High power positive logic switch

Information

  • Patent Grant
  • 12081211
  • Patent Number
    12,081,211
  • Date Filed
    Wednesday, October 12, 2022
    2 years ago
  • Date Issued
    Tuesday, September 3, 2024
    4 months ago
Abstract
A positive-logic FET switch stack that does not require a negative bias voltage, and which can withstand application of a high voltage RF signal without requiring terminal capacitors. Some embodiments include a stack of FET switches, with at least one FET requiring a negative VGS to turn OFF and configured so as to not require a negative voltage, series-coupled on at least one end to an end-cap FET that turns OFF when the VGS of such end-cap FET is essentially zero volts, wherein at least one end-cap FET is configured to be coupled to a corresponding RF signal source and has a gate coupled to the corresponding RF signal source through an associated switch circuit. The switch circuit may include an NMOSFET and a PMOSFET, or a diode and an NMOSFET, or a diode and an NMOSFET and a PMOSFET.
Description
BACKGROUND
(1) Technical Field

The invention relates to electronic circuits, and more particularly to radio frequency electronic switch circuits and related methods.


(2) Background

In radio frequency (RF) systems, such as cellular phones and WiFi networks, electronic switch circuits are often used in series with RF signal lines to selectively block or conduct RF signals, such as between an antenna and a transceiver circuit. Electronic switch circuits are also often used in a shunt configuration between an RF signal line and a reference potential (e.g., circuit ground), for example, to selectively isolate nodes of the RF signal line from significantly influencing other circuitry.


As one example, FIG. 1 is a simplified schematic circuit 100 of a common prior art series-shunt RF switch circuit configuration. In the illustrated configuration, a first series switch 102, shown in a closed (conducting or ON) state, is coupled between a first antenna port ANT1 and a transmission TX port. A second series switch 104, shown in an open (blocking or OFF) state, is coupled between a second antenna port ANT2 and the TX port. A shunt switch 106 is coupled between the TX port and circuit ground.


Ideally, switches such as those shown in FIG. 1 should not appreciably alter or affect an RF signal. However, in integrated circuits, RF switching circuits are generally implemented with transistors, particularly field-effect transistors (FETs), and more particularly MOSFETs. A FET in a conducting (ON) state presents some resistance, RON, to a conducted signal, and in a blocking (OFF) state presents some capacitance, COFF, which may be in series, shunt, or parallel to an RF signal line. Accordingly, FET-based switch circuits generally behave less than ideally in an RF circuit.


A further issue with FET-based switch circuits is that the voltage that a single FET can withstand between drain and source without breaking down is generally limited to a few volts. In an electronic system, there may be parts of the system where the voltage that must be withstood far exceeds the voltage handling capability of a single FET. A common solution is to series stack FETs so that the drain-source voltage across any one FET is less than its drain-source breakdown voltage.


For example, FIG. 2 is a schematic circuit of a prior art RF switch circuit 200 using FET stacks. In the illustrated embodiment, an RF signal (e.g., from a transmitter to an antenna) may be coupled from terminal RF1 to terminal RF2 through a stack of series-coupled FETs M1-Mx. In this example, the FETs M1-Mx are configured as “positive-logic” devices, and may be, for example zero-Vt, low-Vt, or high-Vt FETs of a type that require a negative VGS to turn OFF but are configured so as to not require a negative voltage to turn OFF. Stated another way, positive-logic devices require a negative VGS to turn OFF but operate with positive control voltages (although the drain voltage may be biased to a positive voltage as well). In contrast, conventional FETs require a negative voltage supply to control switching, often from a negative voltage charge pump.


Each positive-logic FET M1-Mx includes a dedicated gate resistor Rg coupled between the corresponding FET gate and a non-negative gate bias voltage Vgate. In addition, the source and drain of each positive-logic FET M1-Mx is coupled to a non-negative drain-source (DS) bias voltage Vdrain through a corresponding drain-source resistor Rds (some of the resistors Rds are shared by adjacent FETs). Other bias networks may be used, such as taught in U.S. patent application Ser. No. 15/939,132 referenced above.


A switch circuit based on positive-logic FETs is useful for applications where generating a negative supply voltage is either not desired or not practical due to design constraints; in some applications, use of a negative charge pump is not even possible. These are generally applications with stringent requirements, such as extremely low current and power consumption, extremely low noise sensitivity, and/or very small IC die areas. Moreover, in biasing schemes wherein charge pumps are used to generate negative supply power, switching speed is limited by the current sourcing capability of the charge pumps. In addition, the bias voltage has to go through the series gate resistors of the FETs, which can slow the switching process.


In the circuit illustrated in FIG. 2, the positive-logic FETs M1-Mx are turned ON by applying a positive Vgate voltage (e.g., +3V) to the FET gates through respective gate resistors Rg, while applying a Vdrain voltage of 0V to the FET drains and sources through respective Rds resistors. This configuration effectively creates a positive DC gate-source voltage, VGS, for every FET M1-Mx (i.e., VGS=+3V with respect to the source voltage of 0V if Vgate=+3V). The FET stacks are turned OFF by applying a Vgate voltage of 0V to the FET gates through respective gate resistors Rg, while applying a positive Vdrain voltage (e.g., +3V) to the FET drains and sources through respective Rds resistors. This effectively creates, in relative terms, a negative VGS for every FET M1-Mx (i.e., VGS=−3V with respect to the source voltage of +3V if Vgate=0V).


Obtaining a negative VGS for the OFF state is accomplished by including at least one “end-cap” FET M0 on the end of, and series-coupled to, the positive-logic FETs M1-Mx. An end-cap FET M0 is a FET having a high-Vt that turns OFF when the VGS of the FET is essentially zero volts. The end-cap M0 FETs selectably provide either a capacitive DC blocking function or a resistive signal path. With the capacitive DC blocking function of the end-cap M0 FETs, when a positive Vdrain voltage is applied, a positive voltage can be built up on the drain and source nodes of the positive-logic FETs M1-Mx. Without the capacitive DC blocking function of the end-cap M0 FETs, the source or drain of the FET closest to an RF signal input (e.g., FET Mx adjacent to input RF1 and/or FET M1 adjacent to RF2) would be DC biased by low impedance circuitry connected to the RF signal input terminals and not by Vdrain.


Some embodiments of the RF switch circuit 200 may comprise a stack of only M0 FETs, or a mix of positive-logic FETs and M0 FETs, so long as at least one end-cap FET is an M0 FET. In general, embodiments of the RF switch circuit 200 are bidirectional, and accordingly RF1 and RF2 are interchangeable terminals, and the designation of “drain” and “source” for each FET depends on connections of RF1 and RF2 to external components (including circuit ground). Further details of the circuit configuration shown in FIG. 2 may be found, for example, in U.S. patent application Ser. No. 15/939,128, referenced above.


While the RF switch circuit 200 of FIG. 2 works well for many applications, an area for improvement is in handling high voltage. During the OFF state, high enough RF power levels applied to the terminal M0 FETs 202, 204 will cause the AC gate voltage to rise high enough for those FETs to turn ON due to capacitive voltage division of the RF signal. This “forced ON” possibility for the terminal M0 FETs 202, 204 limits the power handling of the RF switch circuit 200. One solution, described in U.S. Pat. No. 10,236,872 referenced above, is to couple a respective terminal capacitor CS, CD between an RF terminal RF1, RF2 and the gate of the respective terminal M0 FET 202, 204 nearest the RF terminal RF1, RF2, as shown in FIG. 2. In an alternative configuration, the terminal capacitors CS, CD may be coupled across the source and drain of respective terminal M0 FETs 202, 204 (shown in FIG. 2 with dotted connecting lines for the terminal capacitors CS, CD). Due to the terminal capacitors CS, CD, the AC component of RF power applied to RF1 or RF2 is capacitively coupled to the respective gates of the terminal M0 FETs 202, 204, while any DC component of RF power is blocked. The CS, CD capacitors, in parallel or series with the parasitic capacitors of the devices themselves, balance the AC voltage division across an OFF stack of FETs. Accordingly, the VGS of the terminal M0 FETs 202, 204 remains below the threshold of turning ON, preventing the terminal M0 FETs 202, 204 from turning ON at high RF power levels. A large RF signal voltage only appears between nodes A, A′, across the “gate-drain/gate-source” junctions of the positive-logic FETs M1-Mx. The values of the terminal capacitors CS, CD may be determined by the sizing of the FETs M1-Mx and M0 used in the stack.


A drawback of using terminal capacitors CS, CD to increase the power handling capability of the RF switch circuit 200 is that the capacitor values need to be relatively large to be effective at protecting the circuit at high power levels. Large capacitors not only consume large areas on integrated circuit (IC) dies, but also increase the insertion loss (IL) of the RF switch circuit 200 in an ON state.


Accordingly, there is a need for an improved FET-based RF switch stack that does not require a negative bias voltage, and which can withstand application of a high voltage RF signal without consuming large IC areas. The present invention addresses these and other needs.


SUMMARY

The invention encompasses an improved FET-based RF switch stack that does not require a negative bias voltage, and which can withstand application of a high voltage RF signal without requiring terminal capacitors.


Some embodiments include a stack of FET switches, with at least one FET switch requiring a negative VGS to turn OFF and configured so as to not require a negative voltage, series-coupled on at least one end to an end-cap FET that turns OFF when the VGS of such end-cap FET is essentially zero volts, wherein at least one end-cap FET is configured to be coupled to a corresponding RF signal source and has a gate coupled to the corresponding RF signal source through an associated switch circuit.


Some embodiments include a stack of FET switches, including at least one positive-logic FET requiring a negative VGS to turn OFF and configured so as to not require a negative voltage, series-coupled on at least one end to an end-cap FET that turns OFF when the VGS of such end-cap FET is essentially zero volts, wherein at least one end-cap FET is configured to be coupled to a corresponding RF signal source and has a gate coupled to the corresponding RF signal source through an associated switch circuit.


Some embodiments include a FET switch stack, including: one or more positive-logic FETs requiring a negative VGS to turn OFF and configured so as to not require a negative voltage; a first end-cap FET that turns OFF when the VGS of the first end-cap FET is essentially zero volts, series-coupled to a first end of the one or more series-coupled positive-logic FETs wherein at least one end-cap FET has a gate and is configured to be coupled to a corresponding RF signal source; and at least one switch circuit, each switch circuit coupled between the gate of an associated end-cap FET and the corresponding RF signal source.


In the various embodiments, the switch circuit may include an NMOSFET series-coupled to a PMOSFET, and/or a diode coupled to the corresponding RF signal source and an NMOSFET coupled between the diode and the gate of the associated end-cap FET, and/or a diode coupled to the corresponding RF signal source and an NMOSFET series-coupled to a PMOSFET between the diode and the gate of the associated end-cap FET.


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified schematic circuit of a common prior art series-shunt RF switch circuit configuration.



FIG. 2 is a schematic circuit of a prior art RF switch circuit using FET stacks.



FIG. 3 is a schematic circuit of an RF switch circuit using a stack of “positive logic” FETs, where the stack has zero-VGS end-cap FETs with selectable gate connections.



FIG. 4A is a schematic circuit of a first embodiment of a switch circuit Sw that may be used in the RF switch circuit of FIG. 3.



FIG. 4B is a schematic circuit of a second embodiment of a switch circuit Sw that may be used in the RF switch circuit of FIG. 3.



FIG. 4C is a schematic circuit of a third embodiment of a switch circuit Sw that may be used in the RF switch circuit of FIG. 3.



FIG. 4D is a schematic circuit of a fourth embodiment of a switch circuit Sw that may be used in the RF switch circuit of FIG. 3.



FIG. 4E is a schematic circuit of a fifth embodiment of a switch circuit Sw that may be used in the RF switch circuit of FIG. 3.



FIG. 4F is a schematic circuit of a sixth embodiment of a switch circuit that may be used in the RF switch circuit of FIG. 3.



FIG. 4G is a schematic circuit of a seventh embodiment of a switch circuit that may be used in the RF switch circuit of FIG. 3.





Like reference numbers and designations in the various drawings indicate like elements unless the context suggest otherwise.


DETAILED DESCRIPTION

The invention encompasses an improved FET-based RF switch stack that does not require a negative bias voltage, and which can withstand application of a high voltage RF signal without requiring terminal capacitors.



FIG. 3 is a schematic circuit of an RF switch circuit 300 using a stack of “positive logic” FETs, where the stack has zero-VGS end-cap FETs with selectable gate connections. More specifically, the RF switch circuit 300 includes a stack of one or more series-coupled positive-logic FETs M1-Mx (i.e., zero-Vt, low-Vt, or high-Vt FETs of a type that require a negative VGS to turn OFF but are configured so as to not require a negative voltage), series-coupled on at least one end to an “end-cap” FET M0, where “M0” designates a FET of a high-Vt type that turns OFF when the VGS of such FET is essentially zero volts. The end-cap M0 FETs selectably provide either a capacitive DC blocking function or a resistive signal path. Some embodiments may comprise a stack of only M0 FETs, or a mix of positive-logic FETs and M0 FETs, so long as at least one end-cap FET is an M0 FET. Optional end-cap capacitors (not shown) in parallel with the end-cap M0 FETs may be included to prevent early breakdown of corresponding end-cap M0 FETs.


In the illustrated embodiment, each positive-logic FET M1-Mx includes a dedicated gate resistor Rg coupled between the corresponding FET gate and a non-negative gate bias voltage Vgate. In addition, the source and drain of each positive-logic FET M1-Mx is coupled to a non-negative drain-source (DS) bias voltage Vdrain through a corresponding drain-source resistor Rds (some of the resistors Rds are shared by adjacent FETs). Alternative embodiments may use other bias networks, such as taught in U.S. patent application Ser. No. 15/939,132 referenced above, including various combinations of series-connected bias resistor ladders (a “rail” configuration) and/or parallel-connected bias resistor ladder (a “rung” configuration) and/or a combination of rail-and-rung bias resistor ladders.


While the RF switch circuit 300 of FIG. 3 is similar in many respects to the RF switch circuit 200 of FIG. 2, an important difference is that the terminal capacitors CS, CD coupled between an adjacent RF terminal RF1, RF2 and the gate of a respective terminal FET 202, 204 are replaced with a switch circuit Sw 302 (note that the control line to each switch Sw 302 is omitted in FIG. 3, but shown in FIGS. 4A-4G).


The function of the switch circuits Sw 302 is to reduce the voltage swing across the terminal M0 FETs 202, 204 to make sure they do not turn ON at higher RF power levels when the RF switch circuit 200 is in an OFF state, yet allow normal function of the terminal M0 FETs 202, 204 when the RF switch circuit 200 is in an ON state. For example, when the RF switch circuit 200 is in an OFF state, the switch circuits Sw 302 are set to an essentially CLOSED (conductive) state such that the gate voltage for the terminal M0 FET 202, 204 to which power is applied follows the voltage applied to the source of that terminal M0 FET. Conversely, when the RF switch circuit 200 is in an ON state, the switch circuits Sw 302 are set to an essentially OPEN (blocking) state such that the gate voltage for the terminal M0 FET to which power is applied is set only by Vgate, and not by any component of DC or RF applied to node.


Described below are a number of circuits for implementing the switch circuits Sw 302, which need not be identical. However, it should be understood that other circuits may be used to implement the switch circuits Sw 302 without departing from the teachings of this disclosure.


Embodiments of Switch Circuit Sw


FIG. 4A is a schematic circuit of a first embodiment of a switch circuit Sw 302a that may be used in the RF switch circuit 300 of FIG. 3. The illustrated switch circuit Sw 302a includes a switch 402 coupled to a control signal Ctrl1. The switch 402 would be coupled between a terminal RFx (e.g., RF1 or RF2) and the gate of a terminal M0 FET 202, 204.


The switch 402 may be implemented in any suitable technology compatible with fabrication of the RF switch circuit 300, including (but not limited to) FET, MOSFET, micro-electro-mechanical systems (MEMS) switches, bipolar, GaAs HBT, GaN HEMT, GaAs pHEMT, and MESFET technologies.


In operation, the switch 402 is set by the control signal Ctrl1 to an essentially CLOSED state when the RF switch circuit 200 is in an OFF state, and to an essentially OPEN state when the RF switch circuit 200 is in an ON state. In general, the ON or OFF state of the control signal Ctrl1 is opposite the state (i.e., OFF or ON) of the RF switch circuit 300 as set by Vgate (see FIG. 3). However, in some embodiments, there may be brief periods of time where the control signal Ctrl1 and the RF switch circuit 300 are in the same state.



FIG. 4B is a schematic circuit of a second embodiment of a switch circuit Sw 302b that may be used in the RF switch circuit 300 of FIG. 3. The illustrated switch circuit Sw 302b includes an NMOSFET MN having its gate coupled through a gate resistor R to a control signal Ctrl1. The NMOSFET MN would be coupled between a terminal RFx (e.g., RF1 or RF2) and the gate of a terminal M0 FET 202, 204 (keeping in mind that the source and drain terminals of the NMOSFET MN are generally interchangeable).


In essence, switch circuit Sw 302b is an NMOSFET implementation of the switch 402 of FIG. 4A. In operation, the NMOSFET MN is set by the control signal Ctrl1 to an essentially CLOSED state when the RF switch circuit 200 is in an OFF state, and to an essentially OPEN state when the RF switch circuit 200 is in an ON state. In general, the ON or OFF state of the control signal Ctrl1 is opposite the state (i.e., OFF or ON) of the RF switch circuit 300 as set by Vgate. However, again, in some embodiments there may be brief periods of time where the control signal Ctrl1 and the RF switch circuit 300 are in the same state.


If the gate-drain voltage difference for the NMOSFET MN becomes too great due to high RF power applied to the RFx terminal of switch circuit Sw 302b in FIG. 4B, the NMOSFET MN may itself be forced to turn ON. Accordingly, for applications in which such levels of high RF power may be encountered, the switch function of the NMOSFET MN of FIG. 4B can be enhanced so as to withstand a higher voltage.


For example, FIG. 4C is a schematic circuit of a third embodiment of a switch circuit Sw 302c that may be used in the RF switch circuit 300 of FIG. 3. The illustrated switch circuit Sw 302c includes an NMOSFET MN having its gate coupled through a gate resistor R1 to a control signal Ctrl1, and a series-connected PMOSFET MP having its gate coupled through a gate resistor R2 to a control signal Ctrl2. The NMOSFET MN and the PMOSFET MP would be coupled between a terminal RFx (e.g., RF1 or RF2) and the gate of a terminal M0 FET 202, 204 (note the order of the NMOSFET MN and the PMOSFET MP may be reversed from the illustrated example).


In operation, the NMOSFET MN and the PMOSFET MP are biased by Ctrl1 and Ctrl2 such that, when the NMOSFET MN is set to OFF, then the PMOSFET MP is set to OFF, and vice versa. Thus, the NMOSFET MN and the PMOSFET MP normally switch between ON and OFF states in unison. However, if the gate-drain voltage difference for the NMOSFET MN becomes too great due to high RF power applied to the RFx terminal, thus forcing the NMOSFET MN to an ON state, that same gate-drain voltage difference will force the PMOSFET MP to an even “harder” OFF state, due to the complementary switching behavior of NMOS and PMOS FETs.


It should be noted that a switch comprising a series-connected NMOSFET MN and PMOSFET MP (or a stack of such switches) may be quite useful in other applications in which an NMOSFET MN (or a stack of such transistors) alone may be forced into an ON (conducting) state by a gate-drain voltage difference.


It has been found that it may be useful to include a diode as part of a switch circuit Sw 302. For example, FIG. 4D is a schematic circuit of a fourth embodiment of a switch circuit Sw 302d that may be used in the RF switch circuit 300 of FIG. 3. The illustrated switch circuit Sw 302d includes an NMOSFET MN having its gate coupled through a gate resistor R to a control signal Ctrl1. The NMOSFET MN is shown as coupled between a terminal RFx (e.g., RF1 or RF2) through a diode D, and to the gate of a terminal M0 FET 202, 204. However, the diode D may be positioned on the other side of NMOSFET MN. The diode D may be implemented in known fashion as a diode-connected MOSFET, in which the gate and drain of a MOSFET are directly connected.


When the RF switch circuit 300 is OFF, when the voltage (Vs) at RFx starts to drop below the voltage (VG) at the gate of the M0 FET during the negative cycle of an applied RF signal, the diode D turns ON (is unidirectionally conductive), essentially making the voltage at the gate of the M0 FET follow the voltage at RFx. Conversely, when VS starts to rise above VG during the positive cycle of an applied RF signal, the diode D essentially turns OFF (is unidirectionally blocking), essentially preventing the voltage VS at RFx from being applied to the gate of the M0 FET, thereby preventing the terminal M0 FETs 202, 204 from being forced ON.


It should be noted that if the diode D was connected directly between a terminal RFx (e.g., RF1 or RF2) and the gate of a terminal M0 FET 202, 204, then when the RF switch circuit 300 is ON, the diode D would turn ON when the gate of the associated terminal M0 FET 202, 204 is biased at a sufficiently high level (e.g., 1.8V). The ON state of the diode D would prevent the associated terminal M0 FET 202, 204 from turning ON state. Accordingly, an NMOSFET MN having its gate coupled through a gate resistor R1 to a control signal Ctrl1 may be interposed between the diode D and the gate of the associated terminal M0 FET 202, 204. The NMOSFET MN functions as a switch as in the switch circuit Sw 302b of FIG. 4B so as to disconnect the diode D from the gate of the associated terminal M0 FET 202, 204 when the RF switch circuit 300 is ON. Thus, the NMOSFET MN is OFF (blocking) when the RF switch circuit 300 is ON, and the NMOSFET MN is ON (conducting) when the RF switch circuit 300 is OFF.


The switch circuit Sw 302d of FIG. 4D works well in applications where the OFF power applied to the RF switch circuit 300 may be high, but the ON power is low. However, in applications where the ON power applied to the RF switch circuit 300 may be high, the NMOSFET MN may be forced ON when it is supposed to be OFF. Accordingly, for applications in which such levels of high RF power may be encountered, the switch function of the NMOSFET MN of FIG. 4D can be enhanced so as to withstand a higher voltage.


For example, FIG. 4E is a schematic circuit of a fifth embodiment of a switch circuit Sw 302e that may be used in the RF switch circuit 300 of FIG. 3. The illustrated switch circuit Sw 302e includes an NMOSFET MN having its gate coupled through a gate resistor R to a control signal Ctrl1. The NMOSFET MN is shown as coupled to a terminal RFx (e.g., RF1 or RF2) through a diode D. As with the switch circuit Sw 302c of FIG. 4C, a PMOSFET MP having its gate coupled through a gate resistor R2 to a control signal Ctrl2 is series-connected to the NMOSFET MN and to the gate of a terminal M0 FET 202, 204. However, the diode D may be positioned on either side of either the NMOSFET MN or the PMOSFET MP, and the order of the NMOSFET MN and the PMOSFET MP may be reversed from the illustrated example. Stated another way, the diode D, the NMOSFET MN, and the PMOSFET MP may be series-coupled in any order. The diode D may be implemented in known fashion as a diode-connected MOSFET.


