The invention relates to a high-pressure connection device by way of which a high-pressure fuel pump can be connected to elements of a fuel injection system that in the flow direction of a fuel are downstream of the high-pressure fuel pump. The application furthermore relates to a method for producing such a high-pressure connection device, and to a high-pressure fuel pump which is equipped with such a high-pressure connection device.
Fuel injection systems are generally used for injecting a fuel such as, for example, diesel or gasoline into combustion chambers of internal combustion engines. The fuel in the fuel injection system is charged with a high pressure in the range from 200 bar-300 bar when gasoline is used as fuel, and in the range from 2000 bar-3000 bar when diesel is used as fuel. The charging with pressure herein is performed in a high-pressure fuel pump in which a pump piston moves in a translatory manner such that said pump piston periodically expands and reduces the volume of a pressurized chamber in which the fuel is disposed, the high pressure in the fuel being generated on account thereof. The fuel that has been charged with high pressure in this way is then directed onward to elements of the fuel injection system that are downstream of the high-pressure fuel pump. For example, the injection of fuel into the combustion chambers of the internal combustion engine is often performed by way of a pressure accumulator, the so-called rail, which is why the fuel from the high-pressure fuel pump by way of corresponding valves is initially introduced into the rail.
Accordingly, in order for the elements of the fuel injection system that in the flow direction of the fuel are downstream of the high-pressure fuel pump to be able to be supplied with the pressurized fuel, a connection installation by way of which the high-pressure fuel pump can be connected to these downstream elements is provided.
A connection of the high-pressure fuel pump and of the connection installation is highly stressed in mechanical terms due to the high pressure that prevails in the fuel and due to the forces that are generated on account thereof. The peaks in pulsating tensile stress that arise on account thereof in the case of an unfavorable construction and dimensional layout of the connection or of the connection installation, respectively, can inter alia lead to a failure of the dynamically stressed connection between the connection installation and the high-pressure fuel pump. As a result thereof, this can lead to a leakage of fuel and to safety issues that are associated therewith, and is to be advantageously avoided.
It is therefore an object of the invention to propose a high-pressure connection device which can oppose the acting forces with a high resistive force.
This object is achieved by a high-pressure connection device having the features of claim 1.
A high-pressure fuel pump which has the high-pressure connection device, and a method for producing such a high-pressure connection device are the subject matter of the co-independent claims.
Advantageous design embodiments of the invention are the subject matter of the dependent claims.
A high-pressure connection device for connecting a high-pressure fuel pump to elements of a fuel injection system that in the flow direction of a fuel are downstream of the high-pressure fuel pump has an outlet installation for discharging fuel that is charged with pressure in the high-pressure fuel pump from the high-pressure fuel pump and a connection installation for connecting the outlet installation to the elements of the fuel injection system that in the flow direction of the fuel are downstream. The high-pressure connection device furthermore has a weld seam for connecting the outlet installation and the connection installation in a high-pressure-tight manner, and a pretensioning installation for exerting a pretensioning force in the direction of the outlet installation on the weld seam.
The outlet installation is preferably formed by a housing of the high-pressure fuel pump and has an outlet bore which connects the environment of the high-pressure fuel pump to a pressurized chamber of the high-pressure fuel pump.
The fuel flows from the pressurized chamber of the high-pressure fuel pump through the outlet bore into the connection installation and is from there directed onward to the downstream elements of the fuel injection system. Accordingly, the fuel flows from the outlet installation into the connection installation in a flow direction that is usually disposed so as to be parallel with a longitudinal axis of the connection installation. Accordingly, the longitudinal axis of the connection installation and the flow axis of the fuel are typically congruent.
It is accordingly provided in the high-pressure connection device that a stabilized connection is provided instead of a simple connection between the outlet installation and the connection installation in that a pretensioning force is applied to the connecting weld seam, said pretensioning force opposing forces that act on the weld seam. Herein, advantages of a pure pretensioned connection are combined with those of a pure welded connection so as to be able to oppose ever higher pressures with a force that stabilizes the connection. After all, the high-pressure fuel pump is in particular configured for charging the fuel with a high pressure between 300 bar and 800 bar (applications in the gasoline sector). Pressures of even up to 3000 bar can be achieved in the diesel sector. The high-pressure connection device in relation to such high pressures is significantly more robust than a high-pressure connection device in which only a pure screw connection or a pure welded connection has been used.
