High pressure direct injected gaseous fuel system and retrofit kit incorporating the same

Information

  • Patent Grant
  • 9194337
  • Patent Number
    9,194,337
  • Date Filed
    Thursday, March 14, 2013
    11 years ago
  • Date Issued
    Tuesday, November 24, 2015
    9 years ago
Abstract
A high-pressure direct injected gaseous fuel system comprising a fuel tank capable of storing fuel at a first pressure and a compressor including an inlet capable of receiving the fuel, and operative to supply, at an outlet, compressed fuel at a second pressure higher than the first. The system also includes an accumulator connected to the outlet and a plurality of injectors connected to the accumulator. The injectors are adapted to inject fuel directly into a combustion chamber. The system includes a pressure relief valve interconnecting the fuel tank and the outlet, wherein the pressure relief valve is operative to allow fuel flow between the fuel tank and outlet if the second pressure exceeds a threshold pressure.
Description
BACKGROUND

Diesel engines have long been direct injected engines wherein fuel is injected at or near top dead center (TDC) directly into the combustion chamber. Many gasoline engines are now being developed as direct injected engines in order to take advantage of the efficiencies associated with direct injection. Direct injected gasoline engines are now possible due to advances in injector technology as well as advances in engine control strategy. However, direct injecting gaseous fuels such as natural gas or hydrogen have not yet gained similar feasibility.


One of the practical difficulties with using a gaseous fuel in a direct injected system is providing the fuel at a high enough pressure to be injected near top dead center while providing the necessary volume of fuel, which may be 3000 times the volume of operation on diesel fuel. Typical compressed natural gas (CNG) tanks are designed to contain fuel at approximately 3600 psi. In order to direct inject a gaseous fuel at or near top dead center, fuel must be at approximately 5800 psi. This high pressure is necessary in order to overcome the cylinder pressure under compression as well as to provide enough fuel into the cylinder.


Gaseous fuel has a lower energy density by volume when compared to diesel and gasoline, thus a much higher volume of fuel must be introduced into the cylinder in order to produce the same power. Existing infrastructure, tank technology, and fuel systems are designed around the standard 3600 psi system. Accordingly, there is a need for a gaseous fuel system capable of operating as a direct injected fuel system.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the devices, systems, and methods, including the preferred embodiment, are described with reference to the following FIGURE, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.



FIG. 1 is a schematic representation of a high pressure direct injected gaseous fuel system.





DETAILED DESCRIPTION

The representative embodiments disclosed herein include a high pressure direct injected gaseous fuel system and retrofit kit incorporating the same. In one embodiment, the system comprises a fuel tank capable of storing fuel at a first pressure and a compressor including an inlet capable of receiving the fuel, and operative to supply, at an outlet, compressed fuel at a second pressure higher than the first. The system also includes an accumulator connected to the outlet and a plurality of injectors connected to the accumulator. The injectors are adapted to inject fuel directly into a combustion chamber. In some embodiments, the injectors are injector-igniters. The system may further include a pressure relief valve interconnecting the fuel tank and the outlet, wherein the pressure relief valve is operative to allow fuel flow between the fuel tank and outlet if the second pressure exceeds a threshold pressure.


In certain aspects of the disclosed technology, the compressor further comprises a blow-by vent and in some embodiments, the system is installed on an engine and the blow-by vent is connected to an intake of the engine. In other aspects of the technology, the compressor is powered by an engine driven hydraulic pump.


In another representative embodiment, a high-pressure direct injected gaseous fuel system includes a fuel tank capable of storing fuel at a first pressure and a compressor including an inlet capable of receiving the fuel, and operative to supply, at an outlet, compressed fuel at a second pressure higher than the first. The system further includes an accumulator connected to the outlet and a plurality of injector-igniters connected to the accumulator, wherein the injector-igniters are adapted to inject fuel directly into a combustion chamber. In addition, a pressure relief valve interconnects the fuel tank and the outlet, and is operative to allow fuel flow between the fuel tank and outlet if the second pressure exceeds a threshold pressure.


Also provided herein is a high pressure direct injected gaseous fuel system retrofit kit. In a representative embodiment, the kit comprises a compressor including an inlet capable of receiving fuel at a first pressure, and operative to supply, at an outlet, compressed fuel at a second pressure higher than the first. The kit can also include an electric motor or engine drivable hydraulic pump, operative to provide power to the compressor, an accumulator connectable to the outlet, and a plurality of injectors connectable to the accumulator, wherein the injectors are adapted to inject fuel directly into a combustion chamber. In other embodiments, the retrofit kit includes a pressure relief valve interconnectable to a fuel tank and the outlet, and operative to allow fuel flow between the fuel tank and outlet if the second pressure exceeds a threshold pressure.


In one aspect of the technology, the kit includes a fuel tank capable of storing fuel at a first pressure and connectable to the compressor. In other aspects, the hydraulic pump is engine mountable, and in still further aspects of the technology, the hydraulic pump is adapted to mount in place of or in conjunction with an engine-mounted fuel pump.