As with the switch circuit Sw 302c of FIG. 4C, in operation, the NMOSFET MN and the PMOSFET MP are biased by Ctrl and Ctrl2 such that, when the NMOSFET MN is set to OFF, then the PMOSFET MP is set to OFF, and vice versa. Thus, the NMOSFET MN and the PMOSFET MP normally switch between ON and OFF states in unison. When both the NMOSFET MN and the PMOSFET MP are OFF, the diode D is disconnected from the gate of the associated terminal M0 FET 202, 204 (the desired state when the RF switch circuit 300 is ON). However, if the gate-drain voltage difference for the NMOSFET MN becomes too great due to high RF power applied to the RFx terminal, thus forcing the NMOSFET MN to an ON state, that same gate-drain voltage difference will force the PMOSFET MP to an even “harder” OFF state, thereby keeping the diode D disconnected from the gate of the associated terminal M0 FET 202, 204.


Further, as with the switch circuit Sw 302d of FIG. 4D, when the RF switch circuit 300 is OFF, then both the NMOSFET MN and the PMOSFET MP are set to ON and the diode D is connected to the gate of the associated terminal M0 FET 202, 204. When the voltage (Vs) at RFx starts to drop below the voltage (VG) at the gate of the M0 FET during the negative cycle of an applied RF signal, the diode D turns ON (is unidirectionally conductive), essentially making the voltage at the gate of the M0 FET follow the voltage at RFx. Conversely, when VS starts to rise above VG during the positive cycle of an applied RF signal, the diode D essentially turns OFF (is unidirectionally blocking), essentially preventing the voltage VS at RFx from being applied to the gate of the M0 FET, thereby preventing the terminal M0 FETs 202, 204 from being forced ON.



FIG. 4F is a schematic circuit of a sixth embodiment of a switch circuit Sw 302f that may be used in the RF switch circuit 300 of FIG. 3. The illustrated switch circuit Sw 302f includes an NMOSFET MN having its gate coupled through a gate resistor R to a control signal Ctrl1. The NMOSFET MN is shown as coupled between a terminal RFx (e.g., RF1 or RF2) through a capacitor C, and to the gate of a terminal M0 FET 202, 204. The capacitor C allows the gate of the M0 FET to track the RF signal when the NMOSFET MN is switched to a CLOSED (conducting) state. The capacitor C may be positioned on either side of the NMOSFET MN. Operation is otherwise the same as the embodiment of FIG. 4B.



FIG. 4G is a schematic circuit of a seventh embodiment of a switch circuit Sw 302g that may be used in the RF switch circuit 300 of FIG. 3. The illustrated switch circuit Sw 302g includes an NMOSFET MN having its gate coupled through a gate resistor R1 to a control signal Ctrl1, and a series-connected PMOSFET MP having its gate coupled through a gate resistor R2 to a control signal Ctrl2. The NMOSFET MN is shown as coupled to a terminal RFx (e.g., RF1 or RF2) through a capacitor C, and the PMOSFET MP is shown as coupled to the gate of a terminal M0 FET 202, 204 (note the order of the NMOSFET MN and the PMOSFET MP may be reversed from the illustrated example). The capacitor C allows the gate of the M0 FET to track the RF signal when the NMOSFET MN and the PMOSFET MP are both set to a conducting state. The capacitor C, the NMOSFET MN, and the PMOSFET MP may be series-coupled in any order. Operation is otherwise the same as the embodiment of FIG. 4C.


Diode Rectifying Effect

A beneficial aspect of including the diode D in the switch circuits Sw 302d, 302e of FIGS. 4D and 4E, respectively, is a rectifying effect when the RF switch circuit 300 is OFF. An RF voltage applied at the RFx terminal will generally have an average DC voltage of zero due to equal positive and negative AC excursions. However, the presence of the diode D will cause the voltage VGS between RFx and the gate of the M0 FET to have an average negative DC value, essentially creating a self-generating negative voltage that will drive the associated terminal M0 FET 202, 204 to a “harder” OFF state. This “harder” OFF state has the effect of reducing signal compression compared to RF switch circuit 200 that utilize terminal capacitors CS, CD to prevent forced-ON states for the terminal M0 FETs 202, 204.


For example, in one simulation of a series-shunt two-port RF switch circuit similar to the circuit of FIG. 1 using an RF switch circuit 200 (i.e., having terminal capacitors CS, CD) for the shunt switch 106 (the other switches 102, 104 were modeled as ideal switches), with input power at the TX port being greater than or equal to about 35 dBm, the shunt switch 106 caused compression of about 1 dB at the ANT1 port. While the 1 dB compression point could be adjusted by increasing either the stack height of the shunt switch 106 or the value of the compensation terminal capacitors CS, CD, doing so would hurt the small signal performance of the RF switch circuit 200.


In contrast, under similar modeling conditions but using an RF switch circuit 300 (i.e., having a diode-based switch circuit Sw 302d, 302e) for the shunt switch 106 (the other switches 102, 104 were modeled as ideal switches), with input power at the TX port being greater than or equal to about 35 dBm, the shunt switch 106 caused essentially no compression at the ANT1 port.


Benefits

All of the switch circuits Sw 302x described above have the advantage of lower IC area compared to using terminal capacitors CS, CD to prevent forced-ON states for the terminal M0 FETs 202, 204. In addition, the switch circuits Sw 302x that include a diode provide the benefits of rectification described above.


Methods

Another aspect of the invention includes methods for enabling a FET-based RF switch stack to withstand application of a high voltage RF signal without requiring terminal capacitors. For example, one such method applies to a stack of FET switches, at least one FET switch requiring a negative VGS to turn OFF and configured so as to not require a negative voltage, series-coupled on at least one end to an end-cap FET that turns OFF when the VGS of such end-cap FET is essentially zero volts. The method includes: coupling a switch circuit between the RF signal source and the gate of at least one end-cap FET; closing the switch circuit(s) when the stack of FET switches is in an OFF state; and opening the switch circuit(s) when the stack of FET switches is in an ON state. Examples of such switch circuits are shown in FIGS. 4A-4G.


Fabrication Technologies & Options

The term “MOSFET”, as used in this disclosure, means any field effect transistor (FET) with an insulated gate and comprising a metal or metal-like, insulator, and semiconductor structure. The terms “metal” or “metal-like” include at least one electrically conductive material (such as aluminum, copper, or other metal, or highly doped polysilicon, graphene, or other electrical conductor), “insulator” includes at least one insulating material (such as silicon oxide or other dielectric material), and “semiconductor” includes at least one semiconductor material.


As used in this disclosure, the term “radio frequency” (RF) refers to a rate of oscillation in the range of about 3 kHz to about 300 GHz. This term also includes the frequencies used in wireless communication systems. An RF frequency may be the frequency of an electromagnetic wave or of an alternating voltage or current in a circuit.


Various embodiments of the invention can be implemented to meet a wide variety of specifications. Unless otherwise noted above, selection of suitable component values is a matter of design choice. Various embodiments of the invention may be implemented in any suitable integrated circuit (IC) technology (including but not limited to MOSFET structures), or in hybrid or discrete circuit forms. Integrated circuit embodiments may be fabricated using any suitable substrates and processes, including but not limited to standard bulk silicon, silicon-on-insulator (SOI), and silicon-on-sapphire (SOS). Unless otherwise noted above, embodiments of the invention may be implemented in other transistor technologies such as bipolar, LDMOS, BCD, GaAs HBT, GaN HEMT, GaAs pHEMT, and MESFET technologies. However, embodiments of the invention are particularly useful when fabricated using an SOI or SOS based process, or when fabricated with processes having similar characteristics. Fabrication in CMOS using SOI or SOS processes enables circuits with low power consumption, the ability to withstand high power signals during operation due to FET stacking, good linearity, and high frequency operation (i.e., radio frequencies up to and exceeding 50 GHz). Monolithic IC implementation is particularly useful since parasitic capacitances generally can be kept low (or at a minimum, kept uniform across all units, permitting them to be compensated) by careful design.


Voltage levels may be adjusted, and/or voltage and/or logic signal polarities reversed, depending on a particular specification and/or implementing technology (e.g., NMOS, PMOS, or CMOS, and enhancement mode or depletion mode transistor devices). Component voltage, current, and power handling capabilities may be adapted as needed, for example, by adjusting device sizes, serially “stacking” components (particularly FETs) to withstand greater voltages, and/or using multiple components in parallel to handle greater currents. Additional circuit components may be added to enhance the capabilities of the disclosed circuits and/or to provide additional functionality without significantly altering the functionality of the disclosed circuits.


Circuits and devices in accordance with the present invention may be used alone or in combination with other components, circuits, and devices. Embodiments of the present invention may be fabricated as integrated circuits (ICs), which may be encased in IC packages and/or in modules for ease of handling, manufacture, and/or improved performance. In particular, IC embodiments of this invention are often used in modules in which one or more of such ICs are combined with other circuit blocks (e.g., filters, amplifiers, passive components, and possibly additional ICs) into one package. The ICs and/or modules are then typically combined with other components, often on a printed circuit board, to form an end product such as a cellular telephone, laptop computer, or electronic tablet, or to form a higher level module which may be used in a wide variety of products, such as vehicles, test equipment, medical devices, etc. Through various configurations of modules and assemblies, such ICs typically enable a mode of communication, often wireless communication.


Conclusion

A number of embodiments of the invention have been described. It is to be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, some of the steps described above may be order independent, and thus can be performed in an order different from that described. Further, some of the steps described above may be optional. Various activities described with respect to the methods identified above can be executed in repetitive, serial, and/or parallel fashion.


It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the invention, which is defined by the scope of the following claims, and that other embodiments are within the scope of the claims. In particular, the scope of the invention includes any and all feasible combinations of one or more of the processes, machines, manufactures, or compositions of matter set forth in the claims below. (Note that the parenthetical labels for claim elements are for ease of referring to such elements, and do not in themselves indicate a particular required ordering or enumeration of elements; further, such labels may be reused in dependent claims as references to additional elements without being regarded as starting a conflicting labeling sequence).

Claims
  • 1. A circuit including: (a) a set of one or more field-effect transistor (FET) switches coupled in series, the set having a first end and a second end, wherein at least one FET switch of the set of FET switches requires a relatively negative Vas to turn OFF and is configured so as to not require a negative voltage;(b) a first end-cap FET having a gate, a first terminal coupled in series with the first end of the set of one or more FET switches, and a second terminal configured to be coupled to a first RF signal source, wherein the first end-cap FET turns OFF when the Vas of the first end-cap FET is essentially zero volts; and(c) a first switch circuit including a first NMOSFET coupled between the second terminal and the gate of the first end-cap FET.
  • 2. The invention of claim 1, wherein the first switch circuit includes the first NMOSFET series-coupled to a PMOSFET.
  • 3. The invention of claim 1, wherein the first switch circuit includes a diode series-coupled to the first NMOSFET.
  • 4. The invention of claim 1, wherein the first switch circuit includes a diode, the first NMOSFET, and a PMOSFET coupled in series.
  • 5. The invention of claim 1, wherein the first switch circuit includes a capacitor series-coupled to the first NMOSFET.
  • 6. The invention of claim 1, wherein the first switch circuit includes a capacitor, the first NMOSFET, and a PMOSFET coupled in series.
  • 7. The invention of claim 1, further including a second end-cap FET having a gate, a first terminal coupled in series with the second end of the set of one or more FET switches, and a second terminal configured to be coupled to a second RF signal source, wherein the second end-cap FET turns OFF when the Vas of the second end-cap FET is essentially zero volts.
  • 8. The invention of claim 7, further including a second switch circuit including a second NMOSFET coupled between the second terminal and the gate of the second end-cap FET.
  • 9. The invention of claim 1, wherein each FET in the set of one or more FET switches includes a gate, and further including a dedicated gate resistor coupled to a corresponding FET gate and configured to be coupled a non-negative gate bias voltage.
  • 10. The invention of claim 1, wherein each FET in the set of one or more FET switches includes a source and a drain, and further including a plurality of resistors each coupled to a corresponding source or drain of the FETs in the set of FET switches and configured to be coupled to a non-negative drain-source bias voltage.
  • 11. A circuit including: (a) a stack of FET switches, the stack having a first end and a second end, wherein at least one FET switch of the stack of FET switches requires a relatively negative Vas to turn OFF and is configured to operate with positive control voltages;(b) a first end-cap FET having a gate, a first terminal coupled in series with the first end of the stack of FET switches, and a second terminal configured to be coupled to a first RF signal source, wherein the first end-cap FET turns OFF when the VGS of the first end-cap FET is essentially zero volts; and(c) a first switch circuit including a first NMOSFET coupled between the second terminal and the gate of the first end-cap FET.
  • 12. The invention of claim 11, wherein the first switch circuit includes the first NMOSFET series-coupled to a PMOSFET.
  • 13. The invention of claim 11, wherein the first switch circuit includes a diode series-coupled to the first NMOSFET.
  • 14. The invention of claim 11, wherein the first switch circuit includes a diode, the first NMOSFET, and a PMOSFET coupled in series.
  • 15. The invention of claim 11, wherein the first switch circuit includes a capacitor series-coupled to the first NMOSFET.
  • 16. The invention of claim 11, wherein the first switch circuit includes a capacitor, the first NMOSFET, and a PMOSFET coupled in series.
  • 17. The invention of claim 11, further including a second end-cap FET having a gate, a first terminal coupled in series with the second end of the stack of FET switches, and a second terminal configured to be coupled to a second RF signal source, wherein the second end-cap FET turns OFF when the Vas of the second end-cap FET is essentially zero volts.
  • 18. The invention of claim 17, further including a second switch circuit including a second NMOSFET coupled between the second terminal and the gate of the second end-cap FET.
  • 19. The invention of claim 11, wherein each FET in the stack of FET switches includes a gate, and further including a dedicated gate resistor coupled to a corresponding FET gate and configured to be coupled a non-negative gate bias voltage.
  • 20. The invention of claim 11, wherein each FET in the stack of FET switches includes a source and a drain, and further including a plurality of resistors each coupled to a corresponding source or drain of the FETs in the stack of FET switches and configured to be coupled to a non-negative drain-source bias voltage.
  • 21. A circuit including: (a) a set of one or more field-effect transistor (FET) switches coupled in series, the set having a first end and a second end, wherein at least one FET switch of the set of FET switches requires a relatively negative Vas to turn OFF and is configured so as to not require a negative voltage;(b) a first end-cap FET having a gate, a first terminal coupled in series with the first end of the set of one or more FET switches, and a second terminal configured to be coupled to a first RF signal source, wherein the first end-cap FET turns OFF when the Vas of the first end-cap FET is essentially zero volts;(c) a first switch circuit including a first NMOSFET coupled between the second terminal and the gate of the first end-cap FET;(d) a second end-cap FET having a gate, a first terminal coupled in series with the second end of the stack of FET switches, and a second terminal configured to be coupled to a second RF signal source, wherein the second end-cap FET turns OFF when the VGs of the second end-cap FET is essentially zero volts; and(e) a second switch circuit including a second NMOSFET coupled between the second terminal and the gate of the second end-cap FET.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of co-pending U.S. application Ser. No. 17/141,706, filed Jan. 5, 2021, entitled “High Power Positive Logica Switch”, to issue as U.S. Pat. No. 11,476,849 on Oct. 18, 2022, which is herein incorporated by reference in its entirety. The present non-provisional continuation application claims priority to the following provisional patent application, assigned to the assignee of the present invention, the contents of which are incorporated by reference: U.S. Patent Application Ser. No. 62/957,705, filed Jan. 6, 2020, entitled “High Power Positive Logic Switch”. The present application may be related to the following patents and patent applications, the contents of all of which are incorporated herein by reference: U.S. patent application Ser. No. 15/939,128, filed Mar. 28, 2018, entitled “Positive Logic Switch with Selectable DC Blocking Circuit”, now U.S. Pat. No. 10,505,530, issued Dec. 10, 2019; U.S. patent application Ser. No. 15/939,132, filed Mar. 28, 2018, entitled “Stacked FET Switch Bias Ladders”, now U.S. Pat. No. 10,862,473, issued Dec. 8, 2020; U.S. patent application Ser. No. 15/939,144, filed Mar. 28, 2018, entitled “AC Coupling Modules for Bias Ladders”, now U.S. Pat. No. 10,236,872, issued Mar. 19, 2019.

