This invention relates to a positioning apparatus and in particular to a positioning apparatus in which a driving element is rotatably connected to a driven element by a cable for positioning the driven element. For various apparatus such as parabolic reflectors for satellite antennas there is a need to position such apparatus very precisely. Mechanical positioning systems have been provided which utilize a driving element which is connected to an electric motor through a gearing system or through a mechanical linkage such as a belt. A driven element which is directly connected to the apparatus which needs to be precisely positioned, such as a satellite antenna, is also provided. Normally, the driving element is connected to the driven element by cables. Such cable systems are described in U.S. Pat. Nos. 5,105,672 and 4,351,197, both issued to Carson. While the apparatii disclosed in the Carson patents provide a certain degree of precise positioning, there is a need for more stiffness and capacity for many applications, in particular for satellite antenna applications.
In accordance with one form of this invention, there is provided a positioning apparatus having a driven element and a driving element. The driven element includes a drum having an outer surface. The drum is adapted to rotate. The driving element also has an outer surface. At least one cable connects the driving element to the drum. The outer surface of at least one of the driving element or the driven element has a plurality of grooves therein. The grooves have two opposing side walls, a bottom, and an open top. The side walls slope inwardly from the open top to the bottom. A portion of the cable is received in the grooves and is wedged between the side walls.
In accordance with another form of this invention, there is provided a rotary positioning apparatus including a driven element and a driving element each of which having a curved outer surface. At least one cable connects the driven element to the driving element. A portion of the cable is wound a plurality of times about a portion of the outer surfaces of the driving element and the driven element for applying rotational forces from the driving element to the driven element. The outer surface of at least one of the driving element or the driven element has a plurality of radial grooves therein. The radial grooves are somewhat V-shaped. Portions of the cable are wedged in portions of the grooves thereby substantially reducing slippage of the cable.
In the preferred embodiment, the outer surfaces of both the driving element and the driven element have the grooves. Also, in the preferred embodiment the wedging of the cable in the grooves causes an increase in the contact forces between the cable and the driving and/or driven element(s) thus increasing friction and reducing the likelihood that the cable will slip. Portions of the cable may become deformed or, flattened where the cable contacts the side walls of the grooves, due to this increased pressure.
Referring now more particularly to
Portions of cable 22 are received in V-shaped grooves in the outer surface 26 of drum 24 and the outer surface 28 of driving element 20. As used herein, the term “V-shaped” means both in the shape of a V having a somewhat of a point at its apex, as well as a V shape with a bottom wall rather than a point at its apex which, in the preferred embodiment of this invention, is somewhat rounded to form a concave shape which is illustrated in
Driving element 20 may be connected to a drive shaft 30 as illustrated in
Referring now more particularly to
In the embodiment of
Referring now more particularly to
Referring now more particularly to
Referring now more particularly to
The wedging of cable 22 within groove 34 also increases the friction between the walls 48 and 50 of groove 34 and cable 22. Thus, the contact forces are increased thereby enhancing the traction capacity of the interface between the cable and the groove. This in turn will improve the stiffness of the system by substantially eliminating the slipping between the cable and the driven element and, in addition, substantially reduces stretching of the cable. The angle θ between the walls 48 and 50 of the groove 34 should be such that the cable 22 will be wedged between the walls 48 and 50, and the cable does not contact bottom wall 52. Normal forces are increased as the cable wedges into each groove.
Stiffness of the system referred to is measured in general by the amount of load the cable can carry before it begins to slip. Initial tests show an increasing stiffness at higher torques in the V groove system described above over a non-grooved or flattened system such as the one described in U.S. Pat. No. 5,105,672 or a wide grooved system such as the one described in U.S. Pat. No. 4,351,197. Also, because of the improved friction between the cable and V grooves constructed as set forth above, a fewer number of wraps or loops, particularly about the driving element, are required. By reducing the slippage of the cable, positioning of the driven element and thus the entire satellite apparatus system which is attached to the driven element such as the satellite antenna reflector, is made more precise. While the V grooves have been specifically discussed in reference to the driven element 16, preferably the identical V grooves are used in the driving element 18, and thus the detailed description of such V groove in the driving element need not be repeated.
While the invention has been described in terms of the above embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.
This is a U.S. non-provisional application relating to and claiming the benefit of U.S. Provisional Patent Application Ser. No. 61/192,405, filed Sep. 17, 2008.
Number | Date | Country | |
---|---|---|---|
61192405 | Sep 2008 | US |