Accordingly, a combination of a welding process, for example by way of a laser, an electron beam, a capacitor discharge, or friction welding, etc., with a pretensioning installation by way of which the high-pressure connection including the weld seam is pretensioned is chosen. A welding process thus takes place initially, and the entire construction is subsequently braced. On account thereof, forces and stresses are transferred away from the weld seam to less stressed regions of the high-pressure connection and of the pretensioning installation to a surrounding housing. Moreover, the stress in the high-pressure connection device per se by way of a combination of the pretensioning force and a suitable design embodiment can also be set or limited, respectively, such that the integrity of operation in the high-pressure connection device and all other installed parts remains guaranteed even in the case of pressure requirements that are further increased.
A cost-effective welded connection can be implemented or sustained, respectively, by way of this new solution under further increased hydraulic-mechanical requirements and an increased pressure (in the range from 300 bar-800 bar in the case of gasoline, and in the range from 1500 bar-3000 bar in the case of diesel). Only the additional pretensioning installation and the necessary installation space are additionally required. The components that are known in the context of lower pressure levels can thus be further used, subject to slight modifications. Additionally, the potential for thickening the wall thickness in the high-pressure connection without causing any additional stress on the weld seam results, this benefiting increased safety in relation to shearing when tightening/fastening external pipe installations on or to the connection installation, respectively.
The upper pressure limit for the high-pressure connection device is derived from the combination of material resilience, the maximum achievable pretensioning force Fv over the life span, and the diameter of the connection installation. In particular, the maximum achievable pretensioning force Fv by virtue of thread-related losses, etc. becomes ever smaller as the diameter increases, such that an optimum should lie in the use of small diameters. Small diameters result in higher achievable pretensioning forces Fv, in combination with lower axial forces.
Advantageously, a pressure-relief valve is disposed in the outlet installation in such a manner that a valve opening of the pressure-relief valve opens into a fuel inlet volume in the connection installation, said fuel inlet volume being configured for admitting the fuel that flows out of the outlet installation into the connection installation.
A pressure-relief valve is advantageous for safeguarding those elements which are downstream of the high-pressure fuel pump. In order for the valve opening of the pressure-relief valve to be able to open into the fuel inlet volume of the connection installation, it is advantageous for sufficient installation space to be provided, this leading to the diameter of the connection installation being significantly enlarged as compared to an arrangement without such a pressure-relief valve. This larger diameter can have negative effects on the connection between the outlet installation and the connection installation, since a contact pressure is reduced by virtue of a larger contact face between the outlet installation and the connection installation.
The larger diameter has negative effects on pure pretensioned connections as used to date, as well as on pure welded connections.
In the case of a pure pretensioned connection, most often an internal biting edge is provided for sealing and a soft-metal disk is provided for equalizing tolerances. The diameter of this biting edge is now increased due to the larger diameter that is required for the installation space for the pressure-relief valve. Thus, the contact pressure between the braced parts drops by virtue of the larger face. Additionally, however, the maximum possible axial pretensioning force Fv also drops by virtue of the greater friction losses in the thread.
As the diameter increases, any potential deviation on roundness, and deviations from the orthogonality of a biting edge, respectively, additionally have a significantly greater influence since the biting edge is located so as to be significantly more remote from the center. The soft-metal disk which is intended primarily to equalize the tolerances by way of the biting edge is to be impinged upon with a sufficiently high pretensioning force Fv so as to achieve equalization of the tolerance deviation by way of plastic deformation. However, this pretensioning force Fv drops because of the aforementioned reasons and now has to be transmitted to a larger face.
A welded connection by virtue of the size of the fused zone can equalize significantly more tolerances without losing tightness. Here, above all, narrow linkage lengths of often used micro weld seams have a restricting effect in terms of the pressure level, this leading to a construction which guides stresses away from the weld seam into the connection installation and the surrounding housing. The achievable thicknesses of the connection installation thus drop, and in the case of rising pressure a point at which the material is excessively stressed is reached.
The advantages of pretensioned connections and welded connections are unified in the high-pressure connection device in order to achieve higher pressure levels in the range, for example, from 300 bar-800 bar or higher, at a comparatively large diameter of the fuel inlet volume of the connection installation by virtue of the pressure-relief valve. An additional advantage lies in that already available assembly lines having already known and very well managed machining and welding processes can continue to be used.
