A number of ultrasonic cleaning systems have been developed for cleaning irradiated nuclear fuel assemblies including systems utilizing radial omni-directional ultrasonic cleaning technology as described, for example, in U.S. Pat. No. 6,396,892, the contents of which are incorporated herein by reference, in their entirety.
Comparing cleaning effectiveness data collected from field application of ultrasonic cleaning technology with cleaning effectiveness data collected in laboratory testing indicated that current fuel rod deposits are now exhibiting a dual-layer characteristic comprising both an outer layer that is relatively easy to remove and an inner layer that is much more tenacious. Further, laboratory tests performed by the inventors revealed that the rate of deposit removal achieved with ultrasonic cleaning varies non-linearly with the transducer power applied to the contaminated fuel rod. Accordingly, the deposit removal rate for a given deposit will be relatively low until a threshold ultrasonic power density (PT) is reached, at which point the rate of deposit removal increases dramatically. Similarly, as the tenacity of the deposit increases, the threshold power density required to achieve efficient removal of the deposits increases.
As shown in
The power density realized at a given location within the cleaning zone depends on several factors, including 1) the total amount of energy output from the transducers, 2) the volume of water into which the ultrasonic energy is transmitted, 3) the degree to which the energy must pass through/around obstructions to get from the transducer to said surface to be cleaned, and 4) any local non-uniformity of the ultrasonic field. The first two factors, together, determine the bulk fluid power density (expressed in watts/gallon (or watts/liter)). Increasing the amount of power or reducing the volume of water results in an increase in the amount of ultrasonic energy (and subsequent cavitation) applied to the cleaning fluid and the surfaces immersed in the cleaning fluid. The third factor (presence or lack of obstructions) affects the distribution of energy within the bulk fluid volume.
As indicated in U.S. Pat. No. 5,467,791, the contents of which are incorporated herein by reference, in their entirety, and from the inventors' laboratory testing, a metallic membrane (such as a fuel channel or cleaning chamber flow guide) may reduce power density by as much as 50% inside the channel/flow guide relative to the power density achieved outside of membrane. The fourth factor (non-uniformity of field) results from localized differences in intensity on the radiating surfaces inherent with both planar and radial omni-directional transducers.
Prior art ultrasonic fuel cleaning systems use various techniques to achieve effective cleaning, including control of cleaning fluid properties, angled orientation of transducers, use of radial omni-directional transducers, and use of reflecting structures to guide energy to the cleaning zone. Although these techniques may provide some cleaning effectiveness benefit, none of the prior art configurations can achieve a power density above the cleaning threshold for the tenacious layer present in current fuel deposits. As shown in Appendix A, the estimated cleaning zone power density of prior art designs is 178 watts/gallon (47 watts/liter) (Kato et al.'s U.S. Pat. No. 5,467,791) and 112 watts/gallon (29.6 watts/liter) ((Frattini et al.'s U.S. Pat. No. 6,396,892) when cleaning a typical pressurized water reactor (PWR) fuel assembly (i.e., 10″×10″ (25.4 cm×25.4 cm) cleaning zone). As will be appreciated, the design disclosed in the Kato patent is specifically tailored for cleaning channeled fuel assemblies (i.e., boiling water reactor (BWR) fuel) and the estimated power density for a PWR version of the Kato design is provided for comparison purposes only.
Example embodiments of the ultrasonic cleaning assembly according to the disclosure include arrays of planar transducers configured to increase the radiated power into a reduced volume of fluid associated with a fuel assembly, thereby achieving increased power density. The ultrasonic cleaning assembly may be arranged in a variety of modules that, in turn, may be combined to increase the length of the cleaning zone and provide variations in the power density applied to improve the cleaning uniformity.
Example embodiments described below will be more clearly understood when the detailed description is considered in conjunction with the accompanying drawings, in which:
It should be noted that these Figures are intended to illustrate the general characteristics of methods, structure and/or materials utilized in certain example embodiments and to supplement the written description provided below. These drawings are not, however, drawn to scale and do not precisely reflect the precise structural or performance characteristics of any given embodiment and should not, therefore, be interpreted as defining or limiting the range of values or properties encompassed by example embodiments. Further, the drawings have been simplified by omitting peripheral structure including, for example, power supplies, cables, controllers and other equipment, with the understanding that those skilled in the art would be able to determine and configure the peripheral structure(s) and equipment necessary for the full range of embodiments disclosed herein and obvious variations thereof.
The inventors have determined that the tenacious layer currently associated with PWR fuel deposits has a threshold ultrasonic power density of approximately 200 watts/gallon (52.8 watts/liter) (as calculated using the methodology outlined below in Table 1). The invention consists of an ultrasonic cleaning device configured to achieve an ultrasonic power density on the order of 200 watts/gallon (52.8 watts/liter) or more. The invention utilizes arrays of planar transducers to achieve these high power densities rather than the conventional radial omni-directional transducers currently used for ultrasonic fuel cleaning.