Specific details of several embodiments of the technology are described below with reference to FIG. 1. Other details describing well-known structures and systems often associated with ignition systems, fuel systems, and electronic valve actuation, such as fuel pumps, regulators, and the like, have not been set forth in the following disclosure to avoid unnecessarily obscuring the description of the various embodiments of the technology. Many of the details, dimensions, angles, steps, and other features shown in the figures are merely illustrative of particular embodiments of the technology. Accordingly, other embodiments can have other details, dimensions, angles, steps, and features without departing from the spirit or scope of the present technology. A person of ordinary skill in the art, therefore, will accordingly understand that the technology may have other embodiments with additional elements, or the technology may have other embodiments without several of the features shown and described below with reference to FIG. 1.


Some aspects of the technology described below may take the form of or make use of computer-executable instructions, including routines executed by a programmable computer or controller. Those skilled in the relevant art will appreciate that aspects of the technology can be practiced on computer systems other than those described herein. Aspects of the technology can be embodied in one or more special-purpose computers or data processors, such as an engine control unit (ECU), engine control module (ECM), fuel system controller, ignition controller, or the like, that is specifically programmed, configured, or constructed to perform one or more computer-executable instructions consistent with the technology described below. Accordingly, the term “computer,” “processor,” or “controller” as may be used herein refers to any data processor and can include ECUs, ECMs, and modules, as well as Internet appliances and hand-held devices (including diagnostic devices, palm-top computers, wearable computers, cellular or mobile phones, multi-processor systems, processor-based or programmable consumer electronics, network computers, mini computers and the like). Information handled by these computers can be presented at any suitable display medium, including a CRT display, LCD, or dedicated display device or mechanism (e.g., a gauge).


The technology can also be practiced in distributed environments, where tasks or modules are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules or subroutines may be located in local and remote memory storage devices. Aspects of the technology described below may be stored or distributed on computer-readable media, including magnetic or optically readable or removable computer disks, as well as distributed electronically over networks. Such networks may include, for example and without limitation, Controller Area Networks (CAN), Local Interconnect Networks (LIN), and the like. In particular embodiments, data structures and transmissions of data particular to aspects of the technology are also encompassed within the scope of the technology.



FIG. 1 illustrates a high pressure direct injected gaseous fuel system 100 according to a representative embodiment. In this embodiment, the fuel system 100 includes a pair of fuel storage tanks 102 and 104, which in this case are configured to contain LPG and/or a gaseous fuel such as CNG or hydrogen, for example. Each tank 102 and 104 is coupled to the necessary safety devices such as pressure relief devices 106, as well as the necessary control valves such as control valve 108, all of which are well known in the art. In this embodiment, fuel tanks 102 and 104 are adapted to store gaseous fuel at approximately 3600 psi, which is typical of compressed natural gas. Tanks 102 and 104 are filled via one or more fill nozzles 110 as shown. Tanks 102 and 104 may include filters and/or suitable engine coolant and/or electric heaters to assure adequately rapid delivery of gaseous fuel.


Fuel flows from tanks 102 and 104 at a first pressure to compressor 112 which is operative to compress the fuel. Compressor 112 includes inlets 113 capable of receiving fuel from the fuel tanks 102 and 104 and is operative to supply at outlets 115 compressed fuel at a second pressure higher than the first pressure. For example, compressor 112 receives fuel from tanks 102 and 104 at approximately 3600 psi and provides compressed fuel at approximately 5800 psi. Compressor 112 provides the high pressure fuel to accumulator 114 which is connected to outlets 115. Accumulator 114 in turn supplies a plurality of injectors 116.


Injectors 116 are adapted to inject a gaseous fuel directly into a combustion chamber. Injectors 116 may be in the form of injector-igniters such as those described in co-pending U.S. patent application Ser. No. 12/653,085, filed Dec. 7, 2009, the disclosure of which is incorporated herein by reference in its entirety. Injector-igniters may be particularly desirable in a retrofit kit in order to provide spark as well as fuel in the confined spaces of an existing cylinder head. A pressure regulator 118 is connected between accumulator 114 and the plurality of injectors 116, and functions to supply fuel at a constant pressure to the injectors 116. Fuel system 100 also includes a pressure relief valve 120 interconnected between the fuel tanks 102, 104 and the outlets 115 of compressor 112. The pressure relief valve 120 is operative to allow fuel flow between outlets 115 and fuel tanks 102 and 104, if the second pressure exceeds a threshold pressure. Accordingly, pressure relief valve 120 is operative to prevent over-pressurization of the accumulator 114 and the downstream fuel injection system. In the event that pressure exceeds the threshold pressure, the high pressure coming from the outlets 115 is vented back to the lower pressure tanks 102 and 104.