The pretensioning installation preferably has a pretensioning face that is directed toward the outlet installation and for applying the pretensioning to the weld seam is supported on a contact face of the connection installation. Thus, the pretensioning force can advantageously be applied to the weld seam by way of the connection installation per se.
In one advantageous design embodiment, a contact region of the pretensioning face and of the contact face in the flow direction of the fuel is disposed so as to be substantially perpendicularly above the weld seam. On account thereof, the weld seam can preferably be destressed as efficiently as possible since any lifting or rupturing of the weld seam is effectively counteracted, and the pretensioning force required therefor is reduced.
The contact face on the connection installation is preferably provided so as to be encircling such that the pretensioning force can be applied uniformly across the weld seam by way of the circumference of the connection installation.
In one further preferred design embodiment, the contact region in the flow direction of the fuel is disposed so as to be substantially perpendicular to the flow direction such that the pretensioning force can preferably oppose those forces that act by way of the flowing fuel in a precise manner.
However, in an alternative design embodiment, the contact region in relation to the flow direction can also be disposed at an angle α, in particular at an angle 30°<α<80°, in particular α=45°. This has the advantage that a connection installation having a smaller external diameter can be used. The pretensioning installation is preferably configured such that said pretensioning installation is pulled over the connection installation so as to be assembled in the respective arrangement such that the pretensioning installation has to have a minimum internal diameter. Should the connection installation in that region in which the weld seam is disposed have a small external diameter, a contact region of the contact face and the pretensioning face potentially cannot be established any more. However, by way of an angular contact region, it is furthermore possible for a pretensioning force to be exerted on the weld seam.
A recess is preferably configured on the outlet installation, wherein the pretensioning installation is configured for engaging in the recess. On account thereof, the pretensioning installation can advantageously dissipate forces into the outlet installation. The recess on the outlet installation is preferably disposed so as to be encircling, and the pretensioning installation has an encircling wall that is likewise disposed on the circumference of the pretensioning installation, said wall engaging in the recess. A particularly reliable contact between the recess and the pretensioning installation is thus guaranteed.
Particularly advantageously, the recess has an external recess thread and the pretensioning installation has an internal pretensioning installation thread for engaging in the external recess thread. On account thereof, the pretensioning force can advantageously be applied particularly uniformly and firmly on the weld seam by screw-fitting the pretensioning installation onto the recess.
The pretensioning installation is formed by a nut, for example. Alternatively, however, the pretensioning installation can also be formed by a flange-screw assembly. The configuration as a nut has the advantage that the pretensioning force can be applied uniformly onto the weld seam by way of the entire circumference of the connection installation. A flange-screw assembly has the advantage that, on account thereof, more degrees of freedom and more space can be made available than in the case of an arrangement having a nut. For example, a flange-screw assembly has at least two screws which interact with a corresponding clearance in the outlet installation.
A groove which in particular is configured so as to be substantially circular is advantageously disposed in the outlet installation. The weld seam in one preferred embodiment is disposed in the groove and is thus provided so as to be advantageously sunk into the outlet installation. However, the weld seam in an alternative design embodiment can also be disposed in the direction toward a flow axis of the fuel beside the groove so as to be perpendicular to the flow axis of the fuel, that is to say be directed toward the longitudinal axis of the connection installation. The groove when disposed beside the weld seam can advantageously dissipate forces that act on the weld seam, and thus destress the weld seam.
A protrusion region of the connection installation is preferably disposed on a first end of the connection installation that is in contact with the outlet installation, wherein the protrusion region has a welding face on which the weld seam is disposed. By way of the protrusion region, a face by way of which the force can be exerted on the weld seam by the pretensioning installation is advantageously available. Herein the contact face by way of which the connection installation contacts the pretensioning installation on the protrusion region is preferably disposed so as to be opposite the welding face on which the weld seam is located. Accordingly, the protrusion region transmits the pretensioning force from the pretensioning installation to the opposite weld seam.
In a preferred design embodiment, a connection region of the connection installation for connecting the connection installation to elements of the fuel injection system that in the flow direction of the fuel are downstream is disposed on a second end of the connection installation that is opposite the first end. The connection installation herein on the second end advantageously has an external thread by way of which elements that are downstream of the connection installation can advantageously be readily fastened to the connection installation. An external diameter of the connection installation on the first end is preferably larger than on the second end. Preferably a smallest internal diameter of the pretensioning installation is larger than the external diameter on the second end, and smaller than the external diameter on the first end, so as to be able to simply pull the pretensioning installation over the connection installation, on the one hand, and so as to be able to establish a reliable contact with the protrusion region of the connection installation, on the other hand.