US Referenced Citations (524)
Number Name Date Kind
3646361 Pfiffner Feb 1972 A
3699359 Shelby Oct 1972 A
3975671 Stoll Aug 1976 A
3983414 Stafford et al. Sep 1976 A
3988727 Scott Oct 1976 A
4053916 Cricchi et al. Oct 1977 A
4139826 Pradal Feb 1979 A
4145719 Hand et al. Mar 1979 A
4244000 Ueda et al. Jan 1981 A
4256977 Hendrickson Mar 1981 A
4316101 Minner Feb 1982 A
4317055 Yoshida et al. Feb 1982 A
4367421 Baker Jan 1983 A
4390798 Kurafuji Jun 1983 A
RE31749 Yamashiro Nov 1984 E
4638184 Kimura Jan 1987 A
4736169 Weaver et al. Apr 1988 A
4739191 Puar Apr 1988 A
4746960 Valeri et al. May 1988 A
4748485 Vasudev May 1988 A
4809056 Shirato et al. Feb 1989 A
4810911 Noguchi Mar 1989 A
4825145 Tanaka et al. Apr 1989 A
4849651 Estes, Jr. Jul 1989 A
4883976 Deane Nov 1989 A
4890077 Sun Dec 1989 A
4891609 Eilley Jan 1990 A
4906587 Blake Mar 1990 A
4929855 Ezzeddine May 1990 A
4939485 Eisenberg Jul 1990 A
4984040 Yap Jan 1991 A
4985647 Kawada Jan 1991 A
4999585 Burt et al. Mar 1991 A
5001528 Bahraman Mar 1991 A
5012123 Ayasli et al. Apr 1991 A
5023494 Tsukii et al. Jun 1991 A
5061907 Rasmussen Oct 1991 A
5061911 Weidman et al. Oct 1991 A
5081706 Kim Jan 1992 A
5095348 Houston Mar 1992 A
5107152 Jain et al. Apr 1992 A
5124762 Childs et al. Jun 1992 A
5125007 Yamaguchi et al. Jun 1992 A
5146178 Nojima et al. Sep 1992 A
5148393 Furuyama Sep 1992 A
5157279 Lee Oct 1992 A
5182529 Chern Jan 1993 A
5208557 Kersh, III May 1993 A
5272457 Heckaman et al. Dec 1993 A
5274343 Russell et al. Dec 1993 A
5283457 Matloubian Feb 1994 A
5285367 Keller Feb 1994 A
5306954 Chan et al. Apr 1994 A
5313083 Schindler May 1994 A
5317181 Tyson May 1994 A
5319604 Imondi et al. Jun 1994 A
5345422 Redwine Sep 1994 A
5350957 Cooper et al. Sep 1994 A
5375257 Lampen Dec 1994 A
5382826 Mojaradi et al. Jan 1995 A
5405795 Beyer et al. Mar 1995 A
5416043 Burgener et al. May 1995 A
5422590 Coffman et al. Jun 1995 A
5442327 Longbrake et al. Aug 1995 A
5446418 Hara et al. Aug 1995 A
5448207 Kohama Sep 1995 A
5477184 Uda et al. Dec 1995 A
5488243 Tsuruta et al. Jan 1996 A
5492857 Reedy et al. Feb 1996 A
5493249 Manning Feb 1996 A
5548239 Kohama Aug 1996 A
5553295 Pantelakis et al. Sep 1996 A
5554892 Norimatsu Sep 1996 A
5559368 Hu et al. Sep 1996 A
5572040 Reedy et al. Nov 1996 A
5576647 Sutardja Nov 1996 A
5578853 Hayashi et al. Nov 1996 A
5581106 Hayashi et al. Dec 1996 A
5594371 Douseki Jan 1997 A
5596205 Reedy et al. Jan 1997 A
5597739 Sumi et al. Jan 1997 A
5600169 Burgener et al. Feb 1997 A
5600588 Kawashima Feb 1997 A
5610533 Arimoto et al. Mar 1997 A
5629655 Dent May 1997 A
5663570 Reedy et al. Sep 1997 A
5670907 Gorecki et al. Sep 1997 A
5681761 Kim Oct 1997 A
5689144 Williams Nov 1997 A
5694308 Cave Dec 1997 A
5699018 Yamamoto et al. Dec 1997 A
5717356 Kohama Feb 1998 A
5729039 Beyer et al. Mar 1998 A
5731607 Kohama Mar 1998 A
5734291 Tasdighi et al. Mar 1998 A
5748016 Kurosawa May 1998 A
5748053 Kameyama et al. May 1998 A
5753955 Fechner May 1998 A
5760652 Yamamoto et al. Jun 1998 A
5767549 Chen et al. Jun 1998 A
5774411 Hsieh et al. Jun 1998 A
5774792 Tanaka et al. Jun 1998 A
5784687 Itoh et al. Jun 1998 A
5777530 Nakatuka Jul 1998 A
5784311 Assaderaghi et al. Jul 1998 A
5793246 Vest et al. Aug 1998 A
5801577 Tailliet Sep 1998 A
5804858 Hsu et al. Sep 1998 A
5807772 Takemura Sep 1998 A
5808505 Tsukada Sep 1998 A
5812939 Kohama Sep 1998 A
5814899 Okumura et al. Sep 1998 A
5818099 Burghartz Oct 1998 A
5818278 Yamamoto et al. Oct 1998 A
5818283 Tonami et al. Oct 1998 A
5818289 Chevallier et al. Oct 1998 A
5818766 Song Oct 1998 A
5821769 Douseki Oct 1998 A
5821800 Le et al. Oct 1998 A
5825227 Kohama et al. Oct 1998 A
5861336 Reedy et al. Jan 1999 A
5864328 Kajimoto Jan 1999 A
5863823 Burgener Feb 1999 A
5874836 Nowak et al. Feb 1999 A
5874849 Marotta et al. Feb 1999 A
5877978 Morishita et al. Mar 1999 A
5878331 Yamamoto et al. Mar 1999 A
5880620 Gitlin et al. Mar 1999 A
5883396 Reedy et al. Mar 1999 A
5883541 Tahara et al. Mar 1999 A
5892260 Okumura et al. Apr 1999 A
5892382 Ueda et al. Apr 1999 A
5892400 van Saders et al. Apr 1999 A
5895957 Reedy et al. Apr 1999 A
5903178 Miyatsuji et al. May 1999 A
5912560 Pasternak Jun 1999 A
5917362 Kohama Jun 1999 A
5920093 Huang et al. Jul 1999 A
5920233 Denny Jul 1999 A
5926466 Ishida et al. Jul 1999 A
5930605 Mistry et al. Jul 1999 A
5930638 Reedy et al. Jul 1999 A
5945867 Uda et al. Aug 1999 A
5953557 Kawahara Sep 1999 A
5959335 Bryant et al. Sep 1999 A
5969560 Kohama et al. Oct 1999 A
5973363 Staab et al. Oct 1999 A
5973364 Kawanaka Oct 1999 A
5973382 Burgener et al. Oct 1999 A
5973636 Okubo et al. Oct 1999 A
5986518 Dougherty Nov 1999 A
5990580 Weigand Nov 1999 A
6020778 Shigehara Feb 2000 A
6020781 Fujioka Feb 2000 A
6049110 Koh Apr 2000 A
6057555 Reedy et al. May 2000 A
6057723 Yamaji et al. May 2000 A
6061267 Houston May 2000 A
6063686 Masuda et al. May 2000 A
6064275 Yamauchi May 2000 A
6064872 Vice May 2000 A
6066993 Yamamoto et al. May 2000 A
6081165 Goldman Jun 2000 A
6081443 Morishita et al. Jun 2000 A
6081694 Matsuura et al. Jun 2000 A
6084255 Ueda et al. Jul 2000 A
6087893 Oowaki et al. Jul 2000 A
6094088 Yano Jul 2000 A
6100564 Bryant et al. Aug 2000 A
6104061 Forbes et al. Aug 2000 A
6111778 MacDonald et al. Aug 2000 A
6114923 Mizutani Sep 2000 A
6118343 Winslow Sep 2000 A
6122185 Utsunomiya et al. Sep 2000 A
6130570 Pan et al. Oct 2000 A
6133752 Kawagoe Oct 2000 A
6137367 Ezzedine et al. Oct 2000 A
6160292 Flaker et al. Dec 2000 A
6169444 Thurber, Jr. Jan 2001 B1
6172378 Hull et al. Jan 2001 B1
6173235 Maeda Jan 2001 B1
6177826 Mashiko et al. Jan 2001 B1
6188247 Storino et al. Feb 2001 B1
6188590 Chang et al. Feb 2001 B1
6191449 Shimo Feb 2001 B1
6195307 Umezawa et al. Feb 2001 B1
6201761 Wollesen Mar 2001 B1
6218248 Hwang et al. Mar 2001 B1
RE37124 Monk et al. Apr 2001 E
6215360 Callaway, Jr. Apr 2001 B1
6218890 Yamaguchi et al. Apr 2001 B1
6218892 Soumyanath et al. Apr 2001 B1
6222394 Allen et al. Apr 2001 B1
6239649 Bertin et al. May 2001 B1
6249027 Burr Jun 2001 B1
6249029 Bryant et al. Jun 2001 B1
6249446 Shearon et al. Jun 2001 B1
6281737 Kuang et al. Aug 2001 B1
6288458 Berndt Sep 2001 B1
6297687 Sugimura Oct 2001 B1
6300796 Troutman et al. Oct 2001 B1
6304110 Hirano Oct 2001 B1
6308047 Yamamoto et al. Oct 2001 B1
6310508 Westerman Oct 2001 B1
6316983 Kitamura Nov 2001 B1
6320225 Hargrove et al. Nov 2001 B1
6337594 Hwang Jan 2002 B1
6341087 Kunikiyo Jan 2002 B1
6355957 Maeda et al. Mar 2002 B1
6356536 Repke Mar 2002 B1
6365488 Liao Apr 2002 B1
6380793 Bancal et al. Apr 2002 B1
6380796 Bancal et al. Apr 2002 B2
6387739 Smith May 2002 B1
6392440 Nebel May 2002 B2
6392467 Oowaki et al. May 2002 B1
6396325 Goodell May 2002 B2
6400211 Yokomizo et al. Jun 2002 B1
6407427 Oh Jun 2002 B1
6407614 Takahashi Jun 2002 B1
6411156 Borkar et al. Jun 2002 B1
6414353 Maeda et al. Jul 2002 B1
6414863 Bayer et al. Jul 2002 B1
6429487 Kunikiyo Aug 2002 B1
6429632 Forbes et al. Aug 2002 B1
6429723 Hastings Aug 2002 B1
6433587 Assaderaghi et al. Aug 2002 B1
6433589 Lee Aug 2002 B1
6452232 Adan Sep 2002 B1
6461902 Xu et al. Oct 2002 B1
6466082 Krishnan Oct 2002 B1
6469568 Toyoyama et al. Oct 2002 B2
6486511 Nathanson et al. Nov 2002 B1
6486729 Imamiya Nov 2002 B2
6498058 Bryant et al. Dec 2002 B1
6498370 Kim et al. Dec 2002 B1
6504212 Allen et al. Jan 2003 B1
6504213 Ebina Jan 2003 B1
6512269 Bryant et al. Jan 2003 B1
6518645 Bae et al. Feb 2003 B2
6521959 Kim et al. Feb 2003 B2
6531356 Hayashi Mar 2003 B1
6537861 Kroell et al. Mar 2003 B1
6559689 Clark May 2003 B1
6563366 Kohama May 2003 B1
6573533 Yamazaki Jun 2003 B1
6608785 Chuang et al. Aug 2003 B2
6608789 Sullivan et al. Aug 2003 B2
6617933 Ito et al. Sep 2003 B2
6631505 Arai Oct 2003 B2
6632724 Henley et al. Oct 2003 B2
6642578 Arnold et al. Nov 2003 B1
6646305 Assaderaghi et al. Nov 2003 B2
6653697 Hidaka et al. Nov 2003 B2
6670655 Lukes et al. Dec 2003 B2
6677641 Kocon Jan 2004 B2
6677803 Chiba Jan 2004 B1
6684065 Bult Jan 2004 B2
6693326 Adan Feb 2004 B2
6693498 Sasabata et al. Feb 2004 B1
6698082 Crenshaw et al. Mar 2004 B2
6698498 Crenshaw et al. Mar 2004 B1
6703863 Gion Mar 2004 B2
6704550 Kohama et al. Mar 2004 B1
6711397 Petrov et al. Mar 2004 B1
6714065 Komiya et al. Mar 2004 B2
6717458 Potanin Apr 2004 B1
6762477 Kunikiyo Jul 2004 B2
6774701 Heston et al. Aug 2004 B1
6781805 Urakawa Aug 2004 B1
6788130 Pauletti et al. Sep 2004 B2
6790747 Henley et al. Sep 2004 B2
6801076 Merritt Oct 2004 B1
6803680 Brindle et al. Oct 2004 B2
6804502 Burgener et al. Oct 2004 B2
6816016 Sander et al. Nov 2004 B2
6819938 Sahota Nov 2004 B2
6830963 Forbes Dec 2004 B1
6836172 Okashita Dec 2004 B2
6870241 Nakatani et al. Mar 2005 B2
6871059 Piro et al. Mar 2005 B1
6879502 Yoshida et al. Apr 2005 B2
6882210 Asano et al. Apr 2005 B2
6891234 Connelly et al. May 2005 B1
6897701 Chen et al. May 2005 B2
6898778 Kawanaka May 2005 B2
6901023 Kirsch et al. May 2005 B2
6903596 Geller et al. Jun 2005 B2
6908832 Farrens et al. Jun 2005 B2
6917258 Kushitani et al. Jul 2005 B2
6933744 Das et al. Aug 2005 B2
6947720 Razavi et al. Sep 2005 B2
6969668 Kang et al. Nov 2005 B1
6975271 Adachi et al. Dec 2005 B2
6978122 Kawakyu et al. Dec 2005 B2
6978437 Rittman et al. Dec 2005 B1
7023260 Thorp et al. Apr 2006 B2
7042245 Hidaka May 2006 B2
7045873 Chen et al. May 2006 B2
7056808 Henley et al. Jun 2006 B2
7057472 Fukamachi et al. Jun 2006 B2
7058922 Kawanaka Jun 2006 B2
7082293 Rofougaran et al. Jul 2006 B1
7092677 Zhang et al. Aug 2006 B1
7098755 Zhao Aug 2006 B2
7109532 Lee et al. Sep 2006 B1
7123898 Burgener et al. Oct 2006 B2
7129545 Cain Oct 2006 B2
7132873 Hollmer Nov 2006 B2
7138846 Suwa et al. Nov 2006 B2
7161197 Nakatsuka et al. Jan 2007 B2
7173471 Nakatsuka et al. Feb 2007 B2
7199635 Nakatsuka et al. Apr 2007 B2
7212788 Weber et al. May 2007 B2
7266014 Wu et al. Sep 2007 B2
7269392 Nakajima et al. Sep 2007 B2
7307490 Kizuki Dec 2007 B2
7345342 Challa Mar 2008 B2
7345521 Takahashi et al. Mar 2008 B2
7355455 Hidaka Apr 2008 B2
7391282 Nakatsuka et al. Jun 2008 B2
7404157 Tanabe Jul 2008 B2
7405982 Flaker et al. Jul 2008 B1
7432552 Park Oct 2008 B2
7459988 Iversen Dec 2008 B1
7460852 Burgener et al. Dec 2008 B2
7492209 Prikhodko Feb 2009 B2
7492238 Nakatsuka Feb 2009 B2
7515882 Kelcourse et al. Apr 2009 B2
7518458 Nakamura et al. Apr 2009 B2
7535320 Buer May 2009 B2
7546089 Bellantoni Jun 2009 B2
7554789 Chen Jun 2009 B2
7561853 Miyazawa Jul 2009 B2
7564103 Losehand et al. Jul 2009 B2
7616482 Prall Nov 2009 B2
7619462 Kelly et al. Nov 2009 B2
7659152 Gonzalez et al. Feb 2010 B2
7710189 Toda May 2010 B2
7733156 Brederlow et al. Jun 2010 B2
7733157 Brederlow et al. Jun 2010 B2
7741869 Hidaka Jun 2010 B2
7796969 Kelly et al. Sep 2010 B2
7860499 Burgener et al. Dec 2010 B2
7890891 Stuber et al. Feb 2011 B2
7910993 Brindle et al. Mar 2011 B2
7928759 Hidaka Apr 2011 B2
7960772 Englekirk Jun 2011 B2
7982265 Challa et al. Jul 2011 B2
7984408 Cheng et al. Jul 2011 B2
8081928 Kelly Dec 2011 B2
8129787 Brindle et al. Mar 2012 B2
8330519 Lam et al. Dec 2012 B2
8334718 Granger-Jones et al. Dec 2012 B2
8373490 Burgener et al. Feb 2013 B2
8405147 Brindle et al. Mar 2013 B2
8451044 Nisbet et al. May 2013 B2
8461903 Granger-Jones Jun 2013 B1
8481372 Mouli Jul 2013 B2
8487706 Li Jul 2013 B2
8525272 Losehand et al. Sep 2013 B2
8527949 Pleis et al. Sep 2013 B1
8583111 Burgener et al. Nov 2013 B2
8587361 Taddiken et al. Nov 2013 B2
8604864 Ranta et al. Dec 2013 B2
8638159 Ranta et al. Jan 2014 B2
8669804 Ranta et al. Mar 2014 B2
8729949 Nisbet et al. May 2014 B2
8742502 Brindle et al. Jun 2014 B2
8954902 Stuber et al. Feb 2015 B2
8970278 Granger-Jones et al. Mar 2015 B2
9024700 Ranta May 2015 B2
9087899 Brindle et al. Jul 2015 B2
9106227 Ranta et al. Aug 2015 B2
9129836 Losehand et al. Sep 2015 B2
9130564 Brindle et al. Sep 2015 B2
9190994 Hurwitz Nov 2015 B2
9197194 Reedy et al. Nov 2015 B2
9209801 Matsuno Dec 2015 B2
9225378 Burgener et al. Dec 2015 B2
9276570 Madan et al. Mar 2016 B2
9293262 Bawell et al. Mar 2016 B2
9397656 Dribinsky et al. Jul 2016 B2
9438223 de Jongh Sep 2016 B2
9496849 Ranta et al. Nov 2016 B2
9608619 Stuber et al. Mar 2017 B2
9653601 Brindle et al. May 2017 B2
9667227 Ranta May 2017 B2
9667244 Cavus et al. May 2017 B1
9742400 Bakalski et al. Aug 2017 B2
9755615 Ranta et al. Sep 2017 B2
9780775 Brindle et al. Oct 2017 B2
9780778 Burgener et al. Oct 2017 B2
9786781 Brindle et al. Oct 2017 B2
9806694 Reedy et al. Oct 2017 B2
9887695 Dribinsky et al. Feb 2018 B2
9948281 Ranta Apr 2018 B2
10050616 Ranta et al. Aug 2018 B2
10056895 Granger-Jones Aug 2018 B2
10153763 Brindle et al. Dec 2018 B2
10153767 Burgener et al. Dec 2018 B2
10158285 Emsenhuber Dec 2018 B2
10236872 Willard et al. Mar 2019 B1
10270437 Scott et al. Apr 2019 B2
10320379 Kerr et al. Jun 2019 B2
10505530 Ranta et al. Dec 2019 B2
10505895 Zeng Dec 2019 B2
10523195 Luo et al. Dec 2019 B1
10886911 Willard et al. Jan 2021 B2
11476849 Shanjani Oct 2022 B2
20010015461 Ebina Aug 2001 A1
20010031518 Kim et al. Oct 2001 A1
20010040479 Zhang Nov 2001 A1
20010045602 Maeda et al. Nov 2001 A1
20020029971 Kovacs Mar 2002 A1
20020115244 Park et al. Aug 2002 A1
20020126767 Ding et al. Sep 2002 A1
20020195623 Horiuchi Dec 2002 A1
20030002452 Sahota Jan 2003 A1
20030141543 Bryant et al. Jul 2003 A1
20030160515 Yu et al. Aug 2003 A1
20030181167 Iida Sep 2003 A1
20030201494 Maeda et al. Oct 2003 A1
20030205760 Kawanaka et al. Nov 2003 A1
20030222313 Fechner Dec 2003 A1
20030227056 Wang et al. Dec 2003 A1
20040021137 Fazan et al. Feb 2004 A1
20040051114 Brindle Mar 2004 A1
20040061130 Morizuka Apr 2004 A1
20040080364 Sander et al. Apr 2004 A1
20040129975 Koh et al. Jul 2004 A1
20040204013 Ma et al. Oct 2004 A1
20040218442 Kirsch et al. Nov 2004 A1
20040227565 Chen et al. Nov 2004 A1
20040242182 Hikada et al. Dec 2004 A1
20050017789 Burgener et al. Jan 2005 A1
20050077564 Forbes Apr 2005 A1
20050079829 Ogawa et al. Apr 2005 A1
20050121699 Chen et al. Jun 2005 A1
20050127442 Veeraraghavan Jun 2005 A1
20050167751 Nakajima et al. Aug 2005 A1
20050179506 Takahashi Aug 2005 A1
20050212595 Kusunoki et al. Sep 2005 A1
20050264341 Hikita et al. Dec 2005 A1
20060009164 Kataoka Jan 2006 A1
20060022526 Cartalade Feb 2006 A1
20060077082 Shanks et al. Apr 2006 A1
20060118884 Losehand et al. Jun 2006 A1
20060160520 Miyazawa Jul 2006 A1
20060194558 Kelly Aug 2006 A1
20060194567 Kelly et al. Aug 2006 A1
20060199563 Kelly et al. Sep 2006 A1
20060267093 Tang et al. Nov 2006 A1
20070018247 Brindle et al. Jan 2007 A1
20070023833 Okhonin et al. Feb 2007 A1
20070045697 Cheng et al. Mar 2007 A1
20070069291 Stuber et al. Mar 2007 A1
20070120103 Burgener et al. May 2007 A1
20070279120 Brederlow et al. Dec 2007 A1
20070290744 Adachi et al. Dec 2007 A1
20080034335 Cheng et al. Feb 2008 A1
20080073719 Fazan et al. Mar 2008 A1
20080076371 Dribinsky et al. Mar 2008 A1
20080191788 Chen et al. Aug 2008 A1
20080265978 Englekirk Oct 2008 A1
20080303080 Bhattacharyya Dec 2008 A1
20090007036 Cheng et al. Jan 2009 A1
20090029511 Wu Jan 2009 A1
20090117871 Burgener et al. May 2009 A1
20090181630 Seshita et al. Jul 2009 A1
20090278206 Losehand et al. Nov 2009 A1
20100060377 Takahashi Mar 2010 A1
20100308932 Rangarajan Dec 2010 A1
20100327948 Nisbet et al. Dec 2010 A1
20110001542 Ranta et al. Jan 2011 A1
20110002080 Ranta Jan 2011 A1
20110092179 Burgener et al. Apr 2011 A1
20110127849 Yoon Jun 2011 A1
20110163779 Hidaka Jul 2011 A1
20110169550 Brindle et al. Jul 2011 A1
20110227637 Stuber et al. Sep 2011 A1
20110227666 Manssen et al. Sep 2011 A1
20110260774 Granger-Jones Oct 2011 A1
20120169398 Brindle et al. Jul 2012 A1
20120267719 Brindle et al. Oct 2012 A1
20130015717 Dykstra Jan 2013 A1
20130260698 Nisbet et al. Oct 2013 A1
20130293280 Brindle et al. Nov 2013 A1
20140001550 Losehand et al. Jan 2014 A1
20140009211 Madan Jan 2014 A1
20140009214 Altunkilic Jan 2014 A1
20140055191 Kim et al. Feb 2014 A1
20140118053 Matsuno May 2014 A1
20140167834 Stuber et al. Jun 2014 A1
20140179374 Burgener et al. Jun 2014 A1
20140312422 Brindle et al. Oct 2014 A1
20150015321 Dribinsky et al. Jan 2015 A1
20150022256 Sprinkle et al. Jan 2015 A1
20150270806 Wagh Sep 2015 A1
20150364928 Yen Dec 2015 A1
20150381171 Cebi Dec 2015 A1
20160064561 Brindle et al. Mar 2016 A1
20160191040 Brindle et al. Jun 2016 A1
20160226478 Dribinsky et al. Aug 2016 A1
20160329891 Bakalski et al. Nov 2016 A1
20170134016 Ranta May 2017 A1
20170162692 Brindle et al. Jun 2017 A1
20170201248 Scott Jul 2017 A1
20170236946 Stuber et al. Aug 2017 A1
20170272066 Scott Sep 2017 A1
20170338321 Hurwitz Nov 2017 A1
20180061985 Brindle et al. Mar 2018 A1
20180069530 Ranta Mar 2018 A1
20180083614 Brindle et al. Mar 2018 A1
20180114801 Leipold Apr 2018 A1
20180175851 Kerr Jun 2018 A1
20180212599 Dribinsky et al. Jul 2018 A1
20190305767 Ranta et al. Oct 2019 A1
20190305768 Willard et al. Oct 2019 A1
20190305769 Willard et al. Oct 2019 A1
20200119719 Ranta Apr 2020 A1
20200153425 Ranta May 2020 A1
20200321955 Willard et al. Oct 2020 A1
20210211127 Shanjani Jul 2021 A1
Foreign Referenced Citations (128)
Number Date Country
1256521 Jun 2000 CN
19832565 Aug 1999 DE
112011103554 Sep 2013 DE
385641 Sep 1990 EP
0622901 Nov 1994 EP
782267 Jul 1997 EP
0788185 Aug 1997 EP
0851561 Jan 1998 EP
913939 May 1999 EP
625831 Nov 1999 EP
1006584 Jun 2000 EP
1925030 May 2008 EP
2348532 Jul 2011 EP
2348533 Jul 2011 EP
2348534 Jul 2011 EP
2348535 Jul 2011 EP
2348536 Jul 2011 EP
2387094 Nov 2011 EP
2908435 Aug 2015 EP
3113280 Jan 2017 EP
1902474 Apr 2017 EP
55-75348 Jun 1980 JP
S63-164352 Jul 1988 JP
1254014 Oct 1989 JP
02-161769 Jun 1990 JP
04-34980 Feb 1992 JP
4183008 Jun 1992 JP
5299995 Nov 1993 JP
UP6112795 Apr 1994 JP
06-314985 Nov 1994 JP
A-06-334506 Dec 1994 JP
7046109 Feb 1995 JP
07-070245 Mar 1995 JP
07106937 Apr 1995 JP
8023270 Jan 1996 JP
8070245 Mar 1996 JP
8148949 Jun 1996 JP
11163704 Jun 1996 JP
8251012 Sep 1996 JP
A-08-307305 Nov 1996 JP
8330930 Dec 1996 JP
9008627 Jan 1997 JP
9041275 Feb 1997 JP
9055682 Feb 1997 JP
9092785 Apr 1997 JP
9148587 Jun 1997 JP
9163721 Jun 1997 JP
09-200021 Jul 1997 JP
9181641 Jul 1997 JP
9186501 Jul 1997 JP
9200074 Jul 1997 JP
9238059 Sep 1997 JP
9243738 Sep 1997 JP
09-008621 Oct 1997 JP
09-284114 Oct 1997 JP
9270659 Oct 1997 JP
9284170 Oct 1997 JP
9298493 Oct 1997 JP
9326642 Dec 1997 JP
10079467 Mar 1998 JP
10-93471 Apr 1998 JP
10-242477 Sep 1998 JP
10242826 Sep 1998 JP
A-10-242829 Sep 1998 JP
10-344247 Dec 1998 JP
10335901 Dec 1998 JP
11026776 Jan 1999 JP
11112316 Apr 1999 JP
11-136111 May 1999 JP
UP11163642 Jun 1999 JP
11205188 Jul 1999 JP
11274804 Oct 1999 JP
2000031167 Jan 2000 JP
2000183353 Jun 2000 JP
2000188501 Jul 2000 JP
2000208614 Jul 2000 JP
2000223713 Aug 2000 JP
2000243973 Sep 2000 JP
2000277703 Oct 2000 JP
2000294786 Oct 2000 JP
2000311986 Nov 2000 JP
2001007332 Jan 2001 JP
2001089448 Mar 2001 JP
2001-119281 Apr 2001 JP
2001157487 May 2001 JP
2001156182 Jun 2001 JP
2001-510006 Jul 2001 JP
2001274265 Oct 2001 JP
2002-033660 Jan 2002 JP
2002-098712 Apr 2002 JP
2004515937 May 2002 JP
2000358775 Jun 2002 JP
2003060451 Feb 2003 JP
2003101407 Apr 2003 JP