In some embodiments, the compressor 112 is a hydraulically-driven double-acting intensifier. Other suitable compressors as are known in the art may also be used. In an embodiment, compressor 112 includes a blow-by vent 123 to accommodate blow-by and leakage often associated with piston compression pumps. Any fuel vented through blow-by vent 123 flows through a blow-by flow meter 122 and is vented into the air intake 124 of an associated engine. Thus, rather than venting fuel to the atmosphere, the fuel is fed into the engine where it is burned in due course. Accordingly, because fuel is entering the intake system, the fuel injection system must account for the additional fuel in the air. To that end, the blow-by flow meter 122 communicates with an engine control module 200, which in turn adjusts the amount of fuel injected by fuel injectors 116 to the engine.


In this embodiment, compressor 112 is powered by an engine-driven hydraulic pump 126. The hydraulic pump 126 is part of an associated hydraulic system 128 which includes a tank 130 and the necessary control valves such as control valve 132. The fuel system 100 may also include a cooling system 134 in order to cool the compressed fuel at the outlets 115 from compressor 112. Cooling system 134 may also cool the hydraulic fluid used to power the compressor 112. It may also be used to heat a pressure regulator 118 in order to prevent freezing due to expansion of fuel therethrough.


The fuel system 100 as described above may also be the basis for a retrofit kit to convert diesel engines to run on alternative fuels such as compressed natural gas. Accordingly, various combinations of the above described components may be packaged and provided as a kit in order to convert such vehicles. For example, in one embodiment, a high-pressure direct injected gaseous fuel system retrofit kit includes a compressor 112, an engine-drivable hydraulic pump 126, an accumulator 114, and a plurality of injectors 116. In other embodiments, the kit may also include a pressure relief valve 120 that is interconnectable between the fuel tank and outlet. In still further embodiments, the kit may include one or more fuel tanks capable of storing fuel. In some embodiments hydraulic pump 126 is engine mountable and is adapted to mount in place of an engine mounted fuel pump. In other embodiments, the kit may also include pressure regulator 118. In still further embodiments, the kit may include all necessary fittings, valves, tubing, wiring and control modules such as shown in FIG. 1.


From the foregoing, it will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the technology. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Also contemplated herein are methods which may include any procedural step inherent in the structures and systems described. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. The following examples provide additional embodiments of the present technology.


EXAMPLES

1. A high-pressure direct injected gaseous fuel system, comprising:


a fuel tank capable of storing fuel at a first pressure;


a compressor including an inlet capable of receiving the fuel, and operative to supply, at an outlet, compressed fuel at a second pressure higher than the first;


an accumulator connected to the outlet; and


a plurality of injectors connected to the accumulator, wherein the injectors are adapted to inject fuel directly into a combustion chamber.


2. The system of example 1, further comprising a pressure relief valve interconnecting the fuel tank and the outlet.


3. The system of example 2, wherein the pressure relief valve is operative to allow fuel flow between the fuel tank and outlet if the second pressure exceeds a threshold pressure.


4. The system of example 1, wherein the compressor further comprises a blow-by vent.


5. The system of example 4, wherein the system is installed on an engine and the blow-by vent is connected to an intake of the engine.


6. The system of example 1, wherein the injector is an injector-igniter.


7. The system of example 1, wherein the compressor is powered by an engine driven hydraulic pump.


8. A high-pressure direct injected gaseous fuel system, comprising:


a fuel tank capable of storing fuel at a first pressure;


a compressor including an inlet capable of receiving the fuel, and operative to supply, at an outlet, compressed fuel at a second pressure higher than the first;


an accumulator connected to the outlet;


a plurality of injector-igniters connected to the accumulator, wherein the injector-igniters are adapted to inject fuel directly into a combustion chamber; and


a pressure relief valve interconnecting the fuel tank and the outlet, and operative to allow fuel flow between the fuel tank and outlet if the second pressure exceeds a threshold pressure.


9. The system of example 8, wherein the compressor further comprises a blow-by vent.


10. The system of example 9, wherein the system is installed on an engine and the blow-by vent is connected to an intake of the engine.


11. The system of example 10, wherein the compressor is powered by a hydraulic pump driven by the engine.


12. A high-pressure direct injected gaseous fuel system retrofit kit, comprising:


a compressor including an inlet capable of receiving fuel at a first pressure, and operative to supply, at an outlet, compressed fuel at a second pressure higher than the first;


an electric motor or engine drivable hydraulic pump, operative to provide power to the compressor;


an accumulator connectable to the outlet; and


a plurality of injectors connectable to the accumulator, wherein the injectors are adapted to inject fuel directly into a combustion chamber.


13. The retrofit kit of example 12, further comprising a pressure relief valve interconnectable to a fuel tank and the outlet, and operative to allow fuel flow between the fuel tank and outlet if the second pressure exceeds a threshold pressure.


14. The retrofit kit of example 12, further comprising a fuel tank capable of storing fuel at a first pressure and connectable to the compressor.