A high-pressure fuel pump for charging a fuel with high pressure has a high-pressure connection device as described above.
In a method for producing a high-pressure connection device for a high-pressure fuel pump, the following steps are carried out:
The weld seam herein can be generated by various welding methods such as, for example, beam welding from the outside (by means of electron beams or laser beams) or by means of capacitor discharge welding or friction welding methods, respectively, the latter being internal welding methods.
The weld seam will preferably be left to solidify prior to the pretensioning installation being disposed on the connection installation, so as to be able to guarantee positive transmission of the pretensioning force from the pretensioning installation to the weld seam.
Advantageous design embodiments of the invention will be explained in more detail below by means of the appended drawings. In the drawings:
Once the fuel 14 has been charged with high pressure, said fuel is discharged from the high-pressure fuel pump 12 by way of an outlet installation 18 that is disposed in the housing 12 and has an outlet bore 20, so as to be directed onward to elements which in the flow direction 48 of the fuel 14 are downstream of the high-pressure fuel pump 10.
The connection installation 22 for guiding the fuel 14 has a longitudinal axis 44 which is congruent with a flow axis 46 which runs along the flow direction 48 of the fuel 14.
The outlet installation 18 and the connection installation 22, when interconnected, form a high-pressure connection device 54 by way of which the high-pressure fuel pump 10 can be connected to elements of the fuel injection system that are downstream of the high-pressure fuel pump 10.
In order for the outlet installation 18 and the connection installation 22 to be connected, no longer is only the weld seam 30 as shown in
The features of the elements of the high-pressure connection device 50 that will be initially described hereunder are common to all embodiments described in the following.
The outlet installation 18 has a recess 54 in which a wall 56 of the connection installation 22 that is disposed so as to be parallel with the flow axis 46 of the fuel 14 can engage, so as to be supported on said recess 54. The recess 54 herein preferably has a depth of at least 5 mm, so as to be able to guarantee positive support of the connection installation 22 on the outlet installation 18.
A groove 58 is additionally disposed in the outlet installation 18, in order to provide flexibility for the assembly and the welding procedure when attaching the weld seam 30, that is to say in order to make available more spatial degrees of freedom for attaching the weld seam 30. The groove is preferably disposed in an encircling manner on a surface of the outlet installation 18.
The connection installation 22 has a protrusion region 60 which on a side that is directed toward the outlet installation 18 comprises a welding face 62 on which the weld seam 30 is disposed. The connection installation 22 on the opposite side of the protrusion region 60, that is to say the side that is disposed so as to be directed away from the outlet installation 18, has a contact face 64 by way of which said connection installation 22 is in contact with the pretensioning installation 52. The protrusion region 60 is disposed on the first end 28 of the connection installation 22. Opposite the protrusion region 60 on the second end 32 of the connection installation 22, the connection installation 22 has a connection region 66 by way of which the high-pressure connection device 50 can be connected to downstream elements of the fuel injection system. A neck region in which the connection installation 22 has the smallest external diameter is provided between the connection region 66 and the protrusion region 60. The connection region 66 can optionally have the external thread 34, and moreover has a smaller external diameter than the protrusion region 60.
The external diameter of the protrusion region 60 is defined by the required fuel inlet volume 42 into which not only the outlet bore 20 of the high-pressure fuel pump 12 but also the valve opening of the pressure-relief valve 38 open, as is shown in
The pretensioning installation 52 has a pretensioning face 70 with which the contact face 64 is in contact so as to apply the pretensioning force Fv to the weld seam 30. An internal diameter of the pretensioning installation 52 is larger than the external diameter on the connection region 66 such that the pretensioning installation can be pulled over the connection installation 22. At the same time, the smallest internal diameter of the pretensioning installation 52 is smaller than the external diameter of the protrusion region 60 such that the pretensioning installation 52 can be supported on the protrusion region 60.
By way of the pretensioning installation 52, a pretensioning force of approximately 4 kN-8 kN, for example, can be applied to the weld seam 30 which has a linkage length of approximately 1.9 mm to 2.2 mm, for example, and a width of approximately 0.2 mm to 0.4 mm, for example.
