solid portion to distribute fuel to the plurality of anode flow channels.
Additionally or alternatively, in this or other embodiments the support layer is formed from a metal material.
Additionally or alternatively, in this or other embodiments a metal catalyst foam is located between the support layer and the separator plate.
In another embodiment, fuel cell layer of a multi-layer fuel cell includes a cathode, an anode, an electrolyte located between the anode and the cathode, a support layer positioned at the anode opposite the electrolyte, and a separator plate positioned at the support layer opposite the anode. The support layer is configured to contact the cathode of an adjacent fuel cell layer. The separator plate defines a plurality of anode flow channels configured to deliver a fuel therethrough and a plurality of cathode flow channels configured to deliver an air flow therethrough.
Additionally or alternatively, in this or other embodiments the electrolyte is formed from a solid oxide material.
Additionally or alternatively, in this or other embodiments the separator plate defines the plurality of anode flow channels at a first side of the separator plate and the plurality of cathode flow channels at a second side of the separator plate opposite the first side.
Additionally or alternatively, in this or other embodiments the separator plate includes a plurality of curved portions separated by flat support portions, with the support portions interfacing with the support layer and curved portions contacting the cathode of the adjacent fuel cell layer.
Additionally or alternatively, in this or other embodiments the plurality of anode flow channels at least partially overlap the plurality of cathode flow channels along the stacking axis.
Additionally or alternatively, in this or other embodiments the support layer includes a porous portion disposed at the anode flow channels configured to allow fuel flow from the anode fuel channels to the anode through the porous portion
Additionally or alternatively, in this or other embodiments the support layer further includes a non-porous portion surrounding the porous portion.
Additionally or alternatively, in this or other embodiments one or more manifolds are located in the solid portion to distribute fuel to the plurality of anode flow channels.
Additionally or alternatively, in this or other embodiments the support layer is formed from a metal material.
Additionally or alternatively, in this or other embodiments a metal catalyst foam is located between the support layer and the separator plate.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
Referring now to
The separator plate 20 is compliant and lightweight and is shaped to define a plurality of anode flow channels 30 and a plurality of cathode flow channels 32 and separate the anode flow channels 30 from the cathode flow channels 32. The plurality of anode flow channels 30 are defined at a first side of the separator plate 20 and the plurality of cathode flow channels 32 are defined at a second side of the separator plate 20 opposite the first side. As illustrated the anode flow channels 30 and the cathode flow channels 32 at least partially overlap along the stacking axis 60. This improves a density of the fuel cell 10 along the stacking axis 60.
Compliance of the separator plate 20 ensures good contact with the cathode 28 for high performance, and the separator plate 20 is configured for light weight to enable high power density of the fuel cell 10. The fuel flows through the anode flow channels 30 and the air flows through the cathode flow channels 32. In some embodiments, such as in
Referring again to
The support layer 22 is formed from a metal material in some embodiments, and includes a porous section 48 and a non-porous or solid section 50, with the solid section 50 surrounding the porous section 48 and defining an outer perimeter of the support layer 22. The porous section 48 may be formed by, for example, laser drilling of a metal sheet. or sintering of metal powder, or additive manufacturing. The porous section 48 is located over the anode flow channels 30 to allow the fuel flow to reach the anode 24 through the porous section 48. In some embodiments, a metal catalyst foam layer 52 is located between the separator plate 20 and the support layer 22.
The fuel cell 10 configurations disclosed herein enable a high performance electrical power system for, for example, an aircraft, especially for long duration operation. The configurations further reduce startup times and provide power densities in the range of 1-3 kilowatts/kilogram with a cell performance of 0.8 W/cm2. Further, the improved power density may be achieved utilizing a lightweight separator plate 20, with a separator plate 20 formed from, for example, stainless steel having a thickness of 2 mil to 10 mil. Further, other materials such as titanium alloys, or other materials at lower operating temperatures may be used to form a lightweight separator plate 20.
The term “about” is intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof
While the present disclosure has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this present disclosure, but that the present disclosure will include all embodiments falling within the scope of the claims.
This application claims the benefit of U.S. Provisional Application No. 63/012,978 filed Apr. 21, 2020, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63012978 | Apr 2020 | US |