Many measuring techniques are known for measuring distance, temperature, and other parameters, but such known techniques generally increase in expense according to the precision desired, and also generally have an upper limit as to the precision practically attainable by the technique. For example, to measure distances of meters or kilometers with a precision of microns or fractions of microns is extremely expensive, if attainable at all. The same limitations apply with respect to measuring temperature and other conditions.
An object of the present invention is to provide a method and apparatus for measuring distances, temperatures, and a number of other parameters, in a manner which can be implemented with relatively low-cost equipment and with a very high degree of precision.
According to one aspect of the present invention, there is provided a method of measuring a predetermined parameter having a known relation to the transit time of movement of an energy wave through a medium, comprising: transmitting from a first location in the medium a cyclically-repeating energy wave; receiving the cyclically-repeating energy wave at a second location in the medium; detecting a predetermined fiducial point in the cyclically-repeating energy wave received at the second location; continuously changing the frequency of transmission of the cyclically-repeating energy wave from the first location to the second location in accordance with the detected fiducial point of each cyclically-repeating energy wave received at the second location such that the number of waves received at the second location from the first location is a whole integer; and utilizing the change in frequency to produce a measurement of the predetermined parameter.
As will be described more particularly below, the measurement may be the absolute value of the parameter, or merely the changes in the parameter during the measurement period. The description below sets forth a number of examples of parameters that can be measured with a high degree of precision, including distance, temperature, pressure, gaseous flow velocity, gaseous composition, etc., but it will be appreciated that the invention could be used in many other applications for measuring almost any parameter having a known relation to the transmit time of movement of an energy wave through a medium, or for controlling a system according to the measured parameter. A number of applications of the invention, both in the medical field as well as in the industrial field, are described below for purposes of example.
In most of the applications described below, the cyclically-repeating energy wave transmitted by the transmitter is an acoustical (compressional) wave. However, the invention could also be implemented with electromagnetic waves, particularly in applications requiring the measurement of relatively large distances with a high degree of precision.
Further features and advantages of the invention will be apparent from the description below.
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
The system illustrated in
As shown in
The output of comparator 6 is fed to an amplifier or monostable oscillator 7 which is triggered to produce an output wave or signal for each fiducial point (zero cross-over point) in the signals received by the receiver 3. The signals from amplifier 7 are fed via an OR-gate 8 to the transmitter 2. OR-gate 8 also receives the output from oscillator 4 when switch 5 is closed.
Switch 5 is opened when the transmitter 2 receives a continuous stream of signals from amplifier 7 via OR-gate 8. When switch 5 is opened, transmitter 2 will thus transmit at a frequency determined by the fiducial points in the reflected signals received by receiver 3 and detected by comparator 6 to control amplifier 7. Accordingly the frequency of transmission by transmitter 2 will be such that the number of waves of the cyclically-repeating energy wave transmitted from location A and received in location B will be a whole integer.
It will thus be seen that while the frequency of the transmitter 2 will change with a change in the distance to the target point T, the number of wavelengths (λ) in the signal transmitted from the transmitter 2 to the target T, and reflected back to the receiver 3, will remain a whole integer. This is because the transmitter 2 transmissions are controlled by the fiducial points (zero cross-over points) of the signals received by receiver 3. This change in frequency by the transmitter 2, while maintaining the number of waves between the transmitter and receiver to be a whole integer, enables a precise determination to be made of the distance to the target point T. Thus, as known:
Where: F and C are the frequency and velocity, respectively, of the cyclically-repeating energy wave in the respective medium; and λL is the wavelength. For example, if the energy wave is an acoustical wave, and the medium is air under normal temperatures and pressures, C=340,000 mm/sec. Accordingly, if F=34 KHz, then λ-10 mm.
Assuming the initial transmit path ATB (
Now assuming that the transit distance ATB is increased by 1 mm, i.e., from 100 mm to 101 mm. While this transit distance is now increased from 100 mm to 101 mm, the transit time ATB will also be increased. However, since the frequency of transmitter 2 is controlled by the fiducial point of the signals received by receiver 3, the transmitter 2 will still produce the same number of
Assuming that the initial transit distance ATB is 136 mm, and that the initial frequency (of source 4) is 500 KHz, the initial wavelength (λ) will be 340,000/500,000, or 0.68 mm; thus initially there will be 136/0.68, or 200 wavelengths in the transit path ATB.
If this transit distance ATB is increased by 1 micron, to 136.001 mm, the number of wavelengths will remain the same (200) as described above. Therefore the wavelength will be increased from 0.68 mm to 0.680005 mm (136.001/200); and the frequency of transmission by transmitter 2 will be decreased from 500 KHz to 499.9963236 KHz.
Assuming that clock 12 is a 500 MHz clock, the value outputted by counter 11 before the distance change will be 500·106/500·103, or 1000.
After the distance change, the frequency of the transmitter 2 will be changed from 500 KHz to 499.996 KHz (340,000/0.680005).
The value of the counter for one clock period of 550 KHz will therefore be 1,000.0073 (500 MHz/499.996 KHz), or 0.0073 Hz difference from the initial frequency. The frequency difference of 0.0073 Hz is practically not measurable.