The pretensioning installation 52 here is configured as a nut 72, wherein the recess 54 has an external recess thread 74 and the nut 72 has an internal pretensioning installation thread 76 which engages in the external recess thread 74. The contact face 64 of the connection installation 22 and the pretensioning face 70 of the pretensioning installation 52 are in contact in a contact region 78 which is disposed so as to be perpendicular to the flow direction 48 of the fuel 14. Furthermore, the contact region 78 in the embodiment shown in
In the first embodiment shown in
The stresses acting in this embodiment are schematically illustrated in
The protrusion region 60 in the embodiment in
Accordingly, a flange-screw assembly 18 can also be used instead of a nut 72 as the pretensioning installation 52. As opposed to the flange-screw assembly 80, the nut 72 offers the advantage that the pretensioning force Fv introduced is introduced uniformly into all regions. This is most often not the case when a flange 82 is used. However, a flange 82 does have the advantage that the latter in terms of the installation space can be designed in a significantly more flexible manner.
In known arrangements, the high-pressure connection that by welding (for example by way of an electron beam or a laser beam) is fixedly connected to the housing 12 of the high-pressure fuel pump 10 is highly stressed in mechanical terms in and beside the weld seam 30 by the forces that are generated by the high pump pressure that arises in the high-pressure connection.
To date, circular weld seams 30 have been generated by way of a beam direction that is in a direction perpendicular or angular in relation to the longitudinal axis 44 of the connection installation 22 and from the outside in the direction of the longitudinal axis 44 along the contact line of the two parts to be connected. The penetration depth when welding could thus be maximized, this in turn leading to the forces resulting axially from the internal pressure stress being minimized. Despite the consistent projected face, the loads and the stresses
Engaging on account thereof on the weld seam 30 increase in the case of comparatively high pressures. This face could be further minimized by a method in which the high-pressure connection is welded from the inside (for example by capacitor discharge welding).
By minimizing the projected axial face and by way of a construction that is tailored to stress and offers operational integrity, the construction of the high-pressure connection device 50 as described attempts to minimize the loads that engage on the weld seam 30.
In order for the maximum resilience to be able to be further increased, the high-pressure connection device 50 which by using a pretensioning installation 52 such as, for example, a nut 72 or a flange-screw assembly 80 causes pretensioning of the weld seam 30 is proposed, such that a simple welding process can continue to be used for sealing and for materially-integral connecting at a consistent axial face and an increased pressure level.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 209 263 | May 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/057442 | 4/5/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/184599 | 11/24/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4893601 | Sugao | Jan 1990 | A |
8419073 | Harhoff | Apr 2013 | B2 |
8474436 | Mancini | Jul 2013 | B2 |
8672652 | Munakata | Mar 2014 | B2 |
9145860 | Usui et al. | Sep 2015 | B2 |
20010003282 | Rumpf | Jun 2001 | A1 |
20060054139 | Yamamoto | Mar 2006 | A1 |
20070079813 | Kramer | Apr 2007 | A1 |
20110012342 | Harhoff et al. | Jan 2011 | A1 |
20120012084 | Petrone | Jan 2012 | A1 |
20150071111 | Tao | Mar 2015 | A1 |
20170248107 | Ellenberg et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1746482 | Mar 2006 | CN |
101678499 | Mar 2010 | CN |
101857171 | Oct 2010 | CN |
202484503 | Oct 2012 | CN |
203962245 | Nov 2014 | CN |
102008013575 | Aug 2009 | DE |
2388470 | Nov 2011 | EP |
2388470 | Nov 2014 | EP |
H10213044 | Aug 1998 | JP |
2001295735 | Oct 2001 | JP |
2004068997 | Mar 2004 | JP |
2011179319 | Sep 2011 | JP |
101511962 | Apr 2015 | KR |
2016041973 | Mar 2016 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jun. 17, 2016 of corresponding PCT application PCT/EP2016/057442. |
Office Action dated Mar. 9, 2016 of corresponding DE application 10 2015 209 263.1. |
Japanese Office Action dated Feb. 5, 2018 for corresponding Japanese application No. 2017-528991. |
Japanese Notice of Allowance dated Oct. 1, 2018 for corresponding Japanese application No. 2017-528991. |
Korean Notice of Allowance dated Nov. 19, 2018 for corresponding Korean application No. 10-2017-7012801. |
Chinese Office Action dated Apr. 26, 2019 for corresponding Chinese application No. 201680029358. |
Number | Date | Country | |
---|---|---|---|
20180112639 A1 | Apr 2018 | US |