1. Field of the Invention
The present invention relates to underwater sound and more particularly to high power acoustic transducers (projectors) for applications such as non-lethal deterrence of terrorist swimmers and divers.
2. Brief Description of Prior Developments
Non-lethal swimmer and diver engagement is of increasing importance in today's threat environment because many potential terrorist targets are in areas accessible to recreational boaters or swimmers who may have no malevolent intent. The potential proximity of marine mammals also necessitates non-lethal methods.
Modern detection sonar systems are able to differentiate between marine mammals, large fish, swimmers and divers through their signature and track. They cannot, however, discern the intentions of a human in the water. Thus there is a need for a graduated system of engagement, beginning with audible warnings, sirens, etc. that should cause the casual intruder or marine life to turn away.
The later stages of engagement require a method that effectively incapacitates the intruder without lethal force, since there remains the possibility that they could be demonstrators, not terrorists. The ideal method would cause divers to surface where they could be dealt with by more conventional means.
The parameters of an ideal deterrent may be summarized to include effectiveness, high reliability, not being easily countered, using a graduated force level; non-lethality, affordability, and having size, weight and power source requirements appropriate to the application.
Short of developing the equivalent of a rubber bullet for underwater use, the candidates for non-lethal underwater deterrence are light and sound. Both can create psychophysical and/or physiological effects. Light, however, suffers from short propagation distances in the turbid water typical of many harbors and rivers. It is easily countered and does not work at all in the most turbid water.
High-intensity, low frequency sound is useful as a non-lethal means for deterring swimmers and divers who may be terrorists. The psychophysical acoustic interactions proposed to be exploited include annoyance/aversion (avoidance of a loud sound) and/or cognitive/functional task impairment (physical symptoms).
The physiological (based on frequency and sound pressure level (SPL) dependent thresholds) effects of low frequency sound are hearing (up to 160 dB SPL=minor effects) including auditory pain threshold ˜220 dB SPL, vestibular function (dizziness, rotation of visual field), and bronchopulmonary resonance (coughing, gagging, choking, pain).
It is difficult to defend against low frequency sound unless one is inside a rigid body such as a vehicle. Thus, resonance of the lungs is an ideal candidate for the deterrent method. Experimental evidence suggests that the nominal resonance frequency of the human lung is about 20 to 70 Hz and is depth dependent. The in situ damage threshold to mice and guinea pig lungs is reported to be about 180 dB SPL.
What is needed for an effective deterrent for underwater terrorists, therefore, is a relatively inexpensive, high power, low frequency source of underwater sound.
The invention consists of a motor driven flextensional underwater transducer. In one embodiment, the phase of a transducer is sensed, enabling multiple projectors to achieve high acoustic sound pressure levels by beamforming and/or modal constructive interference (e.g. taking advantage of harbor bottom topography and boundaries.)
The present invention is further described with reference to the accompanying drawings wherein:
As described above, sound suitable for deterring swimmers and divers must be low frequency (down to 20 Hz), high acoustical sound pressure level (SPL>195 dB re 1 μP @ 1 m), and the projector must be able to produce this sound in shallow water (as little as 25 ft deep). Historically, piezoelectric or magnetostrictive projectors capable of meeting these requirements have been expensive to produce in large part due to the volume of high cost ceramic or magnetostrictive material required. In addition, large and expensive power amplifiers are required to drive such transducers.
Of particular concern is the need to avoid cavitation which is potentially damaging to the projector. The acoustic output level that will induce cavitation decreases with decreasing depth. This projector must operate at very shallow depths. The cavitation threshold also decreases with operating frequency. The operating frequency range of this projector is very low. In order to avoid cavitation, one can increase the acoustic radiating area i.e. make the projector bigger. This increase, of course, will increase projector weight. Thus a phase synchronized array of projectors may be required to achieve the desired output.
The present invention is a low-cost projector that provides the performance described in the concept description above. To summarize, the projector preferably has the following technical characteristics:
Maximizing acoustic sound pressure level is of primary importance for an effective deterrent.
Shell 1 is driven by a “stack” 3 of piezoelectric or magnetostrictive elements. By applying an AC voltage to stack 3, typically on the order of 2500 Volts, the length of the stack changes, causing the thinner sides of shell 1 to move at the AC drive frequency, but at an amplified displacement compared to the length change.
Because cost is very important for many deterrence applications, the cost of the power amplifier required for the transducer of
Motor 16 is connected to motor controller 20 by connection means 22. Motor 16 may be a rotary electrical motor or a rotary air motor. Motor controller 20 has means for maintaining a constant speed of shaft 18 as well as means for varying the rotation speed. The rotational speed determines the rate of flexure of shell 2 and thereby the frequency of the sound wave.
In
Additional transducers may be used, employing methods known as beamforming. In addition, certain properties of the topography of the harbor floor may be taken in to account to provide maximum sound pressure levels at desired locations. These methods for employing multiple transducers are well known to those versed in underwater acoustics.
Those skilled in the art will also appreciate that this transducer is a low-cost solution for systems that can be deployed from different platforms such as a pier facility; large ship; small boat and unmanned underwater and surface vehicles. The size, weight and power source of the method and apparatus of the present invention are applicable to piers and ships. Versions suitable for small boats are also possible.
While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended claims.
This application claims rights under 35 USC§ 119(e) from U.S. patent application Ser. No. 60/786,413 filed Mar. 27, 2006, the contents of which are incorporated herein by reference.
this invention was made with United States Government support under Contract No. N00014-06-C-0101 awarded ty the Office of Naval Research. The united States Government has certain rights in the invention.
| Number | Name | Date | Kind |
|---|---|---|---|
| 4667766 | Melvin | May 1987 | A |
| 5646380 | Vaage | Jul 1997 | A |
| 6085862 | Tenghamn | Jul 2000 | A |
| Number | Date | Country |
|---|---|---|
| 1376049 | Jan 2004 | EP |
| Number | Date | Country | |
|---|---|---|---|
| 60786413 | Mar 2006 | US |