The present invention relates generally to semiconductor lasers and, more particularly, to a flared semiconductor laser design that simultaneously achieves high output power with limited beam degradation in the lateral direction.
Semiconductor lasers may utilize any of a variety of different designs, the selected design typically driven by the requirements of the intended application. Unfortunately it is often difficult to find a device design that meets all of a specific application's requirements since many times one device characteristic, such as output power, may influence another device characteristic, such as beam quality. For example, ridge-waveguide (RW) lasers offer nearly diffraction limited beam quality but are only able to achieve output powers of approximately 1 watt. Conversely, broad-area lasers are able to reach high output powers, on the order of 20 watts, but suffer from poor beam quality.
One approach that has been investigated recently as a means of achieving both high output power and acceptable beam quality is the use of a master oscillator with a power amplifier (MOPA). In this type of system, the output from a single mode laser is injected into a power amplifier. These two components may be separate or combined on to a single device, the latter approach eliminating many of the alignment difficulties associated with the former approach.
To date, high power broad area lasers with a 100 μm aperture have been limited to around 10-15 watts of power with a beam quality factor, M2, of 1 in the transverse direction and an M2 of 15 (beam parameter product (BPP) of approximately 17 mm-mrad) in the lateral direction. In the recent past, tapered lasers utilizing the design shown in
Accordingly, what is needed is a means for reducing beam quality degradation at high output powers in semiconductor lasers utilizing a tapered design. The device structure of the present invention achieves these goals.
A semiconductor laser that includes a single mode (SM) semiconductor laser section coupled to a flared power amplifier is provided, the device including an optical element configured to reinforce the curved wave front of the output beam of the flared section through phase-matching. In one configuration, the optical element is comprised of a curved grating integrated into the flared section of the device, where the curvature corresponding to the curved grating matches the phase and curvature of the curved wave front of the output beam of the flared section. In an alternate configuration, the optical element is comprised of an intra-cavity optical element that is external to the SM semiconductor laser and flared sections and which is comprised of a binary optical element that is phase matched with the curved wave front of the output beam of the flared section. In yet another alternate configuration, the optical element is comprised of an intra-cavity optical element that is external to the SM semiconductor laser and flared sections and which is comprised of a cylindrically curved optical element with a curvature that matches the phase and curvature of the curved wave front of the output beam of the flared section. In those configurations using an external optical element to reinforce the wave front of the output beam of the flared section, a fast-axis collimating lens is preferably interposed between the output surface of the flared section and the external optical element. In those configurations using an external optical element to reinforce the wave front of the output beam of the flared section, the output surface of the optical element may be coated with a partially reflective broadband coating.
In one aspect of the invention, the rear facet of the SM semiconductor laser section may be coated with a high reflectivity coating (e.g., at least 90%). In another aspect, the front facet of the flared section may be coated with an anti-reflection (AR) coating and/or tilted at an angle θ away from the normal, where angle θ is greater than or equal to the critical angle θcritical which corresponds to the angle required to suppress reflections from the front facet into the flared section. In another aspect, the output coupler of the device may consist of an optical element coated with a partially reflective broadband coating; alternately, may consist of a wavelength selective surface grating; alternately, may consist of a wavelength selective volume Bragg grating. The SM semiconductor laser section may be configured as a distributed feedback (DFB) laser or a distributed Bragg reflector (DBR) laser. In another aspect, the SM semiconductor laser section may have a width of between 3 μm and 7.5 μm, and the flared section may have a length of between 2 millimeters and 10 millimeters. The active region of the flared section may be comprised of a quantum well gain media or a quantum dot gain media. A Ti-Schottky contact layer may be located outside the current-injected region of the flared region to attenuate the propagating beam and severely reduce reflection from the sides to prevent beam quality degradation.
A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.