2003-516083 May 2003 JP
2003143004 May 2003 JP
2003167615 Jun 2003 JP
2003189248 Jul 2003 JP
2003332583 Nov 2003 JP
2003-347553 Dec 2003 JP
2002156602 Dec 2003 JP
2004-147175 May 2004 JP
2004166470 Jun 2004 JP
2004199950 Jul 2004 JP
2004288978 Oct 2004 JP
2005-203643 Jul 2005 JP
2005-251931 Sep 2005 JP
5215850 Mar 2013 JP
5678106 Jan 2015 JP
6006219 Sep 2016 JP
6026654 Oct 2016 JP
1994027615 Dec 1994 KR
WO8601037 Feb 1986 WO
WO9523460 Aug 1995 WO
WO9806174 Feb 1998 WO
WO9935695 Jul 1999 WO
WO9949565 Sep 1999 WO
WO0141306 Jun 2001 WO
WO0227920 Apr 2002 WO
WO03032431 Apr 2003 WO
WO2006038190 Apr 2006 WO
WO2007008934 Jan 2007 WO
WO2007035610 Mar 2007 WO
WO2007033045 Mar 2007 WO
2009108391 Sep 2009 WO
WO2012054642 Apr 2012 WO
2017066352 Apr 2017 WO
2019191140 Oct 2019 WO
Non-Patent Literature Citations (702)
Entry
Bullock, “Transceiver and System Design for Digital Communication”, Noble, 2000.
Crols, “CMOS Wireless Transceiver Design”, Kluwer Academic, 1997.
Hickman, “Practical RF Handbook”, Newnes, 1997.
Hagen, “Radio Frequency Electronics”, Cambridge University Press, 1996.
Kuo, et al., “Low-Voltage SOI CMOS VLSI Devices and Circuits”, Wiley Interscience, XP001090589, New York, 2001, 215 pgs.
Leenaerts, “Circuits Design for RF Transceivers” Kluwer Academic, 2001.
Johnson, “Advanced High-Frequency Radio Communication”, Artech House, 1997.
Larson, “RF and Microwave Circuit Design for Wireless Communications”, Artech House, 1996.
Misra, “Radio Frequency and Microwave Communication Circuits”, Wiley, 2001.
Pozar, “Microwave and RF Design of Wireless Systems”, Wiley, 2001.
Maas, “The RF and Microwave Circuit Design Cookbook”, Artech House, 1998.
Nguyen, Tram Hoang, Notice of Allowance received from the USPTO dated Nov. 12, 2010 for U.S. Appl. No. 11/484,370, 21 pgs.
Suehle, et al., “Low Electric Field Breakdown of Thin Si02 Films Under Static and Dynamic Stress”, IEEE Transactions on Electron Devices, vol. 44, No. 5, May 1997.
Hoffmann, N., Summons to Attend Oral Proceedings pursuant to Rule 115(1) EPC received from the EPO dated Jul. 22, 2011 for related appln. No. 06786943.8, 8 pgs.
Shingleton, Michael B., Advisory Action received from the USPTO dated Mar. 18, 2011 for related U.S. Appl. No. 11/881,816, 3 pgs.
Shingleton, Michael B., Interview Summary received from the USPTO dated Apr. 18, 2011 for related U.S. Appl. No. 11/881,816, 3 pgs.
Nguyen, Tram Hoang, Examiner Amendment received from the USPTO dated Nov. 1, 2010 for related U.S. Appl. No. 11/484,370, 7 pgs.
Peregrine Semiconductor Corporation, Reply filed in the EPO dated Oct. 24, 2011 for related appln. No. 06786943.8, 1 pg.
Chinese Patent Office, translation of a Chinese Office Action dated Nov. 2, 2011 for related appln. No. 200680025128.7, 12 pgs.
Juhl, Andreas, Decision to refuse a European patent application received from the EPO dated Nov. 18, 2011 for related appln. No. 06786943.8-1528, 4 pgs.
Tat, Binh C., Office Action received from the USPTO dated Jan. 18, 2012 for related U.S. Appl. No. 13/028,144, 33 pgs.
Peregrine Semiconductor Corporation, Response to Communication filed in the EPO dated Aug. 12, 2009 for related application No. 06786943,8, 31 pgs.
Perione, Analia, International Search Report and Written Opinion received from the EPO dated Nov. 7, 2006 for related appln. No. PCT/US2006/026965, 19 pgs.
Geier, Adolf, International Preliminary Report on Patentability received from the EPo dated Jun. 21, 2007 for related appln. No. PCT/US2006/026965, 12 pgs.
Stuber, et al., Proposed Amended Claims for Examiner's Consideration filed in the USPTO dated Aug. 27, 2010 for related U.S. Appl. No. 11/520,912, 11 pgs.
Stuber, et al., Comments on Examiner's Statement of Reasons for Allowance filed in the USPTO dated Dec. 15, 2010 for related U.S. Appl. No. 11/520,912, 5 pgs.
Huang, “A 0.5 um CMOS T/R Switch for 900-MHz Wireless Applications”; IEEE Journal of Solid-State Circuits, vol. 36, No. 3, Mar. 2001, pp. 486-492.
Lauterbach, et al. “Charge Sharing Concept and New Clocking Scheme for Power Efficiency and Electromagnetic Emission Improvement of Boosted Charge Pumps”, IEEE Journal of Solid-State Circuits, vol. 35, No. 5, May 2000, pp. 719-723.
Makioka, et al., “Super Self-Aligned GaAs RF Switch IC with 0.25 dB Extremely Low Insertion Loss for Mobile Communication Systems”, IEEE Transactions on Electron Devices, vol. 48, No. 8, Aug. 2001, pp. 1510-1514.
Tieu, Binh, Office Action received from the USPTO dated Jun. 3, 2005 for related U.S. Appl. No. 10/922,135, 8 pgs.
Rodgers, et al., “Silicon UTSi COMS RFIC for CDMA Wireless Communications Systems”, Peregrine Semiconductor Corporation, 1999 IEEE MTT-S Digest, p. 485-488.
Megahed, et al., “Low Cost UTSI Technology for RF Wireless Applications”, Peregrine Semiconductor Corporation, 1998 IEEE MTT-S Digest p. 981-984.
Burgener, et al., Amendment filed in the USPTO dated Dec. 5, 2005 for related U.S. Appl. No. 10/922,135, 7 pgs.
Burgener, CMOS SOS Switched Offer Useful Features, High Integration, CMOS SOS Switches, Microwaves & RF, Aug. 2001, p. 107-118.
Johnson, et al., “Advanced Thin-Film Silicon-on-Sapphire Technology: Microwave Circuit Applications”, IEEE Transactions on Electron Devices, vol. 45, No. 5, May 1998, pp. 1047-1054.
Miyajima, Notice of Reasons for Refusal received from the Japanese Patent Office for appln. No. 2003-535287 dated Feb. 13, 2006, 3 pgs.
Tieu, Binh, Office Action received from USPTO dated Jan. 17, 2006 for related U.S. Appl. No. 10/922,135, 8 pgs.
Burgener, Response filed in the UPSTO including Terminal Disclaimer dated May 16, 2006 for U.S. Appl. No. 10/922,135, 3 pgs.
Tieu, Binh, Notice of Allowance received from the USPTO dated Jun. 2, 2006 for related U.S. Appl. No. 10/922,135, 5 pgs.
Tieu, Binh, Notice of Allowance received from the USPTO dated May 12, 2004 for related U.S. Appl. No. 10/267,531, 7 pgs.
Burgener, et al., Comments on Examiner's Statement of Reasons for Allowance dated Aug. 12, 2004 for related U.S. Appl. No. 10/267,531, 2 pgs.
Dribinsky, et al., Response filed in the USPTO dated Jan. 7, 2009 for related U.S. Appl. No. 11/881,816, 7 pgs.
Weman, Eva, Communication under Rule 71(3) EPC and Annex Form 2004 received from the European Patent Office for related appln. No. 02800982.7 dated Nov. 27, 2009, 68 pgs.
Kelly, Dylan, et al., Response and Terminal Disclaimers filed in the USPTO for related U.S. Appl. No. 11/347,014, dated Mar. 16, 2010, 10 pgs.
Dribinsky, et al., Response filed in the USPTO for related U.S. Appl. No. 11/881,816, dated Jul. 19, 2010, 22 pgs.
Morena, Enrico, Communication pursuant to Article 94(3) EPC received from the EPO dated Dec. 18, 2013 for related appln. No. 06814836.0, 5 pgs.
Stuber, et al., Amendment filed in the USPTO dated Dec. 20, 2013 for related U.S. Appl. No. 13/028,144, 25 pgs.
Brindle, et al., Amendment After Final filed in the USPTO dated Dec. 27, 2013 for related U.S. Appl. No. 13/277,108, 8 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated Jan. 9, 2014 for related appln. No. 02800982.7, 21 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Jan. 10, 2014 for related U.S. Appl. No. 13/277,108, 24 pgs.
European Patent Office, Brief Communication dated Jan. 16, 2014 regarding Oral Proceedings to be held Feb. 12, 2014, letter from opponent dated Jan. 10, 2014, for related appln. No. 02800982.7, 7 pgs.
Scheinberg, et al., “A Computer Simulation Model for Simulating Distortion in FET Resistors”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, No. 9, Sep. 2000, pp. 981-989.
Streetman, et al., “Solid State Electronic Devices”, Microelectronics Research Center, Dept. of Electrical and Computer Engineering, The University of Texas at Austin, Chapter 6, 2004 by Pearson Education Inc., 4 pgs.
Tokumitsu, et al., “A Low-Voltage, High-Power T/R-Switch MMIC Using LC Resonators”, IEEE Transactions on Microwave Theory and Techniques, vol. 43, No. 5, May 1995, pp. 997-1003.
Adan, et al., “OFF-State Leakage Current Mechanisms in BulkSi and SOI MOSFETs and Their Impact on CMOS ULSIs Standby Current”, IEEE Transactions on Electron Devices, vol. 48, No. 9, Sep. 2001, pp. 2050-2057.
Chan, et al., “A Novel SOI CBiCMOS Compatible Device Structure for Analog and Mixed-Mode Circuits”, Dept. of EECS, University of California at Berkeley, IEEE 1995, pp. 40-43.
Street, A.M., “RF Switch Design”, The Institution of Electrical Engineers, 2000, pp. 4/1-4/7.
Adan, et al., “Linearity and Low-Noise Performance of SOI MOSFETs for RF Applications”, IEEE Transactions on Electron Devices, vol. 49, No. 5, May 2002, pp. 881-888.
Cristoloveanu, et al., “The Four-Gate Transistor”, Institute of Microelectronics, Electromagnetism and Photonics, ESSDERC 2001, pp. 323-326.
Ayasli, et al., “An X-Band 10 W Monolithic Transmit-Receive GaAs FET Switch”, Raytheon Research Division, 1982 IEEE, pp. 42-46.
Analog Devices, “LC2MOS High Speed, Quad SPST Switch”, Rev. B, 8 pgs.
Dufrene, et al., “The G4-FET: Low Voltage to High Voltage Operation and Performance”, Dept. of Electrical and Computer Engineering, The University of Tennessee, IEEE 2003, pp. 55-56.
Pucel, et al., “A Multi-Chip GaAs Monolithic Transmit/Receive Module for X-Band”, Research Division, Raytheon Company, 1982 IEEE MTT-S Digest, pp. 489-492.
Analog Devices, “LC2MOS Quad SPST Switches”, Rev. B, 6 pgs.
Dufrene, et al., “Investigation of the Four-Gate Action in G4-FETs”, IEEE Transactions on Electron Devices, vol. 51, No. 11, Nov. 2004, pp. 1931-1935.
Ayasli, et al., “A Monolithic Single-Chip X-Band Four-Bit Phase Shifter”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-30, No. 12, Dec. 1982, pp. 2201-2222.
Akarvardar, et al., “Multi-Bias Dependence of Threshold Voltage, Subthreshold Swing, and Mobility in G4-FETs”, Institute of Microelectronics, Electromagnetism, and Photonics, IEEE 2003, pp. 127-130.
Lim, et al., “Partial SOI LDMOSFETs for High-Side Switching”, Dept. of Engineering, University of Cambridge, 1999 EEE, pp. 149-152.
Akarvardar, et al., “Threshold Voltage Model of the SOI 4-Gate Transistor”, 2004 IEEE International SOI Conference, 10/04, pp. 89-90.
Ming, et al., “A New Structure of Silicon-on-Insulator Metal-Oxide-Semiconductor Field Effect Transistor to Suppress the Floating Body Effect”, Chin. Phys. Lett., vol. 20, No. 5 (2003), pp. 767-769.
Allen, Thomas P., “Characterization and Modeling of Silicon-on-Insulator Field Effect Transistors”, Department of Electrical Engineering and Computer Science, MIT, May 20, 1999, 80 pgs.
Fung, et al., “Frequency Dispersion in Partially Depleted SOI MOSFET Output Resistance”, Proceedings 1996 IEEE International SOI Conference, Oct., 1996, pp. 146-147.
Chen, Suheng, “G4-FET Based Voltage Reference”, Masters Theses, University of Tennessee, Knoxville, Trace: Tennessee Research and Creative Exchange, May 2004, 57 pgs.
Zhu, et al., “Simulation of Suppression of Floating-Body Effect in Partially Depleted SOI MOSFET Using a Sil-xGex Dual Source Structure”, Materials Science and Engineering B 114-115 (2004), pp. 264-268.
Hieda, et al., Floating-Body Effect Free Concave SOI-MOSFETs (COSMOS), ULSI Research Center, Toshiba Corporation, IEEE 1991, pp. 26.2.1-26.2.4.
Marks, Jeffery Earl, “SOI for Frequency Synthesis in RF Integrated Circuits”, Thesis submitted to North Carolina State University, 2003, 155 pgs.
Moye, et al., “A Compact Broadband, Six-Bit MMIC Phasor with Integrated Digital Drivers+”, IEEE 1990 Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1988 IEEE, pp. 123-126.
Smuk, et al., “Monolithic GaAs Multi-Throw Switches with Integrated Low-Power Decoder-Driver Logic”, Hittite Microwave Corporation, Jun. 1997, 4 pgs.
Dribinsky, et al., Notice of Appeal and Pre-Appeal Brief Request for Review filed in the USPTO dated Feb. 20, 2014 for related U.S. Appl. No. 11/881,816, 7 pgs.
Huber & Schussler, Report on Decision in EPO Opposition Division for related appln. No. 02800982.7-2220 dated Feb. 25, 2014, 13 pgs.
Dang, Hung J., Office Action received from the USPTO dated Feb. 26, 2014 for related U.S. Appl. No. 12/735,954, 34 pgs.
Dribinsky, et al., Response filed in the USPTO dated Feb. 4, 2014 for related U.S. Appl. No. 11/881,816, 20 pgs.
Shingleton, Michael, Advisory Action received from the USPTO dated Feb. 19, 2014 or related U.S. Appl. No. 11/881,816, 3 pgs.
Tat, Binh C., Office Action received from the USPTO dated May 23, 2014 for related U.S. Appl. No. 13/948,094, 7 pgs.
Unterberger, Michael, Communication pursuant to Article 101(1) and Rule 81(2) to (3) received from the EPO dated Mar. 3, 2014 for related appln. No. 02800982.7, 3 pgs.
Weman, Eva, Provision of the minutes in accordance with Rule 124(4) EPC received from the EPO dated Jan. 10, 2014 for related appln. No. 02800982.7, 9 pgs.
European Patent Office, Brief Communication received from the EPO dated May 8, 2014 for related appln. No. 02800982.7, 2 pgs.
Peregrine Semiconductor Corporation, Reply filed in the EPO dated May 8, 2014 for related appln. No. 02800982.7, 79 pgs.
Unterberger, Michael, Communication pursuant to Article 94(3) EPC received from the EPO dated Apr. 9, 2014 for related appln. No. 10011669.8, 5 pgs.
Tieu, Binh Kien, Office Action received from the USPTO dated Jun. 24, 2014 for related U.S. Appl. No. 14/062,791, 7 pgs.
Peregrine Semiconductor Corporation, English translation of Response filed in the JPO dated Jul. 3, 2014 for related appln. No. 2013-003388, 14 pgs.
Tat, Binh C., Notice of Allowance received from the USPTO dated Jul. 18, 2014 for related U.S. Appl. No. 13/028,144, 29 pgs.
Caverly, et al., “SPICE Modeling of Microwave and RF Control Diodes”, IEEE, 2000, pp. 28-31.
Baker, et al., “Stacking Power MOSFETs for Use in High Speed Instrumentation”, American Institute of Physics, 1992, pp. 5799-5801.
Sanders, “Statistical Modeling of SOI Devices for the Low Power Electronics Program”, AET, Inc., 1995, pp. 1-109.
Karandikar, et al., “Technology Mapping for SOI Domino Logic Incorporating Solutions for the Parasitic Bipolar Effect”, ACM, 2001, pp. 1-14.
Ajjkuttira, et al., “A Fully Integrated CMOS RFIC for Bluetooth Applications”, IEEE International Solid-State Circuits Conference, 2001, pp. 1-3.
Apel, et al., “A GaAs MMIC Transceiver for 2.45 GHz Wireless Commercial Products”, Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1994, pp. 15-18.
Caverly, et al., “CMOS RF Circuits for Integrated Wireless Systems”, IEEE, 1998, pp. 1-4.
Devlin, et al., “A 2.4 GHz Single Chip Transceiver, Microwave and Millimeter-Wave Monolithic Circuits Symposium”, 1993, pp. 23-26.
Fiorenza, et al., “RF Power Performance of LDMOSFETs on SOI: An Experimental Comparison with Bulk Si MOSFETs”, IEEE Radio Frequency Integrated Circuits Symposium, 2001, pp. 43-46.
Imai, et al., “Novel High Isolation FET Switches”, IEEE Transactions on Microwave Theory and Techniques, 1996, pp. 685-691.
Ishida, et al., “A Low Power GaAs Front End IC with Current Reuse Configuration Using 0.15um Gate GaAs MODFETs”, IEEE, 1997, pp. 669-672.
Iwata, et al., “Gate Over Driving CMOS Architecture for 0.5V Single Power Supply Operated Devices”, IEEE, 1997, pp. 290-291, 473.
Kumar, et al., “A Simple High Performance Complementary TFSOI BiCMOS Technology with Excellent Cross-Talk Isolation”, 2000 IEEE International SOI Conference, 2000, pp. 142-143.
Kwok, “An X-Band SOS Resistive Gate Insulator Semiconductor (RIS) Switch”, IEEE Transactions on Electron Device, 1980, pp. 442-448.
Lee, “CMOS RF: (Still) No Longer an Oxymoron (Invited)”, IEEE Radio Frequency Integrated Circuits Symposium, 1999, pp. 3-6.
Madihian, et al., “A 2-V, 1-10GHz BiCMOS Transceiver Chip for Multimode Wireless Communications Networks”, IEEE, 1997, pp. 521-525.
McRory, et al., “Transformer Coupled Stacked FET Power Amplifier”, IEEE Journal of Solid State Circuits, vol. 34, No. 2, Feb. 1999, pp. 157-161.
Nagayama, et al., “Low Insertion Los DP3T MMIC Switch for Dual Band Cellular Phones”, IEEE Jounral of Solid State Circuits, 1999, pp. 1051-1055.
Nishijima, et al., “A High Performance Transceiver Hybrid IC for PHS Hand Set Operating with Single Positive Voltage Supply”, Microwave Symposium Digest, 1997, pp. 1155-1158.
O, et al., “CMOS Components for 802.11b Wireless LAN Applications”, IEEE Radio Frequency Integrated Circuits Symposium, 2002, pp. 103-106.
Peczalski, “RF/Analog/Digital SOI Technology GPS Receivers and Other Systems on a Chip”, IEEE Aerospace Conference Proceedings, 2002, pp. 2013-2017.
Shifrin, et al., “A New Power Amplifier Topology with Series Biasing and Power Combining of Transistors”, IEEE 1992 Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1992, pp. 39-41.
Shimura, et al., “High Isolation V-Band SPDT Switch MMIC for High Power Use, IEEE MTT-S International Microwave Symposium Digest”, 2001, pp. 245-248.
Uda, et al., “A High Performance and Miniturized Dual Use (antenna/local) GaAs SPDT Switch IC Operating at +-3V/0V”, Microwave Symposium Digest, 1996, pp. 141-144.
Lee, et al., “Analysis of Body Bias Effect with PD-SOI for Analog and RF Application”, Solid State Electron, vol. 46, 2002, pp. 1169-1176.
Ippoushi, “Soi Structure Avoids Increases in Chip Area and Parasitic Capacitance Enables Operational Control of Transistor Threshold Voltage”, Renesas Edge, vol. 2004.5, Jul. 2004, p. 15.
Park, “A Regulated, Charge Pump CMOS DC/DC Converter for Low Power Application”, 1998, pp. 1-62.
Hittite Microwave, Floating Ground SPNT MMIC Switch Driver Techniques, 2001.
Caverly, et al., “Gallium Nitride-Based Microwave and RF Control Devices”, 2001.
Bahl, “Lumped Elements for RF and Microwave Circuits”, Artech House, 2003, pp. 353-394.
“Positive Bias GaAs Multi-Throw Switches with Integrated TTL Decoders”, Hittite Microwave, 2000.
Drozdovsky, et al., “Large Signal Modeling of Microwave Gallium Nitride Based HFETs”, Asia Pacific Microwave Conference, 2001, pp. 248-251.
Ayasli, “Microwave Switching with GaAs FETs”, Microwave Journal, 1982, pp. 719-723.
Eron, “Small and Large Signal Analysis of MESETs as Switches” Microwave Journal, 1992.
“A Voltage Regulator for GaAs FETs”, Microwave Journal, 1995.
Slobodnik, et al., “Millimeter Wave GaAs Switch FET Modeling”, Microwave Journal, 1989.
Caverly, “Distortion in GaAs MESFET Switch Circuits”, 1994.
Chen, et al., “Dual-Gate GaAs FET: A Versatile Circuit Component for MMICs”, Microwave Journal, Jun. 1989, pp. 125-135.
Hoffman, Niels, Extended Search Report received from the EPO dated May 8, 2012 for related appln. No. 11153313.9, 4 pgs.
Peregrine Semiconductor Corporation, Translation of Response filed in the Chinese Patent Office on Feb. 29, 2012 for related appln. No. 200680025128.7, 1 pg.
Peregrine Semiconductor Corporation, Translation of Response filed in the Chinese Patent Office on Jun. 20, 2012 for related appln. No. 200680025128.7, 12 pgs.
Shingleton, Michael B., Notice of Allowance received from the USPTO dated Jun. 4, 2012 for related U.S. Appl. No. 11/881,816, 13 pgs.
Stuber, et al., Response filed in the USPTO dated Feb. 21, 2012 for related U.S. Appl. No. 13/028,144, 3 pgs.
Tat, Binh C., Office Action received from the USPTO dated Apr. 12, 2012 for related U.S. Appl. No. 13/028,144, 19 pgs.
