Field of the Invention
The present invention relates generally to an industrial gas turbine engine for electric power generation, and more specifically to an exit diffuser for a high pressure compressor (HPC) in which spent cooling air from a stator or a rotor of the turbine is injected into the HPC diffuser.
Description of the Related Art including information disclosed under 37 CFR 1.97 and 1.98
In a gas turbine engine, such as an industrial gas turbine engine, a diffuser is used to slow the velocity of compressed air exiting a compressor, which results in the pressure of the compressed air to increase for use in the combustor of the engine.
An HPC diffuser for a gas turbine engine in which spent cooling air from an air cooled turbine component such as a rotor blade or a stator vane is discharged into the HPC diffuser in a direction substantially parallel to the discharge from the HPC and at a greater velocity in order to energize the diffuser endwall boundary layers so they can sustain higher diffusion rates and levels than what they could in the prior art
The present invention is a diffuser for a high pressure compressor (HPC) in a two spool industrial gas turbine engine in which cooling air is bled off from the low pressure compressor (LPC) and used to cool a hot part in the turbine, such as a stator vane, and where the cooling air is then reintroduced into the HPC diffuser air prior to entering the combustor. The HPC diffuser of the present invention allows for a greater rate and level of diffusion which can be used to achieve shorter length than prior art diffusers, greater diffusion in the same axial length, or a combination of reduced length and greater diffusion. Increased diffusion in the diffuser can also be used to reduce the required diffusion in the compressor which can increase its efficiency.
The HPC diffuser 22 has endwalls angled at about 8 degrees to increase total diffusion and allow for higher HPC exit Mach number and efficiency. Cooling air from a hot part of the engine (such as the turbine rotor blades) flows along the path 26 and then enters an inner turn channel 25 of the diffuser 22. Cooling air from another hot part (such as the turbine stator vanes) flows along path 27 and into an outer turn channel 24 of the diffuser 22. Flow velocities in paths 26 and 27 are kept low to minimize pressure loss. Turn channels 24 and 25 accelerate the cooling flow so that the discharge of the spent cooling air parallel to the diffuser endwalls energizes the diffuser endwall boundary layers allowing them to sustain higher diffusion rates and levels. Cooling air from the diffuser 22 then flows into the combustor 13 to be burned with a fuel and produce a hot gas stream that then flows through the turbine with a first stage stator vane 14 upstream from a first stage rotor blade 15 attached to a rotor disk 16. The spent cooling air from the rotor blade 15 or the stator vane 14 is injected at a higher velocity than the core flow from the compressor outlet has in the diffuser. A secondary compressor is used to increase the pressure of the cooling air that passes through the rotor blade 15 or the stator blade 14 prior to injecting the spent cooling air into the diffuser 22.
In the diffuser 22 of the embodiment in
This application claims the benefit to U.S. Provisional Application 62/195,509 filed on Jul. 22, 2015 and entitled HIGH PRESSURE COMPRESSOR DIFFUSER FOR AN INDUSTRIAL GAS TURBINE ENGINE.
This invention was made with Government support under contract number DE-FE0023975 awarded by Department of Energy. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62195509 | Jul 2015 | US |