In accordance with the invention, the beam quality of a tapered, i.e., flared, semiconductor laser is improved by providing a tailored, curved wave front into the unstable resonator. The inventor has found that with such a curved wave front in the flared section of the device, the device becomes less susceptible to thermal and gain-index coupled perturbations even at high output powers, e.g., greater than 5 watts. Accordingly, the present invention introduces phase-matching features into the system so that the wave-front curvature dominates the filaments introduced by the spatio-temporal chaos inside the resonator, thereby preventing beam quality degradation.
It should be understood that it is not necessary for the curved grating 305 to occupy the entire length of the flared power amplifier section 303. This configuration is illustrated in
In order to suppress facet feedback from surface 307, preferably front facet 307 is coated with an AR coating. Alternately, or in combination with an AR coating as preferred, the front facet of the flared section may be tilted in the epitaxial growth direction. In this embodiment, the laser structure is grown on a substrate that is oriented at an angle away from the principle growth axis so that the cleaved facets are tilted with respect to the wave propagation direction. By tilting the front facet, any residual reflections, R, are deflected away from the facet and away from the waveguide as shown in
In another embodiment, an intra-cavity, external phase-matching optical element is used to maintain a smooth wave front and achieve improved beam quality.
Preferably and as shown, in devices 600 and 700 a fast-axis collimating lens 603 is interposed between the output surface 605 and the phase matching optical element. Surface 605 is preferably AR coated to reduce facet feedback. Alternately, and as described above, surface 605 may be tilted, or tilted and AR coated, with respect to the wave propagation direction.
The output coupler 607 can be in the form of a partially reflecting broadband coating applied to the phase matching optical element, e.g., element 601 or 701, or applied to a separate optical element. Output coupler 607 may also be comprised of a wavelength-selective partially reflecting element such as a surface grating or a volume Bragg grating (VBG). If a wavelength-selective element is used as the output coupler, preferably the center wavelength is chosen to be resonant or blue-shifted relative to the peak of the gain spectrum at the operating condition, thus achieving high differential gain and low alpha-parameter in the amplifier section. This can be achieved by blue-shifting the RW section by impurity-free vacancy disordering or impurity-induced vacancy disordering or through the use of a tuned distributed feedback (DFB) or distributed Bragg reflector (DBR).
In the embodiments described above, the rear facet 309 of the RW oscillator is coated with a high-reflectivity coating, typically with a reflectivity of at least 90%. Alternately, the rear facet 309 of these structures can be coated with an AR coating and a DBR can be used as the rear mirror for the cavity.
In accordance with the invention, the single mode semiconductor laser coupled to the flared section of the device may be configured in a variety of ways. For example, the single mode laser may be an RW oscillator configured as a distributed feedback (DFB) laser or a distributed Bragg reflector (DBR) laser. The design of RW section strongly determines the properties of the whole device. As such, preferably the RW oscillator only supports the fundamental guided mode while suppressing higher order modes generated in the tapered section. Preferably RW is fabricated by dry etching in order to minimize scattering losses. The etched surface is covered with an insulator with a contact opening to the p++ layer in order to inject current into the RW. Depending on the vertical structure, the width of the RWG will vary between 3 μm and 7.5 μm. The length of RW section is selected to effectively suppress the higher order modes. Other configurations for the single mode laser include, but are not limited to, buried RW lasers, antiresonant reflective optical waveguide (ARROW) lasers and simplified-ARROW (S-ARROW) lasers.
In a typical configuration of the invention, the length of the flared power amplifier is on the order of 2 to 10 millimeters. In general the length of this region is selected to achieve the desired output power. Longer devices offer the advantage of a wider output aperture with a lower facet power density as well as lower thermal resistance.
As previously noted, and in accordance with the invention, separate electrical contacts are used for the RW and flared sections of the device, thereby allowing separate control of the two sections. In a preferred embodiment, the current injected into the RW section 801 is in the range of 0.1 A to 3 A while a higher current, in the range of 3 A to 50 A, is used in the flared section 803. In order to avoid using two separate current supplies, a single current source 805 and a current divider circuit 807 such as that shown in
It will be appreciated that the flared semiconductor laser used with the present invention may be configured in various ways, as described above, and may be based on a variety of different material systems and utilize various compositions and layer thicknesses, depending on the intended emission wavelength. In general, however, all of the embodiments utilize a flared semiconductor laser in which the active region consists of a quantum well or quantum dot gain media with single or multiple quantum wells or quantum dot layers. An extremely low optical confinement factor in the gain media layer is preferred in order to achieve a very low modal gain epitaxial structure.