Unterberger, Michael, extended European Search Report received from the EPO dated Sep. 30, 2011 for related appln. No. 10011669.8-2220, 9 pgs.
Weman, Eva, Communication of a Notice of Opposition received from the EPO dated Nov. 8, 2011 for related appln. No. 028000982.7, 33 pgs.
Kelly, Dylan, Amendment filed in the USPTO dated Dec. 20, 2012 for related U.S. Appl. No. 11/347,671, 10 pgs.
Kelly, Dylan, Comments on Examiner's Statement of Reasons for Allowance filed in the USPTO dated Nov. 16, 2011 for related U.S. Appl. No. 11/347,671, 4 pgs.
Peregrine Semiconductor Corporation, Response filed in EPO dated May 15, 2012 for related appln. No. 10011669.8, 19 pgs.
Nishide, Ryuji, Office Action received from the Japanese Patent Office dated Jul. 17, 2012 for related appln. No. 2008-521544, 4 pgs.
Stuber, et al., Response filed in the USPTO dated Aug. 3, 2012 for related U.S. Appl. No. 13/028,144, 6 pgs.
Peregrine Semiconductor Corporation, Demand filed in the EPO dated Aug. 17, 2012 for related appln. No. PCT/US2011/056942, 41 pgs.
Nguyen, Niki Hoang, Office Action received from the USPTO dated Sep. 26, 2012 for related U.S. Appl. No. 13/277,108, 47 pgs.
Cherne, et al., U.S. Statutory Invention Registration No. H1435, published May 2, 1995.
Matloubian, “Smart Body Contact for SOI MOSFETs”, 1989 IEEE SOS/SOI Technology Conference, Oct. 1999, pp. 128-129.
Chuang, et al., “SOI for Digital CMOS VLSI Design: Design Consideration and Advances”, Proceedings of the IEEE, vol. 86, No. 4, Apr. 1998, pp. 689-720.
Kuge, et al., “SOI-DRAM Circuit Technologies for Low Power High Speed Multigiga Scale Memories”, IEEE Journal of Solid-State Circuits, vol. 31, No. 4, Apr. 1996, pp. 586-591.
Duyet, et al., “Suppression of Geometric Component of Charge Pumping Current in Thin Film Silicon on Insulator Metal-Oxide-Semiconductor Field-Effect Transistors”, Japanese Journal of Applied Physics, vol. 37, Jul. 1998, pp. L855-858.
Casu, et al., “Synthesis of Low-Leakage PD-SOI Circuits with Body Biasing”, Int'l Symposium on Low Power Electronics and Design, Aug. 2001, pp. 287-290.
Wang, et al., “Threshold Voltage Instability at Low Temperatures in Partially Depleted Thin Film SOI MOSFET's”, 1990 IEEE SOS/SOI Technology Conference, Oct. 1990, pp. 91-92.
Shimomura, et al., “TP 4.3: A 1V 46ns 16Mb SOI-DRAM with Body Control Technique”, 1997 IEEE Int'l Solid-State Circuits Conference, Feb. 1997.
Assaderaghi, et al., “Transient Pass-Transistor Leakage Current in SOI MOSFET's”, IEEE Electron Device Letters, vol. 18, No. 6, Jun. 1997, pp. 241-243.
Mashiko, et al., “Ultra-Low Power Operation of Partially-Depleted SOI/CMOS Integrated Circuits”, IEICE Transactions on Electronic Voltage, No. 11, Nov. 2000, pp. 1697-1704.
Das, et al., “Ultra-Low-Leakage Power Strategies for Sub-1 V VLSI: Novel Circuit Styles and Design Methodologies for Partially Depleted Silicon-on-Insulator (PD-SOI) CMOS Technology”, Proceedings of the 16th Int'l Conference on VLSI Design, 2003.
Pelloie, et al., “WP 25.2: SOI Technology Performance and Modeling”, 1999 IEEE Int'l Solid-State Circuits Conference, Feb. 1999.
Goldman, et al., “0.15um SOI DRAM Technology Incorporating Sub-Volt Dynamic Threshold Devices for Embedded Mixed-Signal & RF Circuits”, 2001 IEEE SOI Conference, Oct. 2001, pp. 97-98.
Hirota, et a., “0.5V 320MHz 8b Multiplexer/Demultiplexer Chips Based on a Gate Array with Regular-Structured DTMOS/SOI”, ISSCC, Feb. 1998, pp. 12.2.1-12.2-11.
Fuse, et al., “0.5V SOI CMOS Pass-Gate Logic”, 1996 IEEE Int'l Solid-State Circuits Conference, Feb. 1996, pp. 88-89,424.
Schaper, “Communications, Computations, Control, and Signal Processing”, Kluwer Academic, 1997.
Willert-Porada, “Advanced in Microwave and Radio Frequency Processing”, Spring, 2001.
“An Ultra-Thin Silicon Technology that Provides Integration Solutions on Standard CMOS”, Peregrine Semiconductor, 1998.
Caverly, “Distortion in Microwave Control Devices”, 1997.
Masuda, et al., “RF Current Evaluation of ICs by MP-10L”, NEC Research & Development, vol. 40-41, 1999, pp. 253-258.
“Miniature Dual Control SP4T Switches for Low Cost Multiplexing”, Hittite Microwave, 1995.
Uda, “Miniturization and High Isolation of a GaAs SPDT Switch IC Mounted in Plastic Package”, 1996.
Marshall, et al., “SOI Design: Analog, Memory, and Digital Techniques”, Kluwer Academic Publishers, 2002.
Bernstein, et al., “SOI Circuit Design Concepts”, Springer Science + Business Media, 2000.
Brinkman, et al., Respondents' Notice of Prior Art, Investigation No. 337-TA-848, dated Aug. 31, 2012, 59 pgs.
Yamamoto, Kazuya, et al., “A 2.2-V Operation, 2.4-GHz Single-Chip GaAs MMIC Transceiver for Wireless Applications”, IEEE Journal of Solid-State Circuits, vol. 34, No. 4, Apr. 1999.
Stuber, et al., Supplemental Amendment filed in the USPTO dated Nov. 8, 2012 for related U.S. Appl. No. 13/028,144, 17 pgs.
Brindle, et al., Response and Terminal Disclaimer filed in the USPTO dated Dec. 26, 2012 for related U.S. Appl. No. 13/277,108, 18 pgs.
Ionescu, et al., “A Physical Analysis of Drain Current Transients at Low Drain Voltage in Thin Film SOI MOSFETs”, Microelectronic Engineering 28 (1995), pp. 431-434.
Suh, et al., “A Physical Charge-Based Model for Non-Fully Depleted SOI MOSFET's and Its Use in Assessing Floating-Body Effects in SOI CMOS Circuits”, IEEE Transactions on Electron Devices, vol. 42, No. 4, Apr. 1995, pp. 728-737.
Wang, et al., “A Robust Large Signal Non-Quasi-Static MOSFET Model for Circuit Simulation”, IEEE 2004 Custom Integrated Circuits Conference, pp. 2-1-1 through 2-1-4.
Han, et al., “A Simple and Accurate Method for Extracting Substrate Resistance of RF MOSFETs”, IEEE Electron Device Letters, vol. 23, No. 7, Jul. 2002, pp. 434-436.
Linear Systems, “High-Speed DMOS FET Analog Switches and Switch Arrays”, 11 pgs.
Terauchi, et al., “A ‘Self-Body-Bias’ SOI MOSFET: A Novel Body-Voltage-Controlled SOI MOSFET for Low Voltage Applications”, The Japan Sociey of Applied Physics, vol. 42 (2003), pp. 2014-2019, Part 1, No. 4B, Apr. 2003.
Dehan, et al., “Dynamic Threshold Voltage MOS in Partially Depleted SOI Technology: A Wide Frequency Band Analysis”, Solid-State Electronics 49 (2005), pp. 67-72.
Kuroda, et al., “A 0.9-V, 150-MHz, 10-mW, 4 mm2, 2-D Discrete Cosine Transform Core Processor with Variable Threshold-Voltage (VT) Scheme”, IEEE Journal of Solid-State Circuits, vol. 31, No. 11, Nov. 1996, pp. 1770-1779.
Kuroda, et al., “A 0.9-V, 150-MHz, 10-mW, 4 mm2, 2-D Discrete Cosine Transform Core Processor with Variable-Threshold-Voltage Scheme”, Technical Paper, 1996 IEEE International Solid-State Circuits Conference, 1996 Digest of Technical Papers, pp. 166-167.
Cathelin, et al., “Antenna Switch Devices in RF Modules for Mobile Applications”, ST Microelectronics, Front-End Technology and Manufacturing, Crolles, France, Mar. 2005, 42 pgs.
Cristoloveanu, Sorin, “State-of-the-art and Future of Silicon on Insulator Technologies, Materials, and Devices”, Microelectronics Reliability 40 (2000), pp. 771-777.
Sivaram, et al., “Silicon Film Thickness Considerations in SOI-DTMOS”, IEEE Device Letters, vol. 23, No. 5, May 2002, pp. 276-278.
Drake, et al., “Analysis of the Impact of Gate-Body Signal Phase on DTMOS Inverters in 0.13um PD-SOI”, Department of EECS, University of Michigan, Ann Arbor, MI, Sep./Oct. 2003, 4 pgs.
Drake, et al., “Analysis of the Impact of Gate-Body Signal Phase on DTMOS Inverters in 0.13um PD-SOI”, Department of EECS, University of Michican, Ann Arbor, MI, Sep./Oct. 2003, 16 pgs.
Drake, et al., Evaluation of Dynamic-Threshold Logic for Low-Power VLSI Design in 0.13um PD-SOI, University of Michigan, Ann Arbor, MI, Dec. 2003, 29 pgs.
Imam, et al., “A Simple Method to Determine the Floating-Body Voltage of SOI CMOS Devices”, IEEE Electron Device Letters, vol. 21, No. 1, Jan. 2000, pp. 21-23.
Dehan, et al., “Alternative Architectures of SOI MOSFET for Improving DC and Microwave Characteristics”, Microwave Laboratory, Universite catholique de Louvain, Sep. 2001, 4 pgs.
Colinge, Jean-Pierre, “An SOI Voltage-Controlled Bipolar-MOS Device”, IEEE Transactions on Electron Devices, vol. ED-34, No. 4, Apr. 1987, pp. 845-849.
Pelella, et al., “Analysis and Control of Hysteresis in PD/SOI CMOS”, University of Florida, Gainesville, FL., 1999 IEEE, pp. 34.5.1 through 34.5.4.
Adriaensen, et al., “Analysis and Potential of the Bipolar- and Hybrid-Mode Thin-Film SOI MOSFETs for High-Temperature Applications”, Laboratoire de Microelectronique, Universite catholique de Louvain, May 2001, 5 pgs.
Gentinne, et al., “Measurement and Two-Dimensional Simulation of Thin-Film SOI MOSETs: Intrinsic Gate Capacitances at Elevated Temperatures”, Solid-State Electronics, vol. 39, No. 11, pp. 1613-1619, 1996.
Su, et al., “On the Prediction of Geometry-Dependent Floating-Body Effect in SOI MOSFETs”, IEEE Transactions on Electron Devices, vol. 52, No. 7, Jul. 2005, pp. 1662-1664.
Dehan, et al., “Partially Depleted SOI Dynamic Threshold MOSFET for low-voltage and microwave applications”, 1 pg.
Fung, et al., “Present Status and Future Direction of BSIM SOIL Model for High-Performance/Low-Power/RF Application”, IBM Microelectronics, Semiconductor Research and Development Center, Apr. 2002, 4 pgs.
Weigand, Christopher, “An ASIC Driver for GaAs FET Control Components”, Technical Feature, Applied Microwave & Wireless, 2000, pp. 42-48.
Lederer, et al., “Frequency degradation of SOI MOS device output conductance”, Microwave Laboratory of UCL, Belgium, IEEE 2003, pp. 76-77.
Lederer, et al., “Frequency degradation of SOI MOS device output conductance”, Microwave Laboratory of Universite catholique de Louvain, Belgium, Sep./Oct. 2003, 1 pg.
Cheng, et al., “Gate-Channel Capacitance Characteristics in the Fully-Depleted SOI MOSFET”, IEEE Transactions on Electron Devices, vol. 48, No. 2, Feb. 2001, pp. 388-391.
Ferlet-Cavrois, et al., “High Frequency Characterization of SOI Dynamic Threshold Voltage MOS (DTMOS) Transistors”, 1999 IEEE International SOI Conference, Oct. 1999, pp. 24-25.
Yeh, et al., “High Performance 0.1um Partially Depleted SOI CMOSFET”, 2000 IEEE International SOI Conference, Oct. 2000, pp. 68-69.
Bawedin, et al., “Unusual Floating Body Effect in Fully Depleted MOSFETs”, IMEP, Enserg, France and Microelectronics Laboratory, UCL, Belgium, Oct. 2004, 22 pgs.
Flandre, et al., “Design of EEPROM Memory Cells in Fully Depleted ‘CMOS SOI Technology’”, Catholic University of Louvain Faculty of Applied Science, Laboratory of Electronics and Microelectronics, Academic Year 2003-2004, 94 pgs.
Takamiya, et al., “High-Performance Accumulated Back-Interface Dynamic Threshold SOI MOSFET (AB-DTMOS) with Large Body Effect at Low Supply Voltage”, Japanese Journal of Applied Physics, vol. 38 (1999), Part 1, No. 4B, Apr. 1999, pp. 2483-2486.
Drake, et al., “Evaluation of Dynamic-Threshold Logic for Low-Power VLSI Design in 0.13um PD-SOI”, IFIP VLSI-SoC 2003, IFIP WG 10.5 International Conference on Very Large Scale Integration of System-on-Chip, Darmstadt, Germany, Dec. 1-3, 2003.
Huang, et al., “Hot Carrier Degradation Behavior in SOI Dynamic-Threshold-Voltage nMOSFET's (n-DTMOSFET) Measured by Gated-Diode Configuration”, Microelectronics Reliability 43 (2003), pp. 707-711.
Goo, et al., “History-Effect-Conscious SPICE Model Extraction for PD-SOI Technology”, 2004 IEEE International SOI Conference, 10/04, pp. 156-158.
Workman, et al., “Dynamic Effects in BTG/SOI MOSFETs and Circuits Due to Distributed Body Resistance”, Proceedings 1997 IEEE International SOI Conference, Oct. 1997, pp. 28-29.
Ernst, et al., “Detailed Analysis of Short-Channel SOI DT-MOSFET”, Laboratoire de Physique des Composants a Semiconducteurs, Enserg, France, Sep. 1999, pp. 380-383.
Huang, et al., “Device Physics, Performance Simulations and Measured Results of SOI MOS and DTMOS Transistors and Integrated Circuits”, Beijing Microelectronics Technology Institute, 1998 IEEE, pp. 712-715.
Bernstein, et al., “Design and CAD Challenges in sub-90nm CMOS Technologies”, IBM Thomas J. Watson Research Center, NY, Nov. 11-13, 2003, pp. 129-136.
Wiatr, et al., “Impact of Floating Silicon Film on Small-Signal Parameters of Fully Depleted SOI-MOSFETs Biased into Accumulation”, Solid-State Electronics 49 (2005), Received Sep. 11, 30, revised on Nov. 9, 2004, pp. 779-789.
Gritsch, et al., “Influence of Generation/Recombination Effects in Simulations of Partially Depleted SOI MOSFETs”, Solid-State Electronics 45 (2001), Received Dec. 22, 2000, accepted Feb. 14, 2001, pp. 621-627.
Chang, et al., “Investigations of Bulk Dynamic Threshold-Voltage MOSFET with 65 GHZ “Normal-Mode” Ft and 220GHz “Over-Drive Mode” Ft for RF Applications”, Institute of Electronics, National Chiao-Tung Universtiy, Taiwan, 2001 Symposium on VLSI Technology Digest of Technical Papers, pp. 89-90.
Le TMOS en technologie SOI, 3.7.2.2 Pompage de charges, pp. 110-111.
Horiuchi, Masatada, “A Dynamic-Threshold SOI Device with a J-FET Embedded Source Structure and a Merged Body-Bias-Control Transistor—Part I: A J-FET Embedded Source Structure Properties”, IEEE Transactions on Electron Devices, vol. 47, No. 8, Aug. 2000, pp. 1587-1592.
Horiuchi, Masatada, “A Dynamic-Threshold SOI Device with a J-FET Embedded Source Structure and a Merged Body-Bias-Control Transistor—Part II: Circuit Simulation”, IEEE Transactions on Electron Devices, vol. 47, No. 8, Aug. 2000, pp. 1593-1598.
Casu, Mario Roberto, “High Performance Digital CMOS Circuits in PD-SOI Technology: Modeling and Design”, Tesi di Dottorato di Recerca, Gennaio 2002, Politecnico di Torino, Corso di Dottorato di Ricerca in Ingegneria Elettronica e delle Communicazioni, 200 pgs.
Tinella, Carlo, “Study of the potential of CMOS-SOI technologies partially abandoned for radiofrequency applications”, Thesis for obtaining the standard of Doctor of INPG, National Polytechnic of Grenoble, Sep. 25, 2003, 187 pgs.
Douseki, et al., “A 0.5-V MTCMOS/SIMOX Logic Gate”, IEEE Journal of Solid-State Circuits, vol. 32, No. 10, Oct. 1997.
Douseki, et al., “A 0.5v SIMOX-MTMCOS Circuit with 200ps Logic Gate”, IEEE Int'l Solid-State Circuits Conference, 1996, pp. 84-85, 423.
Shimomura, et al., “A 1-V 46-ns 16-mb SOI-DRAM with Body Control Technique”, IEEE Journal of Solid-State Circuits, vol. 32, No. 11, Nov. 1997, pp. 1712-1720.
Keys, “Low Distortion Mixers or RF Communications”, Ph.D. Thesis, University of California-Berkeley, 1995.
Kuang, et al., “A Dynamic Body Discharge Technique for SOI Circuit Applications”, IEEE Int'l SOI Conference, Oct. 1999, pp. 77-78.
Assaderaghi, et al., “A Dynamic Threshold Voltage MOSFET (DTMOS) for Ultra-Low Voltage Operation”, Int'l Electron Devices Meeting, Dec. 1994, pp. 809-812.
Gil, et al., “A High Speed and Low Power SOI Inverter Using Active Body-Bias”, Proceedings Int'l Symposium on Low Power Electronics and Design, Aug. 1998, pp. 59-63.
Gil, et al., “A High Speed and Low Power SOI Inverter Using Active Body-Bias”, Solid-State Electronics, vol. 43, 1999, pp. 791-799.
Kuang, et al., “A High-Performance Body-Charge-Modulated SOI Sense Amplifier”, IEEE Int'l SOI Conference, Oct. 2000, pp. 100-101.
Chung, et al., “A New SOI Inverter for Low Power Applications”, IEEE SOI Conference, Oct. 1996, pp. 20-21.
Chung, et al., “A New SOI Inverter Using Dynamic Threshold for Low-Power Applications”, IEEE Electron Device Letters, vol. 18, No. 6, Jun. 1997, pp. 248-250.
Chung, et al., “A New SOI MOSFET Structure with Junction Type Body Contact”, Int'l Electron Device Meeting (IEDM) Technical Digest, 1999, pp. 59-62.
Terauchi, et al., “A Novel 4T SRAM Cell Using “Self-Body-Biased” SOI MOSFET Structure Operating at 0.5 Volt”, IEEE Int'l SOI Conference, Oct. 2000, pp. 108-109.
Wang, et all., “A Novel Low-Voltage Silicon-On-Insulator (SOI) CMOS Complementary Pass-Transistor Logic (CPL) Circuit Using Asymmetrical Dynamic Threshold Pass-Transistor (ADTPT) Technique”, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Aug. 2000, pp. 694-697.
Das, et al., “A Novel Sub-1 V High Speed Circuit Design Technique in Partially Depleted SOI-CMOS Technology with Ultra Low Leakage Power”, Proceedings of the 28th European Solid-State Circuits Conference, Sep. 2002, pp. 24-26.
Das, et al., “A Novel Sub-1 V High Speed Circuit Design Technique in Partially Depleted SOI-CMOS Technology with Ultra Low Leakage Power”, Proceedings of the 28th European Solid-State Circuits Conference, Sep. 2002, pp. 267-270.
Kanda, et al., “A Si RF Switch MMIC for the Cellular Frequency Band Using SOI-CMOS Technology”, Institute of Electronics, Information and Communication Engineers Technical Report, vol. 100, No. 152, Jun. 2000, pp. 79-83.
Nakatani, “A Wide Dynamic Range Switched-LNA in SiGe BICMOS”, IEEE Radio Frequency Integrated Circuits Symposium, 2001, pp. 223-226.
Tseng, et al., “AC Floating-Body Effects and the Resultant Analog Circuit Issues in Submicron Floating body and Body-Grounded SOI MOSFET's”, IEEE Transactions on Electron Devices, vol. 46, No. 8, Aug. 1999, pgs. All.
Tseng, et al., “AC Floating-Body Effects in Submicron Fully Depleted (FD) SOI nMOSFET's and the Impact on Analog Applications”, IEEE Electron Devices, vol. 19, No. 9, Sep. 1998, pp. 351-353.
Wada, et al., “Active Body-Bias SOI-CMOS Driver Circuits”, Symposium on VLSI Circuits Digest of Technical Papers, 1997, pp. 29-30.
Saccamango, et al., “An SOI Floating Body Charge Monitor Technique”, IEEE Int'l SOI Conference, Oct. 2000, pp. 88-89.
Dunga, “Analysis of Floating Body Effects in Thin Film SOI MOSFET's Using the GIDL Current Technique”, Proceedings of the 8th Int'l Symposium on Physical and Failure Analysis of Integrated Circuits, 2001, pp. 254-257.
Gautier, et al., “Body Charge Related Transient Effects in Floating Body SOI NMOSFETs”, IEDM Tech. Digest, 1995, pp. 623-626.
Koh, et al., “Body-Contracted SOI MOSFET Structure and its Application to DRAM”, IEEE Transactions on Electron Devices, vol. 45, No. 5, May 1998, pp. 1063-1070.
Koh, et al., “Body-Contacted SOI MOSFET Structure with Fully Bulk CMOS Compatible Layout and Process”, IEEE Electron Device Letters, vol. 18, No. 3, Mar. 1997, pp. 102-104.
Tseng, et al., “Characterization of Floating Body and Body-Grounded Thin Film Silicon-on-Insulator MOSFETs for Analog Circuit Applications”, Ph.D. Thesis, UCLA, 1999, pgs. All.
Madihian, et al., “CMOS RF ICs for 900MHz-2.4GHz Band Wireless Communication Networks”, IEEE Radio Frequency Integrated Circuits Symposium, 1999, pp. 13-16.
Eschenbach, Communication from the EPO dated Feb. 4, 2009 for related appln. No. 06786943.8, 101 pgs.
Sudhama, et al., “Compact Modeling and Circuit Impact of a Novel Frequency Dependence of Capacitance in RF MOSFETs”, Nano Science and Technology Institute, Technical Proceedings of the 2001 Int'l Conference of Modeling and Simulation of Microsystems. 2001.
Casu, et al., “Comparative Analysis of PD-SOI Active Body-Biasing Circuits”, IEEE Int'l SOI Conference, Oct. 2000, pp. 94-95.
Cho, et al., “Comparative Assessment of Adaptive Body-Bias SOI Pass-Transistor Logic”, Fourth Int'l Symposium on Quality Electronic Design, Mar. 2003, pp. 55-60.