However, if the summation factor “N” of counter 10 is selected to be 1000, this difference of 0.0073 is multiplied by 1000, so that the difference now becomes 7.3 Hz, which is measurable as a practical matter. If “N” of counter 10 is selected to be 10,000, then this value of 0.0073 is multiplied by 10,000, so that the frequency difference now becomes 73 Hz, which is even more precisely measurable. waves during this increased transit time, and therefore the waves will be slightly increased in length. Thus, the increased wavelength will be 101/10=10.1 mm. The frequency of transmitter 2 will therefore be changed from 34 KHz to 340,000/10.1=33,663 KHz.
The frequency will thus be decreased by 337 Hz when the distance is increased by 1 mm. Such a frequency change can be easily measured. However, if the distance is changed by 0.001 mm (rather than 1 mm), the frequency change will be 0.337 Hz, which would be extremely difficult, if possible at all, to measure in a practical manner. However, such a small frequency change can be easily measured in the system illustrated in
Thus, the zero cross-over points detected in comparator 6, which are used for controlling the frequency of the transmitter 2, are also fed to a counter 10 to be counted “N” times, and the output is fed to another counter 11 controlled by a clock 12. Counter 11 produces an output to a microprocessor 13 which performs the computations according to the parameter to be detected or measured, and a display 14 which displays the output of the microprocessor.
The following example will illustrate the high precision capability of the described system.
The summations factor “N” can be determined according to the number of readouts/second required for any particular application. For example, if 100 readouts/second are required, (i.e., a readout every 10 ms), “N” of counter 10 could be selected to be 5000, whereupon the 0.0073 Hz frequency difference per run would be multiplied by 5000, so as to be 36.5 Hz. It will thus be seen that the precision of the measurement can be preset, almost without limitation, by the selection of the appropriate clock rate for clock 12, and summation factor “N” for counter 10.
The output from counter 11 is fed to a microprocessor 13 which computes the desired parameter and displays it in display 14. In the above-described system of
It will thus be seen that the system illustrated in
Many other applications of the invention can be made. Thus, because of the capability of measuring temperature in an extremely precise manner, the invention could be incorporated in a finger probe to measure cardiac output by first subjecting the finger to extreme cold, (e.g., by an ice pack), and then measuring the rate at which the body restores the finger to its normal body temperature which rate provides an indication of the body cardiac output. Another possible application is in an instrument for producing extremely-precise thermal scanning of industrial objects (e.g., vehicle engines), living beings, or body parts, (e.g., in a mammography for detecting cancer). Other medical applications include pregnant woman monitoring, heart, and respiration monitoring, etc. Further possible applications include measuring angular positions of a movable body, such as by measuring the angle of the liquid level with respect to a reference point on a container for the liquid. Other possible applications include geophones for detecting ground vibrations.
It will also be appreciated that the cyclically-repeating energy wave could be an electromagnetic wave, rather than an acoustical wave. Such applications would be particularly useful for measuring with high precision, large distances or movements of bodies at large distance from the measuring site.
Thus, in the system of
The modulated carrier wave, after being reflected by the object 73, is received by a receiver 74 and demodulated by a demodulator 75 for separating the modulating wave from the received wave. In the illustrated system, there is further included a delay device 76, such as an acoustic delay line, for producing a phase shift of a whole-integer multiple in the separated modulating signal, before that signal is processed by the processor 77, in the manner described above, for detecting fiducial point of the received modulating signal and utilizing it for changing the frequency of the modulator 71 such that the number of modulating waves in the transmitted and received carrier wave is a whole integer.
Thus, the system illustrated in
where fm—modulation frequency,
The provision of the acoustic delay line 76, which is optional, thus adds an artificial distance to the measurement, e.g., when measuring relatively short distances.
It will be appreciated that the carrier wave generator 70, and also the modulator 71, could operate at the radio frequency, infrared, or optical bands of the electromagnetic spectrum. For example, the generator 70 could be in the GHz range, and the modulator 71 could be in the MHz range. The delay line 76 could be an acoustic delay line. In this example, if the integer number (p) is equal to 5, the length of the delay line (L) would be 5 mm, and the sound velocity in the delay line (vS) would be 5,000 m-sec.
Many other variations, modifications and applications of the invention will be apparent.
Number | Date | Country | Kind |
---|---|---|---|
129651 | Apr 1999 | IL | national |
The present application is a continuation of U.S. application Ser. No. 09/083,430 filed Oct. 24, 2001 now U.S. Pat. No. 6,621,278 which is a continuation-in-part of PCT/IL00/00241 having International Filing Dated Apr. 27, 2000 which claims priority from Israel Patent Application No. 129651 filed Apr. 28, 1999.
Number | Name | Date | Kind |
---|---|---|---|
4315260 | Kupfer | Feb 1982 | A |
Number | Date | Country | |
---|---|---|---|
20040104733 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09983430 | Oct 2001 | US |
Child | 10615952 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCTIL00/00241 | Apr 2000 | US |
Child | 09983430 | US |