15. The retrofit kit of example 12, wherein the injectors are injector-igniters.


16. The retrofit kit of example 12, wherein the compressor further comprises a blow-by vent.


17. The retrofit kit of example 16, wherein the blow-by vent is connectable to an intake of an engine.


18. The retrofit kit of example 12, wherein the hydraulic pump is engine mountable.


19. The retrofit kit of example 18, wherein the hydraulic pump is adapted to mount in place of an engine mounted fuel pump.


20. The retrofit kit of example 12, further comprising a pressure regulator connectable between the accumulator and the plurality of injectors.

Claims
  • 1. A high-pressure direct injected gaseous fuel system, comprising: a fuel tank capable of storing fuel at a first pressure;a compressor comprising an inlet capable of receiving the fuel, and operative to supply, at an outlet, the fuel at a second pressure higher than the first pressure;an accumulator in fluid communication with the outlet to receive and to store the compressed gaseous fuel from the compressor and in fluid communication with the inlet through a pressure regulator to convey excess compressed gaseous fuel to the compressor;a pressure relief valve interconnecting the fuel tank and the outlet, and operative to allow fuel flow between the fuel tank and outlet if the second pressure exceeds a threshold pressure; anda plurality of injectors connected to the accumulator, wherein the injectors are adapted to inject the fuel directly into a combustion chamber.
  • 2. The system of claim 1, wherein the compressor further comprises a blow-by vent in fluid communication with the compressor and an air intake of the engine to vent excess gaseous fuel within the compressor due to compressor blow-by and leakage directly to the air intake.
  • 3. The system of claim 1, wherein the injector comprises an injector-igniter.
  • 4. The system of claim 1, further comprising an engine driven hydraulic pump connected to the compressor.
  • 5. A high-pressure direct injected gaseous fuel system, comprising: a fuel tank capable of storing fuel at a first pressure;a compressor comprising an inlet capable of receiving the fuel, and operative to supply, at an outlet, the fuel at a second pressure higher than the first pressure;an accumulator in fluid communication with the outlet to receive and to store the compressed gaseous fuel from the compressor and in fluid communication with the inlet through a pressure regulator to convey excess compressed gaseous fuel to the compressor;a plurality of injector-igniters connected to the accumulator, wherein the injector-igniters are adapted to inject the fuel directly into a combustion chamber; anda pressure relief valve interconnecting the fuel tank and the outlet, and operative to allow fuel flow between the fuel tank and outlet if the second pressure exceeds a threshold pressure.
  • 6. The system of claim 5, wherein the compressor further comprises a blow-by vent in fluid communication with the compressor and an air intake of the engine to vent excess gaseous fuel within the compressor due to compressor blow-by and leakage directly to the air intake.
  • 7. The system of claim 5, wherein the compressor is powered by a hydraulic pump driven by the engine.
  • 8. A high-pressure direct injected gaseous fuel system retrofit kit, comprising: a compressor comprising an inlet capable of receiving fuel at a first pressure, and operative to supply, at an outlet, the fuel at a second pressure higher than the first pressure, the compressor further comprising a blow-by vent connectable to an intake of an engine;an engine drivable hydraulic pump, operative to provide power to the compressor;an accumulator in fluid communication with the outlet to receive and to store the compressed gaseous fuel from the compressor and in fluid communication with the inlet through a pressure regulator to convey excess compressed gaseous fuel to the compressor; anda plurality of injectors connectable to the accumulator, wherein the injectors are adapted to inject the fuel directly into a combustion chamber.