Chan, et al., “Comparative Study of Fully Depleted and Body-Grounded Non Fully Depleted SOI MOSFET's for High Performance Analog and Mixed Signal Circuits”, IEEE Transactions on Electron Devices, vol. 42, No. 11, Nov. 1995, pp. 1975-1981.
Tseng, et al. “Comprehensive Study on AC Characteristics in SOI MOSFETs for Analog Applications”, 1998 Symposium on VLSI Technology Digest of Technical Papers, Jun. 1998.
Pelella, et al., “Control of Off-State Current in Scaled PD/SOI CMOS Digital Circuits”, Proceedings IEEE Int'l SOI Conference, Oct. 1998, pp. 147-148.
Assaderaghi, “DTMOS: Its Derivatives and Variations, and Their Potential Applications”, The 12th Int'l Conference on Microelectronics, Nov. 2000, pp. 9-10.
Lindert, et al. “Dynamic Threshold Pass-Transistor Logic for Improved Delay at Lower Power Supply Voltages”, IEEE Journal of Solid-State Circuits, vol. 34, No. 1, Jan. 1999, pp. 85-89.
Drake, et al., “Dynamic-Threshold Logic for Low Power VLSI Design”, www.research.ibm.com/acas, 2001.
Wei, et al., “Effect of Floating-Body Charge on SOI MOSFET Design”, IEEE Transaction on Electron Devices, vol. 45, No. 2, Feb. 1998.
Duyet, et al., “Effects of Body Reverse Pulse Bias on Geometric Component of Charge Pumping Current in FD SOI MOSFETs”, Proceedings IEEE Int'l SOI Conference, Oct. 1998, pp. 79-80.
Krishnan, “Efficacy of Body Ties Under Dynamic Switching Conditions in Partially Depleted SOI CMOS Technology”, Proceedings IEEE Int'l SOI Conference, Oct. 1997, pp. 140-141.
Lu, et al., “Floating Body Effects in Partially Depleted SOI CMOS Circuits”, ISPLED, Aug. 1996, pp. 1-6.
Ueda, et al., “Floating Body Effects on Propagation Delay in SOI/CMOS LSIs”, IEEE SOI Conference, Oct. 1996, pp. 142-143.
Matsumoto, et al., “Fully Depleted 30-V-Class Thin Film SOI Power MOSFET”, IEDM 95-979, 1995, pp. 38.6.1-38.6.4.
Assaderaghi, et al., “History Dependence of Non-Fully Depleted (NFD) Digital SOI Circuits”, 1996 Symposium on VLSI Technology Digest of Technical Papers 13.1, 1996, pp. 122-123.
Damiano, et al., “Integrated Dynamic Body Contact for H Gate PD SOI MOSFETs for High Performance/Low Power”, IEEE SOI Conference, Oct. 2004, pp. 115-116.
Rauly, et al., Investigation of Single and Double Gate SOI MOSFETs in Accumulation Mode for Enhanced Performances and Reduced Technological Drawbacks, Proceedings 30th European Solid-State Device Research Conference, Sep. 2000, pp. 540-543.
Morishita, et al., “Leakage Mechanism Due to Floating Body and Countermeasure on Dynamic Retention Mode of SOI-DRAM”, 1995 Symposium on VLSI Technology Digest of Technical Papers, Apr. 1995, pp. 141-142.
Smith, “Modern Communication Systems”, McGraw-Hill, 1998.
Van Der Pujie, “Telecommunication Circuit Design”, Wiley, 2002.
Razavi, “RF Microelectronics”, Prentice-Hall, 1998.
Van Der Pujie, “Telecommunication Circuit Design”, Wiley, 1992.
Weisman, “The Essential Guide to RF and Wireless”, Prentice-Hall, 2000.
Wetzel, “Silicon-on-Sapphire Technology for Microwave Power Application”, University of California, San Diego, 2001.
Johnson, “Silicon-on-Sapphire Technology for Microwave Circuit Applications”, Dissertation, UCSD, 1997, pp. 1-184.
Barker, Communications Electronics-Systems, Circuits, and Devices, 1987, Prentice-Hall.
Carr, “Secrets of RF Circuit Design”, McGraw-Hill, 1997.
Yamamoto, et al., “A Single-Chip GaAs RF Transceiver for 1.9GHZ Digital Mobile Communication Systems”, IEEE Journal of Solid-State Circuits, 1996.
Kelly, “Integrated Ultra CMIS Designs in GSM Front End”, Wireless Design Magazine, 2004, pp. 18-22.
Tsutsumi, et al., “A Single Chip PHS Front End MMIC with a True Single +3 Voltage Supply”, IEEE Radio Frequency Integrated Circuits Symposium, 1998, pp. 105-108.
Wambacq, et al., “A Single Package Solution for Wireless Transceivers”, IEEE, 1999, pp. 1-5.
Eggert, et al., A SOI-RF-CMOS Technology on High Resistivity SIMOX Substrates for Microwave Applications to 5 Ghz, IEEE Transactions on Electron Devices, 1997, pp. 1981-1989.
Szedon, et al., “Advanced Silicon Technology for Microwave Circuits”, Naval Research Laboratory, 1994, pp. 1-110.
Kai, An English translation of an Office Action received from the Japanese Patent Office dated Jul. 2010 relating to appln. No. 2007-518298.
Burgener, et al., Amendment filed in the USPTO dated Apr. 2010 relating to U.S. Appl. No. 11/501,125.
Heller, et al., “Cascode Voltage Switch Logic: A Different CMOS Logic Family”, IEEE International Solid-State Circuits Conference, 1984, pp. 16-17.
Pylarinos, “Charge Pumps: An Overview”, Proceedings of the IEEE International Symposium on Circuits and Systems, 2003, pp. 1-7.
Doyama, “Class E Power Amplifier for Wireless Transceivers”, University of Toronto, 1999, pp. 1-9.
“CMOS Analog Switches”, Harris, 1999, pp. 1-9.
“CMOS SOI RF Switch Family”, Honeywell, 2002, pp. 1-4.
“CMOS SOI Technology”, Honeywell, 2001, pp. 1-7.
Analog Devices, “CMOS, Low Voltage RF/Video, SPST Switch”, Analog Devices, inc., 1999, pp. 1-10.
Eggert, et al., “CMOS/SIMOX-RF-Frontend for 1.7GHZ”, Solid State Circuits Conference, 1996.
Aquilani, Communications pursuant to Article 94(3) EPC received from the EPO dated Mar. 2010 relating to appln. No. 05763216.8.
Weman, Communication under Rule 71(3) EPC and Annex Form 2004 received from the EPO dated Nov. 2009 relating to appln. No. 020800982.7.
Van Der Peet, Communications pursuant to Article 94(3) EPC dated Aug. 2009 relating to appln. No. 02800982.7-2220.
Yamamoto, et al., “Design and Experimental Results of a 2V-Operation Single-Chip GaAs T/R MMIC Front-End for 1.9GHz Personal Communications”, IEEE, 1998, pp. 7-12.
Savla, “Design and Simulation of a Low Power Bluetooth Transceiver”, The University of Wisconsin, 2001, pp. 1-90.
Henshaw, “Design of an RF Transceiver”, IEEE Colloquium on Analog Signal Processing, 1998.
Baker, et al., “Designing Nanosecond High Voltage Pulse Generators Using Power MOSFET's”, Electronic Letters, 1994, pp. 1634-1635.
Caverly, “Development of a CMOS Cell Library for RF Wireless and Telecommunications Applications”, VLSI Symposium, 1998.
Caverly, “Distortion Properties of Gallium Arsenide and Silicon RF and Microwave Switches”, IEEE, 1997, pp. 153-156.
Luu, Final Office Action received from the USPTO dated Apr. 2009 relating to U.S. Appl. No. 11/351,342.
Colinge, “Fully Depleted SOI CMOS for Analog Applications”, IEEE Transactions on Electron Devices, 1998, pp. 1010-1016.
Flandre, et al., “Fully Depleted SOI CMOS Technology for Low Voltage Low Power Mixed Digital/Analog/Microwave Circuits”, Analog Integrated Circuits and Signal Processing, 1999, pp. 213-228.
Yamao, “GaAs Broadband Monolithic Switches”, 1986, pp. 63-71.
Gopinath, et al., “GaAs FET RF Switches”, IEEE Transactions on Electron Devices, 1985, pp. 1272-1278.
Eisenberg, et al., “High Isolation 1-20GHz MMIC Switches with On-Chip Drivers”, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1989, pp. 41-45.
Shifrin et al., “High Power Control Components Using a New Monolithic FET Structure”, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1988, pp. 51-56.
Kohama, et al., “High Power DPDT Antenna Switch MMIC for Digital Cellular Systems”, GaAs IC Symposium, 1995, pp. 75-78.
Kohama, et al., “High Power DPDT Antenna Switch MMIC for Digital Cellular Systems”, IEEE Journal of Solid-State Circuits, 1996, pp. 1406-1411.
Yun, et al., “High Power-GaAs MMIC Switches wtih Planar Semi-Insulated Gate FETs (SIGFETs)”, International Symposium on Power Semiconductor Devices & ICs, 1990, pp. 55-58.
Caverly, “High Power Gallium Nitride Devices for Microwave and RF Control Applications”, 1999, pp. 1-30.
Caverly, “High Power Gallium Nitride Devices for Microwave and RF Control Applications”, 2000, pp. 1-33.
Masuda, et al., “High Power Heterojunction GaAs Switch IC with P-1dB of more than 38dBm for GSM Application”, IEEE, 1998, pp. 229-232.
De Boer, et al., “Highly Integrated X-Band Multi-Function MMIC with Integrated LNA and Driver Amplifier”, TNO Physics and Electronics Laboratory, 2002, pp. 1-4.
Kanda, et al., “High Performance 19GHz Band GaAs FET Switches Using LOXI (Layerd Oxide Isolation)—MESFETs”, IEEE, 1997, pp. 62-65.
Uda, et al., “High-Performance GaAs Switch IC's Fabricated Using MESFET's with Two Kinds of Pinch-Off Voltages and a Symmetrical Pattern Configuration”, IEEE Journal of Solid-State Circuits, vol. 29, No. 10, Oct. 1994, pp. 1262-1269.
Uda, et al., “High Performance GaAs Switch IC's Fabricated Using MESFETs with Two Kinds of Pinch Off Voltages”, IEEE GaAs IC Symposium, 1993, pp. 247-250.
Armijos, “High Speed DMOS FET Analog Switches and Switch Arrays, Temic Semiconductors” 1994, pp. 1-10.
Katzin, et al., “High Speed 100+ W Rf Switches Using GaAs MMICs”, IEEE Transactions on Microwave Theory and Techniques, 1992, pp. 1989-1996.
Honeywell, “Honeywell SPDT Absorptive RF Switch”, Honeywell, 2002, pp. 1-6.
Honeywell, “Honeywell SPDT Reflective RF Switch”, Honeywell Advance Information, 2001, pp. 1-3.
Larson, “Integrated Circuit Technology Options for RFIC's—Present Status and Future Directions”, IEEE Journal of Solid-State Circuits, 1998, pp. 387-399.
Burghartz, “Integrated RF and Microwave Components in BiCMOS Technology”, IEEE Transactions on Electron Devices, 1996, pp. 1559-1570.
Hanzo, “Adaptive Wireless Transceivers”, Wiley, 2002.
Lossee, “RF Systems, Components, and Circuits Handbook”, Artech House, 1997.
Miller, “Moderin Electronic Communications”, Prentice-Hall, 1999.
Minoli, “Telecommunications Technology Handbook”, Artech House, 2003.
Morreale, “The CRC Handbook of Modern Telecommunications”, CRC Press, 2001.
Sayre, “Complete Wireless Design”, McGraw-Hill, 2001.
Shafi, “Wireless Communications in the 21st Century”, Wiley, 2002.
Bonkowski, et al., “Integraton of Triple Band GSM Antenna Switch Module Using SOI CMOS”, IEEE Radio Frequency Integrated Circuits Symposium, 2004, pp. 511-514.
Marenk, et al., “Layout Optimization of Cascode RF SOI Transistors”, IEEE International SOI Conference, 2001, pp. 105-106.
Suematsu, et al., “L-Band Internally Matched Si-MMIC Front End”, IEEE, 1996, pp. 2375-2378.
Iyama, et al., “L-Band SPDT Switch Using Si-MOSFET”, IEICE Trans. Electron, vol. E79-C, No. 5, May 1996, pp. 636-643.
Caverly, “Linear and Nonlinear Characteristics of the Silicon CMOS Monolithic 50-Omega Microwave and RF Control Element”, IEEE Journal of Solid-State Circuits, 1999, pp. 124-126.
Adan, et al., “Linearity and Low Noise Performance of SOIMOSFETs for RF Applications”, IEEE International SOI Conference, 2000, pp. 30-31.
Gu, et al., “Low Insertion Loss and High Linearity PHEMT SPDT and SP3T Switch Ics for WLAN 802.11a/b/g Application”, 2004 IEEE Radio Frequency Integrated Circuits Symposium, 2004, pp. 505-508.
Koudymov, et al., “Low Loss High Power RF Switching Using Multifinger AlGaN/GaN MOSHFETs”, University of South Carolina Scholar Commons, 2002, pp. 449-451.
Abidi, “Low Power Radio Frequency IC's for Portable Communications”, IEEE, 1995, pp. 544-569.
De La Houssaye, et al., “Microwave Performance of Optically Fabricated T-Gate Thin Film Silicon on Sapphire Based MOSFET's”, IEEE Electron Device Letters, 1995, pp. 289-292.
Shifrin, et al., “Monolithic FET Structure for HighPower Control Component Applications”, IEEE Transactions on Microwave Theory and Techniques, 1989, pp. 2134-2142.
McGrath, et al., “Multi Gate FET Power Switches”, Applied Microwave, 1991, pp. 77-88.
Smuk, et al., “Multi-Throw Plastic MMIC Switches up to 6GHz with Integrated Positive Control Logic”, IEEE, 1999, pp. 259-262.
Razavi, “Next Generation RF Circuits and Systems”, IEEE, 1997, pp. 270-282.
Gould, et al., “NMOS SPDT Switch MMIC with >48dB Isolation and 30dBm IIP3 for Applications within GSM and UMTS Bands”, Bell Labs, 2001, pp. 1-4.
Caverly, “Nonlinear Properties of Gallium Arsenide and Silicon FET-Based RF and Microwave Switches”, IEEE, 1998, pp. 1-4.
Tran, Notice of Allowance and Fee(s) Due from the USPTO dated Jun. 2010 relating to U.S. Appl. No. 11/501,125.
Tieu, Notice of Allowance and Fee(s) Due from the USPTO dated Dec. 2008 relating to U.S. Appl. No. 11/127,520.
Luu, Notice of Allowance and Fee(s) Due from the USPTO dated Jul. 2009 relating to U.S. Appl. No. 11/351,342.
McGrath, et al., “Novel High Performance SPDT Power Switches Using Multi-Gate FET's”, IEEE, 1991, pp. 839-842.
Luu, Office Action from the USPTO dated Oct. 2008 relating to U.S. Appl. No. 11/351,342.
Chow, Office Action from the USPTO dated Aug. 2010 relating to U.S. Appl. No. 11/347,671.
Suematsu, “On-Chip Matching SI-MMIC for Mobile Communication Terminal Application”, IEEE, 1997, pp. 9-12.
Caverly, et al., “On-State Distortion in High Electron Mobility Transistor Microwave and RF Switch Control Circuits, IEEE Transactions on Microwave Theory and Techniques”, 2000, pp. 98-103.
“Radiation Hardened CMOS Dual DPST Analog Switch”, Intersil, 1999, pp. 1-2.
Newman, “Radiation Hardened Power Electronics”, Intersil Corporation, 1999, pp. 1-4.
Huang, et al., “TFSOI Can It Meet the Challenge of Single Chip Portable Wireless Systems”, IEEE International SOI Conference, 1997, pp. 1-3.
Devlin, “The Design of Integrated Switches and Phase Shifters”, 1999.
Hess, et al., “Transformerless Capacitive Coupling of Gate Signals for Series Operation of Power MOS Devices”, IEEE, 1999, pp. 673-675.
“UPG13xG Series L-Band SPDT Switch GaAs MMIC”, NEC, 1996, pp. 1-30.
Reedy, et al., “UTSi CMOS: A Complete RF SOI Solution”, Peregrine Semiconductor, 2001, pp. 1-6.
Hittite Microwave, “Wireless Symposium 2000 is Stage for New Product Introductions”, Hittite Microwave, 2000, pp. 1-8.
Montoriol, et al., “3.6V and 4.8V GSM/DCS1800 Dual Band PA Application with DECT Capability Using Standard Motorola RFICs”, 2000, pp. 1-20.
Wang, et al., “Efficiency Improvement in Charge Pump Circuits”, IEEE Journal of Solid-State Circuits, vol. 32, No. 6, Jun. 1997, pp. 852-860.
Kelly, Response to Office Action mailed to USPTO relating to U.S. Appl. No. 11/351,342 dated Jan. 30, 2009.
“RF & Microwave Device Overview 2003—Silicon and GaAs Semiconductors”, NEC, 2003.
“RF Amplifier Design Using HFA3046, HFA3096, HFA3127, HFA3128 Transistor Arrays”, Intersil Corporation, 1996, pp. 1-4.
“SA630 Single Pole Double Throw (SPDT) Switch”, Philips Semiconductors, 1997.
Narendra, et al., “Scaling of Stack Effects and its Application for Leakage Reduction”, ISLPED 2001, 2001, pp. 195-200.
Huang, “Schottky Clamped MOS Transistors for Wireless CMOS Radio Frequency Switch Application”, University of Florida, 2001, pp. 1-167.
Botto, et al., “Series Connected Soft Switched IGBTs for High Power, High Voltage Drives Applications: Experimental Results”, IEEE, 1997, pp. 3-7.
Baker, et al., “Series Operation of Power MOSFETs for High Speed Voltage Switching Applications”, American Institute of Physics, 1993, pp. 1655-1656.
Lovelace, et al., “Silicon MOSFET Technology for RF ICs”, IEEE, 1995, pp. 1238-1241.
“Silicon Wave SiW1502 Radio Modem IC”, Silicon Wave, 2000, pp. 1-21.
Johnson, et al., “Silicon-On-Sapphire MOSFET Transmit/Receive Switch for L and S Band Transceiver Applications”, Electronic Letters, 1997, pp. 1324-1326.
Reedy, et al., “Single Chip Wireless Systems Using SOI”, IEEE International SOI Conference, 1999, pp. 8-11.
Stuber, et al., “SOI CMOS with High Performance Passive Components for Analog, RF and Mixed Signal Designs”, IEEE International SOI Conference, 1998, pp. 99-100.
Fukuda, et al., “SOI CMOS Device Technology”, Special Edition on 21st Century Solutions, 2001, pp. 54-57.
Kusunoki, et al., “SPDT Switch MMIC Using E/D Mode GaAs JFETs for Personal Communications”, IEEE GaAs IC Symposium, 1992, pp. 135-138.
Wells, Kenneth B., Office Action received from the USPTO dated Oct. 29, 2018 for U.S. Appl. No. 15/939,128, 210 pgs.
Wells, Kenneth B., Office Action received from the USPTO dated Dec. 12, 2018 for U.S. Appl. No. 15/939,128, 18 pgs.
Wells, Kenneth B., Notice of Allowance received from the USPTO dated Jul. 17, 2019 for U.S. Appl. No. 15/939,128, 19 pgs.
Wells, Kenneth B., Notice of Allowance received from the USPTO dated Oct. 17, 2019 for U.S. Appl. No. 15/939,128, 10 pgs.
PSemi Corporation, Preliminary Amendment filed in the USPTO dated Jun. 26, 2018 for U.S. Appl. No. 15/939,128, 5 pgs.
PSemi Corporation, Response filed in the USPTO dated Nov. 9, 2018 for U.S. Appl. No. 15/939,128, 13 pgs.
PSemi Corporation, Response filed in the USPTO dated Jan. 24, 2019 for U.S. Appl. No. 15/939,128, 10 pgs.
Willard, et al., “AC Coupling Modules for Bias Ladders”, patent application filed in the USPTO on Mar. 28, 2018 for U.S. Appl. No. 15/939,144, 60 pgs.
Willard, et al., “Stacked FET Switch Bias Ladders”, patent application filed in the USPTO on Mar. 28, 2018 for U.S. Appl. No. 15/939,132, 62 pgs.
Mattison, David, Office Action received from the USPTO dated Sep. 28, 2017 for U.S. Appl. No. 15/289,768, 44 pgs.
Vergoosen, Joannes, International Search Report and Written Opinion received from the EPO dated Dec. 22, 2016 for appln. No. PCT/US2016/056684, 14 pgs.
Chen, Patrick C., Office Action received from the USPTO dated Apr. 4, 2017 for U.S. Appl. No. 15/256,453, 6 pgs.
Chen, Patrick C., Office Action received from the USPTO dated May 25, 2017 for U.S. Appl. No. 15/256,453, 11 pgs.
Ranta, Tero Tapio, Response filed in the USPTO dated Apr. 14, 2017 for U.S. Appl. No. 15/256,453, 3 pgs.
Ranta, Tero Tapio, Response filed in the USPTO dated Aug. 24, 2017 for U.S. Appl. No. 15/256,453, 11 pgs.
Rojas, Daniel E., Office Action received from the USPTO dated Feb. 21, 2013 for U.S. Appl. No. 12/803,139, 7 pgs.
Rojas, Daniel E., Office Action received from the USPTO dated Jun. 17, 2013 for U.S. Appl. No. 12/803,139, 36 pgs.
Rojas, Daniel E., Notice of Allowance received from the USPTO dated Oct. 22, 2013 for U.S. Appl. No. 12/803,139, 142 pgs.
Ranta, et al., Response filed in the USPTO dated Sep. 17, 2013 for U.S. Appl. No. 12/803,139, 14 pgs.
Ranta, et al., Response filed in the USPTO dated May 20, 2013 for U.S. Appl. No. 12/803,139, 8 pgs.
Utagawa, Tsutomu, English translation of Notification of Reasons for Refusal received from the JPO dated Jun. 4, 2013 for related appln. No. 2010-548750, 3 pgs.
Wells, Kenneth B., Office Action received from the USPTO dated Nov. 2, 2018 for U.S. Appl. No. 15/939,144, 11 pgs.
Chen, Patrick C., Final Office Action received from the USPTO dated Dec. 13, 2018 for U.S. Appl. No. 15/871,643, 24 pgs.
Itoh, et al., English Translation of Decision to Refuse received from the JPO dated Oct. 30, 2018, 20 pgs.
Wells, Kenneth B., Notice of Allowance received from the USPTO dated Jan. 14, 2019 for U.S. Appl. No. 15/939,144, 205 pgs.
Tra, Anh Quan, Office Action received from the USPTO dated May 8, 2019 for U.S. Appl. No. 15/939,132, 143 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated May 8, 2019 for U.S. Appl. No. 16/046,974, 25 pgs.
Gundlach, Susanne, Invitation to Pay Additional Fees and, Where Applicable, Protest Fee received from the EPO dated Jul. 5, 2019 for appln. No. PCT/US2019/024143, 13 pgs.