As illustrated in
As illustrated, the transducers within a particular array may be aligned vertically and/or horizontally. By selecting appropriate transducer modules and providing sufficient proportion of radiating surface, the illustrated transducer configuration applied to a limited cleaning volume has been able to produce a bulk power density of approximately 400 watts/gallon (105.7 watts/liter). This increased bulk power density overcomes localized variations in power level resulting from obstructions and refraction within the fuel bundle and still provides local power density sufficient to remove the more tenacious deposits.
As will be appreciated, the configuration of the cleaning zone may be adapted for use with a number of fuel bundle arrangements. As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Embodiments of the disclosed ultrasonic cleaning assemblies are configured with transducer arrays closely surrounding the cleaning zone for reducing the amount of ultrasonic energy that escapes from the cleaning assembly. Further, the reduced distance between the fuel rods and the transducer radiating faces reduces losses from attenuation while reducing the liquid volume enclosed in the cleaning zone, resulting in higher bulk and local power densities. The transducers and their radiating surfaces also function as a pressure boundary for directing fluid flow through cleaning zone, thereby eliminating the need for a separate flow guide between the transducers and the fuel. The lack of intervening structure between the fuel assembly and the transducers results in higher cleaning zone power density than that achieved by configurations in which the ultrasonic energy must pass through a separate flow guide to reach the fuel bundle being cleaned.
The ultrasonic cleaning assembly may also include one or more features including, for example, the formation of a varying power field within the cleaning zone whereby each portion of the fuel bundle is “cleaned” by different transducer configurations during insertion and removal of the fuel assembly. With the ultrasonic cleaning assembly operated in this manner, the surfaces of the fuel assembly will pass through different regions of locally varying power level and the overall cleaning uniformity would tend to improve. The piezoelectric driving heads in the planar transducers may also be arranged so that they are offset from a plane parallel to the axis of relative movement of the cleaning fixture/fuel assembly, again tending to improve cleaning uniformity.
The ultrasonic cleaning assembly may include additional mechanisms (not shown) to provide for the relative translation or offset of the transducers and/or fuel assembly during the cleaning operation in order to redistribute localized high power areas over the fuel surfaces. As discussed above, the radiating faces of the transducers and/or transducer assemblies may be angled so that the offset between the fuel assembly and transducer or transducer assembly radiating face varies along the axis of the cleaning fixture. Such an arrangement could distribute the localized high power spots in the cleaning zone to improve cleaning of interior fuel rods.
The ultrasonic cleaning assembly may be designed as a range of modules that form the integral structure of the cleaning fixture. Typically, each module would completely surround the cleaning zone with multiple modules being stacked to form an elongated cleaning zone of an appropriate length based on the length of the fuel being cleaned and/or the space available in which to conduct the cleaning. This design feature improves the flexibility of the ultrasonic cleaning assembly for cleaning different fuel assembly designs. Adjacent modules may have cooperating or complementary configurations of radiating faces to provide for improved cleaning.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
While the disclosed ultrasonic cleaning assemblies have been particularly shown and described with reference to example embodiments thereof, the invention should not be construed as being limited to the particular embodiments set forth herein; rather, these example embodiments are provided to convey more fully the concept of the invention to those skilled in the art. Thus, it will be apparent to those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the inventions as defined by the following claims.
Pursuant to 35 U.S.C. §119(e), priority is claimed from U.S. Provisional Appl. Nos. 61/021,030, filed Jan. 14, 2008, and 61/058,767, filed Jun. 4, 2008, the contents of which are incorporated herein by reference, in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3700937 | Rissolo | Oct 1972 | A |
4118649 | Shwartzman et al. | Oct 1978 | A |
4244749 | Sachs et al. | Jan 1981 | A |
4375991 | Sachs et al. | Mar 1983 | A |
4909266 | Massa | Mar 1990 | A |
4966177 | John, Jr. et al. | Oct 1990 | A |
5377237 | Richardson et al. | Dec 1994 | A |
5383484 | Thomas et al. | Jan 1995 | A |
5467791 | Kato et al. | Nov 1995 | A |
6314974 | Schuler et al. | Nov 2001 | B1 |
6361747 | Dion et al. | Mar 2002 | B1 |
6396892 | Frattini et al. | May 2002 | B1 |
6595224 | Miranda et al. | Jul 2003 | B2 |
7542539 | Frattini et al. | Jun 2009 | B2 |
20020195133 | Miranda et al. | Dec 2002 | A1 |
20030062071 | Sorbo et al. | Apr 2003 | A1 |
20040256952 | Puskas | Dec 2004 | A1 |
20060107975 | Arguelles et al. | May 2006 | A1 |
20070002678 | Murakami | Jan 2007 | A1 |
20070160493 | Ronholdt et al. | Jul 2007 | A1 |
20090252275 | Hussey et al. | Oct 2009 | A1 |
20110030741 | Hasegawa et al. | Feb 2011 | A1 |
Entry |
---|
International Preliminary Report on Patentability in related application PCT/US2009/031025 issued Jul. 20, 2010. |
Written Opinion and International Search Report in related application PCT/US2009/031025 mailed Aug. 24, 2009. |
Number | Date | Country | |
---|---|---|---|
20090241985 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
61021030 | Jan 2008 | US | |
61058767 | Jun 2008 | US |