  • 9. The retrofit kit of claim 8, further comprising a pressure relief valve interconnectable to a fuel tank and the outlet, and operative to allow fuel flow between the fuel tank and outlet if the second pressure exceeds a threshold pressure.
  • 10. The retrofit kit of claim 8, further comprising a fuel tank capable of storing fuel at a first pressure and connectable to the compressor.
  • 11. The retrofit kit of claim 8, wherein the injectors comprise injector-igniters.
  • 12. The retrofit kit of claim 8, wherein the hydraulic pump is engine mountable.
  • 13. The retrofit kit of claim 12, wherein the hydraulic pump is adapted to mount in place of an engine mounted fuel pump.
  • 14. The retrofit kit of claim 8, further comprising a pressure regulator connectable between the accumulator and the plurality of injectors.
  • 15. A high-pressure direct injected gaseous fuel system, comprising: a fuel tank capable of storing gaseous fuel at a first pressure;a compressor in fluid communication with the fuel tank, wherein the compressor comprises an inlet capable of receiving the gaseous fuel from the fuel tank, and operative to supply, at an outlet, compressed gaseous fuel at a second pressure higher than the first pressure;an accumulator in fluid communication with the outlet to receive and to store the compressed gaseous fuel from the compressor and in fluid communication with the inlet through a pressure regulator to convey excess compressed gaseous fuel to the compressor;a plurality of injectors in fluid communication with the accumulator, wherein the plurality of injectors are adapted to inject the compressed gaseous fuel from the accumulator directly into a combustion chamber of an engine;a blow-by vent in fluid communication with the compressor and an air intake of the engine to vent excess gaseous fuel within the compressor due to compressor blow-by and leakage directly to the air intake; anda blow-by flow meter in communication with the blow-by vent and an engine communication module, such that the engine control module can adjust amount of the compressed gaseous fuel from the accumulator injected by the plurality of injectors into the combustion chamber of the engine to account for the excess compressed gaseous fuel directly vented to the air intake from the blow-by vent.
  • 16. The system of claim 15, wherein the injector comprises an injector-igniter.
  • 17. The system of claim 15, further comprising an engine driven hydraulic pump connected to the compressor.
  • 18. The system of claim 15, further comprising a pressure relief valve interconnectable to the fuel tank and the outlet, and operative to allow fuel flow between the outlet and the fuel tank if the second pressure exceeds a threshold pressure.
  • 19. The system of claim 15, further comprising a pressure regulator connectable between the accumulator and the plurality of injectors.
US Referenced Citations (323)
Number Name Date Kind
1307088 Drummond Jun 1919 A
1451384 Whyte Apr 1923 A
2255203 Wiegand Sep 1941 A
2864974 Beye Dec 1958 A
3058453 May Oct 1962 A
3060912 May Oct 1962 A
3081758 May Mar 1963 A
3149620 Cataldo Sep 1964 A
3243335 Faile Mar 1966 A
3286164 De Huff Nov 1966 A
3361161 Schwartz Jan 1968 A
3373724 Papst Mar 1968 A
3520961 Suda et al. Jul 1970 A
3551738 Young Dec 1970 A
3594877 Suda et al. Jul 1971 A
3608050 Carman et al. Sep 1971 A
3689293 Beall Sep 1972 A
3762170 Fitzhugh Oct 1973 A
3802194 Tanasawa et al. Apr 1974 A
3926169 Leshner et al. Dec 1975 A
3931438 Beall et al. Jan 1976 A
3960995 Kourkene Jun 1976 A
3976039 Henault Aug 1976 A