It should be understood that the accompanying figures are only meant to illustrate, not limit, the scope of the invention and should not be considered to be to scale.
Systems and methods have been described in general terms as an aid to understanding details of the invention. In some instances, well-known structures, materials, and/or operations have not been specifically shown or described in detail to avoid obscuring aspects of the invention. In other instances, specific details have been given in order to provide a thorough understanding of the invention. One skilled in the relevant art will recognize that the invention may be embodied in other specific forms, for example to adapt to a particular system or apparatus or situation or material or component, without departing from the spirit or essential characteristics thereof. Therefore the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/545,635, filed 11 Oct. 2011, the disclosure of which is incorporated herein by reference for any and all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4856017 | Ungar | Aug 1989 | A |
4977567 | Hanke | Dec 1990 | A |
5003550 | Welch et al. | Mar 1991 | A |
5228049 | Paoli | Jul 1993 | A |
5499261 | Welch et al. | Mar 1996 | A |
5539571 | Welch et al. | Jul 1996 | A |
5602864 | Welch et al. | Feb 1997 | A |
5794839 | Kimura et al. | Aug 1998 | A |
6130903 | Moloney et al. | Oct 2000 | A |
6148013 | Geels et al. | Nov 2000 | A |
6174748 | Jeon et al. | Jan 2001 | B1 |
6301037 | Fischer et al. | Oct 2001 | B1 |
6525872 | Ziari et al. | Feb 2003 | B1 |
6798815 | Schmidt et al. | Sep 2004 | B2 |
6810054 | Sousa et al. | Oct 2004 | B2 |
7245803 | Gunn et al. | Jul 2007 | B2 |
20020105718 | Bacher et al. | Aug 2002 | A1 |
20020181525 | Kasukawa | Dec 2002 | A1 |
20030219054 | Capasso et al. | Nov 2003 | A1 |
20050013337 | Jung et al. | Jan 2005 | A1 |
20060023173 | Mooradian et al. | Feb 2006 | A1 |
20080112450 | Krakowski | May 2008 | A1 |
20080212632 | Eberhard et al. | Sep 2008 | A1 |
Entry |
---|
Larsson et al., “Grating Coupled Surface Emitters: Integrated Lasers, Amplifiers, and Beam Shaping Outcouplers,” Jan. 1999, SPIE Conference on Testing, Packaging, and Reliability of Semiconductor Lasers IV, vol. 3626, 190-201. |
H. Wenzel et al., High-Brightness Diode Lasers, C.R. Physique, Mar. 2003, pp. 649-661, vol. 4, Elsevier. |
B. Sumpf et al., High-Brightness Quantum Well Tapered Lasers, IEEE J. of Selected Topics in Quantum Electronics, May/Jun. 2009, pp. 1009-1020, vol. 15, No. 3, IEEE. |
J.N. Walpole, Semiconductor Amplifiers and Lasers with Tapered Gain Regions, Optical and Quantum Electronics, 1996, pp. 623-645, vol. 28, Chapman & Hall. |
B. Sumpf et al., 1060 nm DBR Tapered Lasers with 12 W Output Power and a Nearly Diffraction Limited Beam Quality, Proc. of SPIE, 2009, pp. 72301E1-72301E-8, vol. 7230, SPIE. |
H. Odriozola et al., Design of 1060 nm Tapered Lasers with Separate Contacts, Opt. Quant. Electron., 2008, pp. 1123-1127, vol. 40, Springer. |
Number | Date | Country | |
---|---|---|---|
20130089115 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
61545635 | Oct 2011 | US |