Tra, Anh Quan, Notice of Allowance received from the USPTO dated Aug. 13, 2019 for U.S. Appl. No. 15/939,132, 18 pgs.
Wells, Kenneth B., Office Action received from the USPTO dated Sep. 4, 2019 for U.S. Appl. No. 16/261,167, 31 pgs.
Nguyen, Hai L., Notice of Allowance received from the USPTO dated Oct. 4, 2019 for U.S. Appl. No. 16/053,710, 27 pgs.
Ranta, et al., “Positive Logic Switch with Selectable DC Blocking Circuit”, patent application filed in the USPTO on Mar. 28, 2018 for U.S. Appl. No. 15/939,128, 62 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated May 29, 2019 for U.S. Appl. No. 16/377,026, 8 pgs.
Wells, Kenneth B., Final Office Action received from the USPTO dated Jan. 28, 2020 for U.S. Appl. No. 16/261,167, 25 pgs.
Fermentel, Thomas, International Search Report and Written Opinion received from the EPO dated Jan. 8, 2020 for appln. No. PCT/US2019/024143, 19 Pgs.
Chen, Patrick C., Office Action received from the USPTO dated Jan. 28, 2020 for U.S. Appl. No. 16/653,728, 9 pgs.
Tieu, Binh Kien, Notice of Allowance received from the USPTO for related U.S. Appl. No. 11/347,014, dated Apr. 29, 2010, 12 pgs.
Shingleton, Michael B., Office Action received from the USPTO dated Oct. 14, 2010 for related U.S. Appl. No. 11/881,816, 15 pgs.
Dribinsky, et al., Response filed in the USPTO dated Jan. 14, 2011 for related U.S. Appl. No. 11/881,816, 19 pgs.
Shifrin, Mitchell B., “Monolithic FET Structures for High-Power Control Component Applications”, IEEE Transactions on Microwave Theory and Techniques, vol. 37, No. 12, Dec. 1989, pp. 2134-2141.
Miyajima, Ikumi, Notice of Reasons for Refusal received from the JPO dated Oct. 5, 2006 for related appln. No. 2003-535287, 4 pgs.
Tieu, Binh Kien, Office Action received from the USPTO dated Nov. 15, 2007 for related U.S. Appl. No. 11/582,206, 9 pgs.
Dinh, Le T., International Search Report received from the USRO dated Mar. 28, 2003 for related appln No. PCT/US02/32266, 2 pgs.
Burgener, et al., Amendment filed in the USPTO dated May 15, 2008 for related U.S. Appl. No. 11/582,206, 14 pgs.
Tieu, Binh Kien, Notice of Allowance received in the USPTO dated Jul. 15, 2008 for related U.S. Appl. No. 11/582,206, 7 pgs.
Van der Peet, H., Communication Pursuant to Article 94(3) EPC received from the EPO in related appln. No. 02800982.7-2220, dated Jun. 19, 2008, 3 pgs.
Caverly, Robert H., “A Silicon CMOS Monolithic RF and Microwave Switching Element”, 1997 European Microwave Conference, Jerusalem, Sep. 1987, 4 pgs.
Van Der Peet, H., Communication pursuant to Article 94(3) EPC for related application No. 02800982.7-2220 dated Aug. 6, 2009, 2 pgs.
Tieu, Binh Kien, Office Action received from the USPTO dated Sep. 16, 2009 for related U.S. Appl. No. 11/347,014, 26 pgs.
Shingleton, Michael B, Notice of Allowance received from the USPTO for related U.S. Appl. No. 11/881,816, dated Oct. 12, 2011, 5 pgs.
Tieu, Binh Kien, Notice of Allowance received from the USPTO dated Aug. 11, 2010 for related U.S. Appl. No. 12/315,395, 26 pgs.
Kelly, et al., Comments on Examiner's Statement of Reasons for Allowance filed in the USPTO dated Jul. 29, 2010 for related U.S. Appl. No. 11/347,014, 2 pgs.
Chow, Charles Chiang, Office Action received from the USPTO dated Aug. 19, 2008 for related U.S. Appl. No. 11/347,671, 14 pgs.
Kelly, Dylan, Amendment filed in the USPTO dated Dec. 19, 2008 for related U.S. Appl. No. 11/347,671, 12 pgs.
Chow, Charles Chiang, Office Action received from the USPTO dated Apr. 16, 2009 for related U.S. Appl. No. 11/347,671, 16 pgs.
Kelly, Dylan, Response filed in the USPTO dated Jun. 16, 2009 for related U.S. Appl. No. 11/347,671, 14 pgs.
Chow, Charles Chiang, Office Action received from the USPTO dated Jul. 20, 2009 for related U.S. Appl. No. 11/347,671, 17 pgs.
Kelly, Dylan, Amendment filed in the USPTO dated Jan. 20, 2010 for related U.S. Appl. No. 11/347,671, 18 pgs.
Chow, Charles Chiang, Office Action received from the USPTO dated Apr. 28, 2010 for related U.S. Appl. No. 11/347,671, 20 pgs.
Kelly, Dylan, Amendment filed in the USPTO dated Jul. 28, 2010 for related U.S. Appl. No. 11/347,671, 6 pgs.
Chow, Charles Chiang, Office Action received from the USPTO dated Aug. 20, 2010 for related U.S. Appl. No. 11/347,671, 18 pgs.
Kelly, Dylan, Amendment filed in the USPTO dated Dec. 20, 2010 for related U.S. Appl. No. 11/347,671, 12 pgs.
Chow, Charles Chiang, Office Action received from the USPTO dated Mar. 2, 2011 for related U.S. Appl. No. 11/347,671, 15 pgs.
Kelly, Dylan, Amendment filed in the USPTO dated May 2, 2011 for related U.S. Appl. No. 11/347,671, 6 pgs.
Chow, Charles Chiang, Advisory Action received from the USPTO dated May 12, 2011 for related U.S. Appl. No. 11/347,671, 3 pgs.
Kelly, Dylan, Notice of Appeal filed in the USPTO dated Jun. 2, 2011 for related U.S. Appl. No. 11/347,671, 6 pgs.
Chow, Charles Chiang, Notice of Panel Decision from Pre-Appeal Brief Review dated Jul. 11, 2011 for related U.S. Appl. No. 11/347,671, 2 pgs.
Kelly, Dylan, Supplemental Amendment filed in the USPTO dated Aug. 9, 2011 for related U.S. Appl. No. 11/347,671, 3 pgs.
Chow, Charles Chiang, Notice of Allowance dated Aug. 16, 2011 for related U.S. Appl. No. 11/347,671, 12 pgs.
Nguyen, Tram Hoang, Notice of Allowance received from the USPTO dated Nov. 17, 2011, 41 pgs.
Hoffmann, Niels, International Search Report received from the EPO dated Feb. 27, 2012, 12 pgs.
Iijima, M, et al., “Boosted Voltage Scheme with Active Body-Biasing Control on PD-SOI for Ultra Low Voltage Operation”, IEICE Transactions on Electronics, Institute of Electronics, vol. E90C, No. 4, Apr. 1, 2007, pp. 666-674.
Peregrine Semiconductor Corporation, Response filed in the EPO dated Jan. 17, 2012 for related appln. No. 06786943.8, 1 pg.
Peregrine Semiconductor Corporation, Appeal to the Decision for Refusal filed in the EPO dated Mar. 20, 2012 for related appln No. 06786943.1, 27 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated May 16, 2011 for related appln No. 11153227.1, 5 pgs.
Hoffman, Niels, Extended Search Report received from the EPO dated May 4, 2012 for related appln. No. 11153227.1, 4 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated May 16, 2011 for related appln No. 11153247.9, 6 pgs.
Hoffman, Niels, Extended Search Report received from the EPO dated May 7, 2012 for related appln. No. 111153247.9, 4 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated May 16, 2011 for related appln No. 11153241.2, 5 pgs.
Hoffman, Niels, Extended Search Report received from the EPO dated May 7, 2012 for related appln. No. 11153241.2, 4 pgs.
Hoffman, Niels, Extended Search Report received from the EPO dated May 8, 2012 for related appln. No. 11153281.8, 4 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated May 16, 2011 for related appln No. 11153313.9, 8 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated Sep. 6, 2016 for appln. No. 16020116.6, 2 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Sep. 23, 2016 for U.S. Appl. No. 14/804,198, 21 pgs.
Tieu, Binh Kien, Office Action received from the USPTO dated Oct. 4, 2016 for U.S. Appl. No. 14/883,499, 23 pgs.
Chiquero, S. Sanchez, Minutes of the Oral Proceedings received from the EPO dated Oct. 10, 2016 for appln. No. 06786943.8, 25 pgs.
Brindle, et al., Response filed in the USPTO dated Oct. 28, 2016 for U.S. Appl. No. 14/845,154, 9 pgs.
Chiquero, S. Sanchez, Datasheet for the Decision of Sep. 29, 2016 received from the EPO for appln. No. 06786943.8, 15 pgs.
Unterberger, Michael, Extended Search Report received from the EPO dated Dec. 6, 2016 for appln. No. 16020116.6, 10 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Dec. 7, 2016 for U.S. Appl. No. 14/804,198, 12 pgs.
Hoffman, et al., Communication under Rule 71(3) received from the EPO dated Dec. 1, 2016 for appln. No. 06786943.8, 4 pgs.
Burgener, et al., Response to Non-Final Office Action filed in the USPTO dated Feb. 3, 2017 for U.S. Appl. No. 14/883,499, 8 pgs.
Brindle, et al., Preliminary Amendment filed in the USPTO dated Feb. 23, 2017 for U.S. Appl. No. 15/354,723, 7 pgs.
Nguyen, Niki Hoang, Final Office Action received from the USPTO dated Mar. 8, 2017 for U.S. Appl. No. 14/845,154, 28 pgs.
Nguyen, Niki Hoang, Office Action received from the USPTO dated Mar. 24, 2017 for U.S. Appl. No. 15/354,723, 15 pgs.
Brindle, et al., Response to Final Office Action filed in the USPTO dated Mar. 24, 2017 for U.S. Appl. No. 14/845,154, 3 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Apr. 10, 2017 for U.S. Appl. No. 14/845,154, 8 pgs.
Brindle, et al., Response filed in the USPTO dated Apr. 17, 2017 for U.S. Appl. No. 15/354,723, 9 pgs.
Tieu, Binh Kien, Final Office Action received from the USPTO dated May 18, 2017 for U.S. Appl. No. 14/883,499, 19 pgs.
Burgener, et al., Response filed in the USPTO dated May 26, 2017 for U.S. Appl. No. 14/883,499, 3 pgs.
Sukman-Pranhofer, Sibina, English translation of Office Action received from the German Patent Office for appln. No. 112011103554.3, 7 pgs.
Tieu, Binh Kien, Notice of Allowance received from the USPTO dated Jun. 8, 2017 for U.S. Appl. No. 14/883,499, 14 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Jun. 21, 2017 for U.S. Appl. No. 15/354,723, 23 pgs.
Stuber, et al., Preliminary Amendment filed in the USPTO dated Jul. 21, 2017 for U.S. Appl. No. 15/419,898, 10 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Aug. 9, 2017 for U.S. Appl. No. 14/845,154, 12 pgs.
Shingleton, Michael B., Notice of Allowance received from the USPTO dated Aug. 10, 2017 for U.S. Appl. No. 14/987,360, 49 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Aug. 11, 2017 for U.S. Appl. No. 15/354,723, 18 pgs.
Itoh, et al., Office Action and English translation received from the JPO dated Jun. 27, 2017 for appln. No. 2016-175339, 14 pgs.
Burgener, et al., Preliminary Amendment filed in the USPTO dated Nov. 17, 2017 for U.S. Appl. No. 15/656,953, 7 pgs.
Brindle, et al., Preliminary Amendment filed in the USPTO dated Dec. 7, 2017 for U.S. Appl. No. 15/707,970, 9 pgs.
Nguyen, Niki Hoang, Office Action received from the USPTO dated Jan. 12, 2018 for U.S. Appl. No. 15/707,970, 11 pgs.
Tieu, Binh Kien, Office Action received from the USPTO dated Mar. 7, 2018 for U.S. Appl. No. 15/656,953, 14 pgs.
Nguyen, Niki Hoang, Office Action received from the USPTO dated Mar. 9, 2018 for U.S. Appl. No. 15/693,182, 10 ppgs.
Itoh, et al., English translation of Office Action received from the JPO dated Feb. 27, 2018 for appln. No. 2016-175339, 4 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Apr. 2, 2018 for U.S. Appl. No. 15/707,970, 14 pgs.
Tieu, Binh Kien, Final Office Action received from the USPTO dated May 16, 2018 for U.S. Appl. No. 15/656,953, 12 pgs.
Tat, Binh, Office Action received from the USPTO dated Jun. 4, 2018 for U.S. Appl. No. 15/419,898, 39 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Jun. 21, 2018 for U.S. Appl. No. 15/693,182, 22 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Jul. 2, 2018 for U.S. Appl. No. 15/707,970, 19 pgs.
Toeu. Binh Kien, Notice of Allowance received from the USPTO dated Aug. 1, 2018 for U.S. Appl. No. 15/656,953, 13 pgs.
Nguyen, Long T., Office Action received from the USPTO dated Oct. 26, 2021 for U.S. Appl. No. 17/141,706, 5 pgs.
Nguyen, Long T., Office Action received from the USPTO dated Feb. 1, 2022 for U.S. Appl. No. 17/141,706, 216 pgs.
Nguyen, Long T., Notice of Allowance received from the USPTO dated Jun. 14, 2022 for U.S. Appl. No. 17/141,706, 8 pgs.
Wells, Kenneth B., Notice of Allowance received from the USPTO dated Feb. 28, 2020 for U.S. Appl. No. 16/261,167, 11 pgs.
Wells, Kenneth B., Office Action received from the USPTO dated Apr. 22, 2020 for U.S. Appl. No. 16/682,920, 154 pgs.
Wells, Kenneth B., Final Office Action received from the USPTO dated Jul. 29, 2020 for U.S. Appl. No. 16/682,920, 20 pgs.
Wells, Kenneth B., Notice of Allowance received from the USPTO dated Sep. 10, 2020 for U.S. Appl. No. 16/682,920, 7 pgs.
Wells, Kenneth B., Office Action received from the USPTO dated Oct. 16, 2020 for U.S. Appl. No. 16/852,804, 220 pgs.
Chen, Patrick C., Final Office Action received from the USPTO dated Oct. 21, 2020 for U.S. Appl. No. 16/653,728, 26 pgs.
Tra, Anh Quan, Notice of Allowance received from the USPTO dated Nov. 4, 2019 for U.S. Appl. No. 15/939,132, 11 pgs.
Tra, Anh Quan, Office Action received from the USPTO dated Mar. 20, 2020 for U.S. Appl. No. 15/939,132, 11 pgs.
Tra, Anh Quan, Office Action received from the USPTO dated Jul. 2, 2020 for U.S. Appl. No. 15/939,132, 15 pgs.
Tra, Anh Quan, Advisory Action received from the USPTO dated Sep. 11, 2020 for U.S. Appl. No. 15/939,132, 3 pgs.
Tra, Anh Quan, Notice of Allowance received from the USPTO dated Nov. 18, 2020 for U.S. Appl. No. 15/939,132, 13 pgs.
PSemi Corporation, Response filed in the USPTO dated Jul. 26, 2019 for U.S. Appl. No. 15/939,132, 10 pgs.
PSemi Corporation, Response filed in the USPTO dated Jun. 22, 2020 for U.S. Appl. No. 15/939,132, 9 pgs.
PSemi Corporation, Response filed in the USPTO dated Sep. 1, 2020 for U.S. Appl. No. 15/939,132, 9 pgs.
PSemi Corporation, Response filed in the USPTO dated Oct. 30, 2020 for U.S. Appl. No. 15/939,132, 4 pgs.
Wei, et al., “Large-Signal Model of Triple-Gate MESFET/PHEMT for Switch Applications”, Alpha Industries, Inc., 1999 IEEE, pp. 745-748.
Soyuer, et al., “RF and Microwave Building Blocks in a Standard BiCMOS Technology”, IBM T.J. Watson Research Center, 1996 IEEE, pp. 89-92.
Mizutani, et al., “Compact DC-60-GHz HJFET MMIC Switches using Ohmic Electrode-Sharing Technology”, IEEE Transactions on Microwave Theory and Techniques, vol. 46, No. 11, Nov. 1998, pp. 1597-1603.
Ota, et al., “High Isolation and Low Insertion Loss Switch IC Using GaAs MESFETs”, IEEE Transactions on Microwave Theory and Techniques, vol. 43, No. 9, Sep. 1995, pp. 2175-2177.
Koo, Raymond, “RF Switches”, Univ. Toronto, Elec. And Computer Engineering Dept. 2001, 12 pgs.
Titus, et al., “A Silicon BICMOS Transceiver Front-End MMIC Covering 900 and 1900 MHZ Applications”, Hittite Microwave Corporation, IEEE 1996 Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp. 73-75.
Rossek, Sacha, “Direct Optical Control of a Microwave Phase Shifter Using GaAs Field-Effect Transistors”, Communications Research Group, School of Electronic Engineering, Faculty of Technology, Middlesex University, Sep. 1998, 224 pgs.
Schindler, et al., “DC-20 GHZ N X M Passive Switches”, Raytheon Co., 1998 IEEE MTT-S Digest, pp. 1001-1005.
Houng, et al., “60-70 dB Isolation 2-19 GHz Switches”, Raytheon Electromagnetic Systems Division, 1989 IEEE, GaAs IC Symposium, pp. 173-176.
Schindler, et al., “DC-40 GHz and 20-40 GHz MMIC SPDT Switches”, IEEE Transactions of Electron Devices, vol. ED-34, No. 12, Dec. 1987, pp. 2595-2602.
Schindler, et al., “A 2-18 GHz Non-Blocking Active 2 X 2 Switch”, Raytheon Company, 1989 IEEE, GaAs IC Symposium, pp. 181-183.
Schindler, et al., “A Single Chip 2-20 GHz T/R Module” 1988 IEEE, IEEE 1990 Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp. 99-102.
McGrath, et al., “Novel High Performance SPDT Power Switches using Multi-Gate FETs”, 1991 IEEE, 1991 IEEE MTT-S Digest, pp. 839-842.
Schindler, et al., “DC-20 Ghz N X M Passive Switches”, IEEE Transactions on Microwave Theory and Techniques, vol. 36, No. 12, Dec. 1988, pp. 1604-1613.
Bernkopf, et al., “A High Power K/Ka-Band Monolithic T/R Switch”, 1991 IEEE, IEEE 1991 Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp. 15-18.
Chen, et al., “Low Power, Multi-Gigabit DRAM Cell Design Issues Using SOI Technologies”, http://bwrc.eecs.berkeley.edu/people/grad_students/chenff/reports, May 1999.
Pelella, et al., “Low-Voltage Transient Bipolar Effect Induced by Dynamic Floating-Body Charging in Scaled PD/SOI MOSFET's”, IEEE Electron Device Letters, vol. 17, No. 5, May 1996.
Wei, “Measurement and Modeling of Transient Effects in Partially Depleted SOI MOSFETs”, M.S. Thesis, MIT, Jul. 1996.
Shoucair, “Modeling, Decoupling and Supression of MOSFET Distortion Components”, IEEE Proceeding Circuit Devices Systems, vol. 146, No. 1, Feb. 1999.
Shahidi, et al., “Partially Depleted SOI Technology for Digital Logic”, IEEE Int'l Solid-State Circuits Conference, 1999, pp. 426-427.
Giffard, et al., “Dynamic Effects in SOI MOSFET's”, IEEE 1991, pp. 160-161.
Numata, et al., “A +2.4/0 V Controlled High Power GaAs SPDT Antenna Switch IC for GSM Application”, IEEE Radio Frequency Integrated Circuits Symposium, 2002, pp. 141-144.
Tinella, et al., “A 0.7dB Insertion Loss CMOS—SOI Antenna Switch with More than 50dB Isolation over the 2.5 to 5GHz Band”, Proceeding of the 28th European Solid-State Circuits Conference, 2002, pp. 483-486.
Ohnakado, et al., “A 1.4dB Insertion Loss, 5GHz Transmit/Receive Switch Utilizing Novel Depletion-Layer Extended Transistors (DETs) in 0.18um CMOS Process”, Symposium on VLSI Circuits Digest of Technical Papers, 2002, pp. 162-163.
Nakayama, et al., “A 1.9 GHZ Single-Chip RF Front-End GaAs MMIC with Low-Distortion Cascade FET Mixer for Personal Handy-Phone System Terminals”, IEEE, 1998, pp. 101-104.
McGrath, et al., “A 1.9-GHz GaAs Chip Set for the Personal Handyphone System”, IEEE Transaction on Microwave Theory and Techniques, 1995, pp. 1733-1744.
Nakayama, et al., “A 1.9GHz Single-Chip RF Front End GaAs MMIC for Personal Communications”, Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1996, pp. 69-72.
Nakayama, et al., “A 1.9GHZ Single-Chip RF Front End GaAs MMIC with Low-Distortion Cascode FET Mixer for Personal Handy-Phone System Terminals”, Radio Frequency Integrated Circuits Symposium, 1998, pp. 205-208.
Gu, et al., “A 2.3V PHEMT Power SP3T Antenna Switch IC for GSM Handsets”, IEEE GaAs Digest, 2003, pp. 48-51.
Darabi, et al., “A 2.4GHz CMOS Transceiver for Bluetooth”, IEEE, 2001, pp. 89-92.
Huang, et al., “A 2.4-GHz Single-Pole Double Throw T/R Switch with 0.8-dB Insertion Loss Implemented in a CMOS Process”, Silicon Microwave Integrated Circuits and Systems Research, 2001, pp. 1-4.
Huang, et al., “A 2.4-GHz Single-Pole Double Throw T/R Switch with 0.8-dB Insertion Loss Implemented in a CMOS Process (slides)”, Silicon Microwave Integrated Circuits and Systems Research, 2001, pp. 1-16.
Yamamoto, et al., “A 2.4GHz Band 1.8V Operation Single Chip SI-CMOS T/R Mmic Front End with a Low Insertion Loss Switch”, IEEE Journal of Solid-State Circuits, vol. 36, No. 8, Aug. 2001, pp. 1186-1197.
Kawakyu, et al., “A 2-V Operation Resonant Type T/R Switch with Low Distortion Characteristics for 1.9GHZ Phs”, IEICE Trans Electron, vol. E81-C, No. 6, Jun. 1998, pp. 862-867.
Huang, et al., “A 900-MHz T/R Switch with a 0.8-dB Insertion Loss Implemented in a 0.5-um CMOS Process”, IEEE Custom Integrated Circuits Conference, 2000, pp. 341-344.
Valeri, et al., “A Composite High Voltage Device Using Low Voltage SOI MOSFET's”, IEEE, 1990, pp. 169-170.
Miyatsuji, et al., “A GaAs High Power RF Single Pole Double Throw Switch IC for Digital Mobile Communication System”, IEEE International Solid-State Circuits Conference, 1994, pp. 34-35.