3992877 Granger Nov 1976 A
3997352 Beall Dec 1976 A
4066046 McAlister Jan 1978 A
4095580 Murray et al. Jun 1978 A
4099494 Goloff et al. Jul 1978 A
4105004 Asai et al. Aug 1978 A
4122816 Fitzgerald et al. Oct 1978 A
4135481 Resler, Jr. Jan 1979 A
4183467 Sheraton et al. Jan 1980 A
4203393 Giardini May 1980 A
4313412 Hosaka et al. Feb 1982 A
4330732 Lowther May 1982 A
4332223 Dalton Jun 1982 A
4364342 Asik Dec 1982 A
4364363 Miyagi et al. Dec 1982 A
4368707 Leshner et al. Jan 1983 A
4377455 Kadija et al. Mar 1983 A
4402036 Hensley et al. Aug 1983 A
4469160 Giamei Sep 1984 A
4483485 Kamiya et al. Nov 1984 A
4511612 Huther et al. Apr 1985 A
4514712 McDougal Apr 1985 A
4528270 Matsunaga Jul 1985 A
4531679 Pagdin Jul 1985 A
4535728 Batchelor Aug 1985 A
4536452 Stempin et al. Aug 1985 A
4567857 Houseman et al. Feb 1986 A
4574037 Samejima et al. Mar 1986 A
4677960 Ward Jul 1987 A
4688538 Ward et al. Aug 1987 A
4716874 Hilliard et al. Jan 1988 A
4733646 Iwasaki Mar 1988 A
4736718 Linder Apr 1988 A
4742265 Giachino et al. May 1988 A
4760818 Brooks et al. Aug 1988 A
4760820 Tozzi Aug 1988 A
4774914 Ward Oct 1988 A
4774919 Matsuo et al. Oct 1988 A
4830286 Asslaender et al. May 1989 A
4841925 Ward Jun 1989 A
4922883 Iwasaki May 1990 A
4967708 Linder et al. Nov 1990 A
4977873 Cherry et al. Dec 1990 A
4982708 Stutzenberger Jan 1991 A
5034852 Rosenberg Jul 1991 A
5035360 Green et al. Jul 1991 A
5036669 Earleson et al. Aug 1991 A
5055435 Hamanaka et al. Oct 1991 A
5056496 Morino et al. Oct 1991 A
5076223 Harden et al. Dec 1991 A
5095742 James et al. Mar 1992 A
5109817 Cherry May 1992 A
5131376 Ward et al. Jul 1992 A
5134982 Hosoi Aug 1992 A
5150682 Magnet Sep 1992 A
5193515 Oota et al. Mar 1993 A
5207208 Ward May 1993 A
5211142 Matthews et al. May 1993 A
5220901 Morita et al. Jun 1993 A
5222481 Morikawa Jun 1993 A
5267601 Dwivedi Dec 1993 A
5297518 Cherry Mar 1994 A
5305360 Remark et al. Apr 1994 A
5328094 Goetzke et al. Jul 1994 A
5343699 McAlister Sep 1994 A
5361737 Smith et al. Nov 1994 A
5377633 Wakeman Jan 1995 A
5392745 Beck Feb 1995 A
5394852 McAlister Mar 1995 A
5421299 Cherry Jun 1995 A
5435286 Carroll, III et al. Jul 1995 A
5439532 Fraas Aug 1995 A
5456241 Ward Oct 1995 A
5473502 Bonavia et al. Dec 1995 A
5475772 Hung et al. Dec 1995 A
5497744 Nagaosa et al. Mar 1996 A
5517961 Ward May 1996 A
5531199 Bryant et al. Jul 1996 A
5534781 Lee et al. Jul 1996 A
5549746 Scott et al. Aug 1996 A
5568801 Paterson et al. Oct 1996 A
5584490 Inoue et al. Dec 1996 A
5588299 DeFreitas Dec 1996 A
5598699 Few et al. Feb 1997 A
5605125 Yaoita Feb 1997 A
5607106 Bentz et al. Mar 1997 A
5649507 Gregoire et al. Jul 1997 A
5676026 Tsuboi et al. Oct 1997 A
5699253 Puskorius et al. Dec 1997 A
5702761 DiChiara, Jr. et al. Dec 1997 A
5704321 Suckewer et al. Jan 1998 A
5714680 Taylor et al. Feb 1998 A
5715788 Tarr et al. Feb 1998 A
5738818 Atmur et al. Apr 1998 A
5745615 Atkins et al. Apr 1998 A
5746171 Yaoita May 1998 A
5767026 Kondoh et al. Jun 1998 A
5769049 Nytomt et al. Jun 1998 A
5797427 Buescher Aug 1998 A
5806581 Haasch et al. Sep 1998 A
5816224 Welsh et al. Oct 1998 A
5832906 Douville et al. Nov 1998 A
5853175 Udagawa Dec 1998 A
5863326 Nause et al. Jan 1999 A
5876659 Yasutomi et al. Mar 1999 A
5896842 Abusamra Apr 1999 A
5915272 Foley et al. Jun 1999 A
5930420 Atkins et al. Jul 1999 A
5941207 Anderson et al. Aug 1999 A
6015065 McAlister Jan 2000 A
6017390 Charych et al. Jan 2000 A
6026568 Atmur et al. Feb 2000 A
6029627 VanDyne Feb 2000 A
6029640 Bengtsson et al. Feb 2000 A
6062498 Klopfer May 2000 A
6085990 Augustin Jul 2000 A
6092501 Matayoshi et al. Jul 2000 A
6092507 Bauer et al. Jul 2000 A
6093338 Tani et al. Jul 2000 A
6102303 Bright et al. Aug 2000 A
6138639 Hiraya et al. Oct 2000 A
6173913 Shafer et al. Jan 2001 B1
6185355 Hung Feb 2001 B1
6189522 Moriya Feb 2001 B1
6253728 Matayoshi et al. Jul 2001 B1
6267307 Pontoppidan Jul 2001 B1
6281976 Taylor et al. Aug 2001 B1
6335065 Steinlage et al. Jan 2002 B1
6340015 Benedikt et al. Jan 2002 B1
6360721 Schuricht et al. Mar 2002 B1
6360730 Koethe Mar 2002 B1
6378485 Elliott Apr 2002 B2
6386178 Rauch May 2002 B1
6443373 Portugues Sep 2002 B1
6446597 McAlister Sep 2002 B1
6453660 Johnson et al. Sep 2002 B1
6455173 Marijnissen et al. Sep 2002 B1
6478007 Miyashita et al. Nov 2002 B2
6483311 Ketterer et al. Nov 2002 B1
6490391 Zhao et al. Dec 2002 B1
6501875 Zhao et al. Dec 2002 B2
6503584 McAlister Jan 2003 B1
6506336 Beall et al. Jan 2003 B1
6516114 Zhao et al. Feb 2003 B2
6517011 Ayanji et al. Feb 2003 B1
6532315 Hung et al. Mar 2003 B1
6542663 Zhao et al. Apr 2003 B1
6543700 Jameson et al. Apr 2003 B2
6549713 Pi et al. Apr 2003 B1
6556746 Zhao et al. Apr 2003 B1
6567599 Hung May 2003 B2
6571035 Pi et al. May 2003 B1
6578775 Hokao Jun 2003 B2
6583901 Hung Jun 2003 B1
6584244 Hung Jun 2003 B2
6587239 Hung Jul 2003 B1
6599028 Shu et al. Jul 2003 B1
6604362 Moeckel Aug 2003 B2
6615899 Woodward et al. Sep 2003 B1
6626164 Hitomi et al. Sep 2003 B2
6663027 Jameson et al. Dec 2003 B2
6668630 Kuglin et al. Dec 2003 B1
6672277 Yasuoka et al. Jan 2004 B2
6700306 Nakamura et al. Mar 2004 B2
6705274 Kubo Mar 2004 B2
6722340 Sukegawa et al. Apr 2004 B1
6725826 Esteghlal Apr 2004 B2
6745744 Suckewer et al. Jun 2004 B2
6756140 McAlister Jun 2004 B1
6763811 Tamol, Sr. Jul 2004 B1
6772965 Yildirim et al. Aug 2004 B2
6776352 Jameson Aug 2004 B2
6786200 Viele et al. Sep 2004 B2
6832472 Huang et al. Dec 2004 B2
6832588 Herden et al. Dec 2004 B2
6841309 Alpay et al. Jan 2005 B1
6845920 Sato et al. Jan 2005 B2
6850069 McQueeney et al. Feb 2005 B2
6851413 Tamol, Sr. Feb 2005 B1
6854438 Hilger et al. Feb 2005 B2
6871630 Herden et al. Mar 2005 B2
6881386 Rabinovich et al. Apr 2005 B2
6883490 Jayne Apr 2005 B2
6883507 Freen Apr 2005 B2
6899076 Funaki et al. May 2005 B2
6904893 Hotta et al. Jun 2005 B2
6912998 Rauznitz et al. Jul 2005 B1
6925983 Herden et al. Aug 2005 B2
6940213 Heinz et al. Sep 2005 B1
6954074 Zhu et al. Oct 2005 B2
6976683 Eckert et al. Dec 2005 B2
6978767 Bonutti Dec 2005 B2
6984305 McAlister Jan 2006 B2
6993960 Benson Feb 2006 B2
6994073 Tozzi et al. Feb 2006 B2
7007658 Cherry et al. Mar 2006 B1
7013863 Shiraishi et al. Mar 2006 B2
7025358 Ueta et al. Apr 2006 B2
7032845 Dantes et al. Apr 2006 B2
7070126 Shinogle Jul 2006 B2
7073480 Shiraishi et al. Jul 2006 B2
7086376 McKay Aug 2006 B2
7104246 Gagliano et al. Sep 2006 B1
7104250 Yi et al. Sep 2006 B1
7121253 Shiraishi et al. Oct 2006 B2
7124964 Bui Oct 2006 B2
7131426 Ichinose et al. Nov 2006 B2
7137382 Zhu et al. Nov 2006 B2
7138046 Roychowdhury Nov 2006 B2
7140347 Suzuki et al. Nov 2006 B2
7198208 Dye et al. Apr 2007 B2
7204133 Benson et al. Apr 2007 B2
7249578 Fricke et al. Jul 2007 B2
7255290 Bright et al. Aug 2007 B2
7272487 Christen et al. Sep 2007 B2
7278392 Zillmer et al. Oct 2007 B2
7302792 Land, III et al. Dec 2007 B2
7340118 Wlodarczyk et al. Mar 2008 B2
7367319 Kuo et al. May 2008 B2
7386982 Runkle et al. Jun 2008 B2
7395146 Ueda et al. Jul 2008 B2
7404395 Yoshimoto Jul 2008 B2
7418940 Yi et al. Sep 2008 B1
7435082 Jayne Oct 2008 B2
7449034 Mikkelsen et al. Nov 2008 B1
7481043 Hirata et al. Jan 2009 B2
7484369 Myhre Feb 2009 B2
7554250 Kadotani et al. Jun 2009 B2
7625531 Coates et al. Dec 2009 B1
7626315 Nagase Dec 2009 B2
7628137 McAlister Dec 2009 B1
7628145 Ishibashi et al. Dec 2009 B2
7650873 Hofbauer et al. Jan 2010 B2
7690352 Zhu et al. Apr 2010 B2
7703775 Matsushita et al. Apr 2010 B2
7707832 Commaret et al. May 2010 B2
7714483 Hess et al. May 2010 B2
7721697 Smith et al. May 2010 B2
7728489 Heinz et al. Jun 2010 B2
7849833 Toyoda Dec 2010 B2
7900850 Zengerle et al. Mar 2011 B2
7918212 Verdejo et al. Apr 2011 B2
8037849 Staroselsky et al. Oct 2011 B1