Miyatsuji, et al., “A GaAs High Power RF Single Pole Dual Throw Switch IC for Digital Mobile Communication System”, IEEE Journal of Solid-State Circuits, 1995, pp. 979-983.
Puechberty, et al., “A GaAs Power Chip Set for 3V Cellular Communications”, 1994.
Yamamoto, et al., “A GaAs RF Transceiver IC for 1.9GHz Digital Mobile Communication Systems”, ISSCC96, 1996, pp. 340-341, 469.
Choumei, et al., “A High Efficiency, 2V Single Supply Voltage Operation RF Front End MMIC for 1.9GHZ Personal Handy Phone Systems”, IEEE, 1998, pp. 73-76.
Schindler, et al., “A High Power 2-18 GHz T/R Switch”, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1990, pp. 119-122.
Gu, et al., “A High Power DPDT MMIC Switch for Broadband Wireless Applications”, IEEE MTT-S Digest, 2003, pp. 173-176.
Gu, et al., “A High Performance GaAs SP3T Switch for Digital Cellular Systems”, IEEE MTT-S Digest, 2001, pp. 241-244.
Numata, et al., “A High Power Handling GSM Switch IC with New Adaptive Control Voltage Generator Circuit Scheme”, IEEE Radio Frequency Integrated Circuits Symposium, 2003, pp. 233-236.
Madihian, et al., “A High Speed Resonance Type FET Transceiver Switch for Millimeter Wave Band Wireless Networks”, 26th EuMC, 1996, pp. 941-944.
Tokumitsu, et al., “A Low Voltage High Power T/R Switch MMIC Using LC Resonators”, IEEE Transactions on Microwave Theory and Techniques, 1995, pp. 997-1003.
Colinge, et al., “A Low Voltage Low Power Microwave SOI MOSFET”, IEEE International SOI Conference, 1996, pp. 128-129.
Johnson, et al., “A Model for Leakage Control by MOS Transistor Stacking”, ECE Technical Papers, 1997, pp. 1-28.
Matsumoto, et al., “A Novel High Frequency Quasi-SOI Power MOSFET for Multi-Gigahertz Application”, IEEE, 1998, pp. 945-948.
Giugni, “A Novel Multi-Port Microwave/Millimeter-Wave Switching Circuit”, Microwave Conference, 2000.
Caverly, “A Project Oriented Undergraduate CMOS Analog Microelectronic System Design Course”, IEEE, 1997, pp. 87-88.
Harjani, et al., “A Prototype Framework for Knowledge Based Analog Circuit Synthesis”, IEEE Design Automation Conference, 1987, pp. 42-49.
DeRossi, et al., “A Routing Switch Based on a Silicon-on-Insulator Mode Mixer”, IEEE Photonics Technology Letters, 1999, pp. 194-196.
Caverly, et al., “A Silicon CMOS Monolithic RF and Microwave Switching Element”, 27th European Microwave Conference, 1997, pp. 1046-1051.
Valeri, et al., “A Silicon-on-Insulator Circuit for High Temperature, High-Voltage Applications”, IEEE, 1991, pp. 60-61.
Couch, “Digital and Analog Communication Systems”, 2001, Prentice-Hall.
Couch, “Modern Communication Systems”, Prentice-Hall, 1995.
Freeman, “Radio System Design for Telecommunications”, Wiley, 1997.
Gibson, “The Communications Handbook”, CRC Press, 1997.
Itoh, “RF Technologies for Low Power Wireless Communications”, Wiley, 2001.
F. Hameau and O. Rozeau, “Radio-Frequency Circuits Integration Using CMOS SOI 0.25um Technology”, 2002 RF IC Design Workshop Europe, Mar. 19-22, 2002, Grenoble, France.
O. Rozeau et al., “SOI Technologies Overview for Low-Power Low-Voltage Radio-Frequency Applications,” Analog Integrated Circuits and Signal Processing, 25, pp. 93-114, Boston, MA, Kluwer Academic Publishers, Nov. 2000.
C. Tinella et al., “A High-Performance CMOS-SOI Antenna Switch for the 2.55-GHz Band,” IEEE Journal of Solid-State Circuits, vol. 38, No. 7, Jul. 2003.
H. Lee et al., “Analysis of body bias effect with PD-SOI for analog and RF applications,” Solid State Electron., vol. 46, pp. 1169-1176, 2002.
J.-H. Lee, et al., “Effect of Body Structure on Analog Performance of SOI NMOSFETs,” Proceedings, 1998 IEEE International SOI Conference, Oct. 5-8, 1998, pp. 61-62.
C. F. Edwards, et al., The Effect of Body Contact Series Resistance on SOI CMOS Amplifier Stages, IEEE Transactions on Electron Devices, vol. 44, No. 12, Dec. 1997 pp. 2290-2294.
S. Maeda, et al., Substrate-bias Effect and Source-drain Breakdown Characteristics in Body-tied Short-channel SOI MOSFET's, IEEE Transactions on Electron Devices, vol. 46, No. 1, Jan. 1999 pp. 151-158.
F. Assaderaghi, et al., “Dynamic Threshold-voltage MOSFET (DTMOS) for Ultra-low Voltage VLSI,” IEEE Transactions on Electron Devices, vol. 44, No. 3, Mar. 1997, pp. 414-422.
G. O. Workman and J. G. Fossum, “A Comparative Analysis of the Dynamic Behavior of BTG/SOI MOSFETs and Circuits with Distributed Body Resistance,” IEEE Transactions on Electron Devices, vol. 45, No. 10, Oct. 1998 pp. 2138-2145.
T.-S. Chao, et al., “High-voltage and High-temperature Applications of DTMOS with Reverse Schottky Barrier on Substrate Contacts,” IEEE Electron Device Letters, vol. 25, No. 2, Feb. 2004, pp. 86-88.
Wei, et al., “Measurement of Transient Effects in SOI DRAM/SRAM Access Transistors”, IEEE Electron Device Letters, vol. 17, No. 5, May 1996.
Kuang, et al., “SRAM Bitline Circuits on PD SOI: Advantages and Concerns”, IEEE Journal of Solid-State Circuits, vol. 32, No. 6, Jun. 1997.
Sleight, et al., “Transient Measurements of SOI Body Contact Effectiveness”, IEEE Electron Device Letters, vol. 19, No. 12, Dec. 1998.
Chung, et al., “SOI MOSFET Structure with a Junction-Type Body Contact for Suppression of Pass Gate Leakage”, IEEE Transactions on Electron Devices, vol. 48, No. 7, Jul. 2001.
Lee, et al., “Effects of Gate Structures on the RF Performance in PD SOI MOSFETs”, IEEE Microwave and Wireless Components Letters, vol. 15, No. 4, Apr. 2005.
Hirano, et al., “Impact of Actively Body-bias Controlled (ABC) SOI SRAM by using Direct Body Contact Technology for Low-Voltage Application” IEEE, 2003, pp. 2.4.1-2.4.4.
Lee, et al., “Harmonic Distortion Due to Narrow Width Effects in Deep sub-micron SOI-CMOS Device for analog-RF Applications”, 2002 IEEE International SOI Conference, Oct. 2002.
Orndorff, et al., “CMOS/SOS/LSI Switching Regulator Control Device”, ISSCC 78, Feb. 17, 1978, IEEE International Solid-State Circuits Conference, pp. 234-235 and 282.
Kuo, et al., “Low-Voltage SOI CMOS VLSI Devices and Circuits”, 2001, Wiley Interscience, New York, XP001090589, pp. 57-60 and 349-354.
Tat, Binh C., International Search Report and Written Opinion received from USRO dated Jul. 3, 2008 for application No. PCT/US06/36240, 10 pgs.
Tat, Binh C., Office Action received from USPTO dated Sep. 15, 2008 for U.S. Appl. No. 11/520,912, 18 pgs.
Shingleton, Michael B., Office Action dated Oct. 7, 2008 received from the USPTO for U.S. Appl. No. 11/881,816, 4 pgs.
Hoffmann, Niels, Communication from the EPO dated Feb. 4, 2009 for appln No. 06786943.8, 7 pgs.
Stuber, Michael, et al., photocopy of an Amendment dated Mar. 16, 2009 filed in the USPTO for U.S. Appl. No. 11/520,912, 21 pages.
Shingleton, Michael B., Communication received from USPTO dated Apr. 28, 2009 for U.S. Appl. No. 11/881,816, 3 pgs.
Tat, Binh C., Office Action received from USPTO dated Jul. 8, 2009 for U.S. Appl. No. 11/520,912, 6 pgs.
Dribinsky, et al., Response filed in USPTO dated Aug. 28, 2009 for U.S. Appl. No. 11/881,816, 5 pgs.
Translation of an Office Action dated Jul. 31, 2009 for Chinese appln. No. 200680025128.7, 3 pages.
Stuber, Michael, et al., Response that was filed in the UPSTO for U.S. Appl. No. 11/520,912, dated Sep. 8, 2009, 3 pgs.
Tat, Binh C., Office Action received from the USPTO dated Dec. 10, 2009 for U.S. Appl. No. 11/520,912, 19 pages.
Shingleton, Michael B., Office Action received from the USPTO dated Jan. 19, 2010 for U.S. Appl. No. 11/881,816, 16 pgs.
Brindle, Chris, et al., Translation of a Response filed in the Chinese Patent Office for appln No. 200680025128.7 dated Nov. 30, 2009, 3 pages.
Morena, Enrico, Supplementary European Search Report for appln. No. 06814836.0, dated Feb. 17, 2010, 8 pages.
Kuang, J.B., et al., “A Floating-Body Charge Monitoring Technique for Partially Depleted SOI Technology”, Int. J. of Electronics, vol. 91, No. 11, Nov. 11, 2004, pp. 625-637.
Stuber, et al., Amendment filed in the USPTO for U.S. Appl. No. 11/520,912, dated Jun. 10, 2010, 25 pages.
Sedra, Adel A., et al., “Microelectronic Circuits”, Fourth Edition, University of Toronto, Oxford University Press, 1982, 1987, 1991 and 1998, pp. 374-375.
Tat, Binh C., Notice of Allowance received from the USPTO for U.S. Appl. No. 11/520,912, dated Sep. 16, 2010, 13 pages.
Brindle, et al., Response filed in the EPO for application No. 06 814 836.0-1235 dated Oct. 12, 2010, 24 pages.
Nguyen, Tram Hoang, Office Action received from the USPTO dated Sep. 19, 2008 for U.S. Appl. No. 11/484,370, 7 pgs.
Brindle, et al., Response filed in the USPTO dated Jan. 20, 2009 for U.S. Appl. No. 11/484,370, 5 pgs.
Nguyen, Tram Hoang, Office Action received from the USPTO dated Apr. 23, 2009 for U.S. Appl. No. 11/484,370, 11 pgs.
Brindle, et al., Response filed in the USPTO dated Aug. 24, 2009 for U.S. Appl. No. 11/484,370, 5 pgs.
Nguyen, Tram Hoang, Office Action received from the USPTO dated Jan. 6, 2010 for U.S. Appl. No. 11/484,370, 46 pgs.
Brindle, et al., Amendment filed in the USPTO dated Jul. 6, 2010 for U.S. Appl. No. 11/484,370, 23 pgs.
Bolam, et al., “Reliability Issues for Silicon-on-Insulator”, 2000 IEEE, IBM Microelectronics Division, pp. 6.4.1-6.4.4, 4 pgs.
Hu, et al., “A Unified Gate Oxide Reliability Model”, IEEE 99CH36296, 37th Annual International Reliability Physics Symposium, San Diego, CA 1999, pp. 47-51.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Aug. 20, 2014 for related U.S. Appl. No. 14/198,315, 11 pgs.
Tat, Binh C., Notice of Allowance received from the USPTO dated Oct. 1, 2014 for related U.S. Appl. No. 13/028,144, 15 pgs.
Stuber, et al., “Method and Apparatus Improving Gate Oxide Reliability by Controlling Accumulated Charge”, patent application filed in the USPTO dated Jul. 22, 2013 for related U.S. Appl. No. 13/948,094, 132 pgs.
European Patent Office, Communication received from the EPO dated Aug. 14, 2014 for related appln. No. 02800982.7, 2 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated Oct. 14, 2014 for appln. No. 10011669.8, 30 pgs.
Tat, Binh C., Office Action received from the USPTO dated Jan. 2, 2015 for U.S. Appl. No. 13/948,094, 187 pgs.
Stuber, et al., Response/Amendment filed in the USPTO dated Oct. 23, 2014 for U.S. Appl. No. 13/948,094, 28 pgs.
Burgener, et al., Response filed in the USPTO dated Nov. 24, 2014 for U.S. Appl. No. 14/062,791, 10 pgs.
Tat, Binh C., Notice of Allowance received from the USPTO dated Dec. 5, 2014 for U.S. Appl. No. 13/028,144, 13 pgs.
Stuber, et al., Comments on Examiner's Statement of Reasons for Allowance filed in the USPTO dated Dec. 8, 2014 for U.S. Appl. No. 13/028,144, 4 pgs.
Tieu, Binh Kien, Notice of Allowance received from the USPTO dated Jan. 23, 2015 for U.S. Appl. No. 14/062,791, 8 pgs.
Brindle, et al., Notice of Allowance received from the USPTO dated Feb. 3, 2015 for U.S. Appl. No. 14/198,315, 10 pgs.
Stuber, et al., Response/Amendment filed in the USPTO dated Mar. 2, 2015 for U.S. Appl. No. 13/948,094, 11 pgs.
Tat, Binh C., Office Action received from the USPTO dated Mar. 27, 2015 for U.S. Appl. No. 13/948,094, 23 pgs.
Shingleton, Michael, Office Action received from the USPTO dated Apr. 10, 2015 for U.S. Appl. No. 14/257,808, 8 pgs.
Tieu, Binh Kien, Notice of Allowance received from the USPTO dated May 14, 2015 for U.S. Appl. No. 14/062,791, 211 pgs.
Nguyen, Niki, Office Action received from the USPTO dated Oct. 2, 2013 for U.S. Appl. No. 13/850,251, 22 pgs.
Nguyen, Niki, Office Action received from the USPTO dated Apr. 2, 2014 for U.S. Appl. No. 13/850,251, 9 pgs.
Nguyen, Niki, Final Office Action received from the USPTO dated Jan. 22, 2015 for U.S. Appl. No. 13/850,251, 245 pgs.
Nguyen, Niki, Notice of Allowance received from the USPTO dated Apr. 22, 2015 for U.S. Appl. No. 13/850,251, 22 pgs.
Brindle, et al., Comments on Examiner's Statement of Reasons for Allowance filed in the USPTO dated Jul. 22, 2015 for U.S. Appl. No. 13/850,251, 3 pgs.
Brindle, et al., Preliminary Amendment filed in the USPTO dated Jul. 19, 2013 for U.S. Appl. No. 13/850,251, 21 pgs.
Brindle, et al., Amendment filed in the USPTO dated Dec. 26, 2013 for U.S. Appl. No. 13/850,251, 22 pgs.
Brindle, et al., Amendment filed in the USPTO dated Oct. 2, 2014 for U.S. Appl. No. 13/850,251, 13 pgs.
Brindle, et al., Amendment filed in the USPTO dated Mar. 23, 2015 for U.S. Appl. No. 13/850,251, 14 pgs.
Stuber, et al., Response/Amendment and Terminal Disclaimers filed in the USPTO dated Jul. 27, 2015 for U.S. Appl. No. 13/948,094, 26 pgs.
Tieu, Binh Kien, Notice of Allowance received from the USPTO dated Sep. 4, 2015 for U.S. Appl. No. 14/062,791, 12 pgs.
Dribinsky, et al., Amendment filed in the USPTO dated Oct. 13, 2015 for U.S. Appl. No. 14/257,808, 19 pgs.
Tat, Binh, Final Office Action received from the USPTO dated Nov. 19, 2015 for U.S. Appl. No. 13/948,094, 34 pgs.
Unterberger, Michael, Communication under Rule 71(3) EPC dated Dec. 1, 2015 for appln. No. 10011669.8, 64 pgs.
Peregrine Semiconductor Corporation communication received from the EPO dated Dec. 3, 2015 for appln. No. 11153227.1, 2 pgs.
Peregrine Semiconductor Corporation communication received from the EPO dated Dec. 3, 2015 for appln. No. 11153247.9, 2 pgs.
Peregrine Semiconductor Corporation communication received from the EPO dated Dec. 3, 2015 for appln. No. 11153241.2, 3 pgs.
Peregrine Semiconductor Corporation communication received from the EPO dated Dec. 4, 2015 for appln. No. 11153281.8, 3 pgs.
Shingleton, Michael B., Notice of Allowance received from the USPTO dated Dec. 10, 2015 for U.S. Appl. No. 14/257,808, 176 pgs.
Itoh, Tadashige, et al., English translation of Office Action received from the JPO dated Dec. 1, 2015 for appln. No. 2013-535054, 3 pgs.
Nguyen, Niki Hoang, Office Action received from the USPTO dated Mar. 2, 2016 for U.S. Appl. No. 14/804,198, 5 pgs.
Brindle, et al., Response filed in the USPTO dated Jun. 2, 2016 for U.S. Appl. No. 14/804,198, 9 pgs.
Peregrine Semiconductor Corporation, English translation of Response filed in the JPO dated Mar. 31, 2016 for appln. No. 2013-535054, 7 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated Mar. 30, 2016 for appln. No. 11153227.1, 13 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated Mar. 30, 2016 for appln. No. 11153247.9, 13 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated Mar. 30, 2016 for appln. No. 11153241.2, 15 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated Mar. 30, 2016 for appln. No. 11153281.8, 13 pgs.
Peregrine Semiconductor Corporation, Reply to Summons to Attend Oral Proceedings filed in the EPO dated Apr. 15, 2016 for appln. No. 0678943.8, 26 pgs.
Hoffmann, Niels, Communication pursuant to Article 94(3) EPC received from the EPO dated May 13, 2016 for appln. No. 11153313.9, 4 pgs.
Nguyen, Niki Hoang, Office Action received from the USPTO dated Jun. 1, 2016 for U.S. Appl. No. 14/845,154, 6 pgs.
Nguyen, Tram Hoang, Office Action received from the USPTO dated Apr. 11, 2012 for U.S. Appl. No. 13/412,529, 6 pgs.
Brindle, et al., Amendment filed in the USPTO dated Oct. 11, 2012 for U.S. Appl. No. 13/412,529, 15 pgs.
Brindle, et al., Amendment and Terminal Disclaimers filed in the USPTO dated Dec. 19, 2012 for U.S. Appl. No. 13/412,529, 17 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Jan. 17, 2013 for U.S. Appl. No. 13/412,529, 13 pgs.
Nguyen, Niki Hoang, Notice of Allowance received from the USPTO dated Feb. 8, 2013 for U.S. Appl. No. 13/412,529, 19 pgs.
Brindle, et al., Comments on Examiner's Statement of Reasons for Allowance filed in the USPTO dated Feb. 8, 2013 for U.S. Appl. No. 13/412,529, 4 pgs.
Peregrine Semiconductor Corporation, Response filed in the EPO dated May 16, 2011 for related appln No. 11153281.8, 7 pgs.
Hiramoto, Toshiro, et al., “Low Power and Low Voltage MOSFETs with Variable Threshold Voltage Controlled by Back-Bias”, IEICE Trans. Electron, vol. E83-C, No. 2, Feb. 2000, pp. 161-169.
Su, Pin, et al., “On the Body-Source Built-In Potential Lowering of SOI MOSFETs”, IEEE Electron Device Letters, vol. 24, No. 2, Feb. 2003, pp. 90-92.
Yang, Min, “Sub-100nm Vertical MOSFET's with Si1-x-y GexCy Source/Drains”, a dissertation presented to the faculty of Princeton University, Jun. 2000, 272 pgs.
Ytterdal, T., et al., “MOSFET Device Physics and Operation”, Device Modeling for Analog and RF CMOS Circuit Design, 2003 John Wiley & Sons, Ltd., 46 pgs.
Fuse, et al., “A 0.5V 200MHz 1-Stage 32b ALU Using a Body Bias Controlled SOI Pass-Gate Logic”, IEEE Int'l Solid-State Circuits Conference, Feb. 1997.
Ueda, et al., “A Cad Compatible SOI/CMOS Gate Array Having Body Fixed Partially Depleted Transistors”, IEEE Int'l Solid-State Circuits Conference, Feb. 8, 1997, pp. 288-289.
Lee, et al., “Analysis of Body Bias Effect with PD-SOI or Analog and RF Applications”, Solid State Electron, vol. 46, 2002, pp. 1169-1176.
Aquilani, Communication and supplementary European Search Report dated Nov. 2009 relating to appln. No. 05763216.
Unterberger, M., Summons to attend oral proceedings pursuant to Rule 115(1) EPC received from EPO dated Oct. 17, 2013 for related appln. No. 02800982.7, 15 pgs.
Kelly, Proposed Amendment After Final from the USPTO dated Jun. 2009 relating to U.S. Appl. No. 11/351,342.
Hirano, et al., “Impact of Actively Body-Bias Controlled (ABC) SOI SRAM by Using Direct Body Contact Technology for Low-Voltage Applications”, IEEE, 2003, pp. 2.4.1-2.4.4.
Brindle, et al., Response and Terminal Disclaimer filed in the USPTO dated Dec. 26, 2012 for related U.S. Appl. No. 13/277,108, 17 pgs.
Corneglio, Bemard, International Preliminary Report on Patentability received from the EPO dated Feb. 6, 2013 for related appln. No. PCT/US2011/056942, 27 pgs.
Nguyen, Niki Hoang, Office Action received from the USPTO dated Apr. 10, 2013 for related U.S. Appl. No. 13/277,108, 184 pgs.
Stuber, et al., Response/Amendment filed in the USPTO dated Jul. 15, 2013 for related U.S. Appl. No. 13/028,144, 20 pgs.
Brindle, et al., Amendment filed in the USPTO dated Jul. 18, 2013 for related U.S. Appl. No. 13/277,108, 33 pgs.
Stuber, et al., “Comments on Examiner's Statement of Reasons for Allowance” filed in the USPTO dated Sep. 27, 2013 for related U.S. Appl. No. 13/028,144, 4 pgs.
Nguyen, Niki Hoang, Final Office Action received from the USPTO dated Sep. 27, 2013 for related U.S. Appl. No. 13/277,108, 9 pgs.
Tieu, Binh Kien, Notice of Allowance received from the USPTO dated Sep. 30, 2013 for related U.S. Appl. No. 12/980,161, 8 pgs.
Shingleton, Michael, Final Office Action received from the USPTO dated Oct. 23, 2013 for related U.S. Appl. No. 11/881,816, 25 pgs.
Burgener, et al., First Preliminary Amendment filed in the USPTO dated Apr. 27, 2012 for related U.S. Appl. No. 12/980,161, 21 pgs.
Tieu, Binh Kien, Office Action received from the USPTO dated Feb. 19, 2013 for related U.S. Appl. No. 12/980,161, 97 pgs.
Related Publications (1)
Number Date Country
20230112755 A1 Apr 2023 US
Provisional Applications (1)
Number Date Country
62957705 Jan 2020 US
Continuations (1)
Number Date Country
Parent 17141706 Jan 2021 US
Child 17964524 US