8069836 Ehresman Dec 2011 B2
8104444 Schultz Jan 2012 B2
8147599 McAlister Apr 2012 B2
8192852 McAlister Jun 2012 B2
8240293 Ikeda Aug 2012 B2
8267063 McAlister Sep 2012 B2
8312759 McAlister Nov 2012 B2
8318131 McAlister Nov 2012 B2
8416552 Gefter et al. Apr 2013 B2
8441361 McAlister May 2013 B2
8511259 Ambrosini et al. Aug 2013 B2
8578902 Permuy et al. Nov 2013 B2
8601819 Hammer et al. Dec 2013 B2
8646432 McAlister et al. Feb 2014 B1
20020017573 Sturman Feb 2002 A1
20020070287 Jameson et al. Jun 2002 A1
20020084793 Hung et al. Jul 2002 A1
20020088230 Coleman et al. Jul 2002 A1
20020131171 Hung Sep 2002 A1
20020131666 Hung et al. Sep 2002 A1
20020131673 Hung Sep 2002 A1
20020131674 Hung Sep 2002 A1
20020131706 Hung Sep 2002 A1
20020131756 Hung Sep 2002 A1
20020141692 Hung Oct 2002 A1
20020150375 Hung et al. Oct 2002 A1
20020151113 Hung et al. Oct 2002 A1
20030012985 McAlister Jan 2003 A1
20040008989 Hung Jan 2004 A1
20040084017 Viele et al. May 2004 A1
20040084026 Zhu et al. May 2004 A1
20040187847 Viele et al. Sep 2004 A1
20050126537 Daniels et al. Jun 2005 A1
20050255011 Greathouse et al. Nov 2005 A1
20050257776 Bonutti Nov 2005 A1
20060016916 Petrone et al. Jan 2006 A1
20060169244 Allen Aug 2006 A1
20060213488 Post et al. Sep 2006 A1
20070125338 Kato et al. Jun 2007 A1
20070186903 Zhu et al. Aug 2007 A1
20070189114 Reiner et al. Aug 2007 A1
20080017170 Moroi et al. Jan 2008 A1
20090070008 Batenburg et al. Mar 2009 A1
20090093951 McKay et al. Apr 2009 A1
20090101114 Czekala et al. Apr 2009 A1
20090120385 Munshi et al. May 2009 A1
20100095747 Grunwald Apr 2010 A1
20110030659 Ulrey et al. Feb 2011 A1
20110118958 Jung et al. May 2011 A1
20120112620 Lykowski et al. May 2012 A1
20120137651 Taguchi et al. Jun 2012 A1
20120160221 Munshi et al. Jun 2012 A1
20120174897 Ulrey et al. Jul 2012 A1
20120180743 Burrows et al. Jul 2012 A1
20120199088 Burrows et al. Aug 2012 A1
20120210968 Burrows et al. Aug 2012 A1
20130149621 McAlister Jun 2013 A1
Foreign Referenced Citations (11)
Number Date Country
1411535 Apr 2003 CN
3443022 May 1986 DE
19731329 Jun 1998 DE
10356133 Jul 2005 DE
102006021192 Nov 2007 DE
671555 Sep 1995 EP
1038490 Aug 1966 GB
02-259268 Oct 1990 JP
08-049623 Feb 1996 JP
2004-324613 Nov 2004 JP
2009-287549 Dec 2009 JP
Non-Patent Literature Citations (28)
Entry
U.S. Appl. No. 13/797,351, filed Mar. 12, 2013, McAlister
U.S. Appl. No. 13/843,976, filed Mar. 15, 2013, McAlister.
U.S. Appl. No. 13/844,240, filed Mar. 15, 2013, McAlister.
U.S. Appl. No. 13/844,488, filed Mar. 15, 2013, McAlister.
“Ford DIS/EDIS “Waste Spark” Ignition System.” Accessed: Jul. 15, 2010. Printed: Jun. 8, 2011. <http://rockledge.home.comcast.net/˜rockledge/RangerPictureGallery/DIS—EDIS.htm>. pp. 1-6.
“P dV's Custom Data Acquisition Systems Capabilities.” PdV Consulting. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://www.pdvconsult.com/capabilities%20-%20daqsys.html>. pp. 1-10.
“Piston motion equations.” Wikipedia, the Free Encyclopedia. Published: Jul. 4, 2010. Accessed: Aug. 7, 2010. Printed: Aug. 7, 2010. <http://en.wikipedia.org/wiki/Dopant>. pp. 1-9.
“Piston Velocity and Acceleration.” EPI, Inc. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://www.epi-eng.com/piston—engine—technology/piston—velocity—and—acceleration.htm>. pp. 1-3.
“SmartPlugs—Aviation.” SmartPlugs.com. Published: Sep. 2000. Accessed: May 31, 2011. <http://www.smartplugs.com/news/aeronews0900.htm>. pp. 1-3.
Birchenough, Arthur G. “A Sustained-arc Ignition System for Internal Combustion Engines.” Nasa Technical Memorandum (NASA TM-73833). Lewis Research Center. Nov. 1977. pp. 1-15.
Britt, Robert Roy. “Powerful Solar Storm Could Shut Down U.S. for Months—Science News | Science & Technology | Technology News—FOXNews.com.” FoxNews.com, Published: Jan. 9, 2009. Accessed: May 17, 2011. <http://www.foxnews.com/story/0,2933,478024,00.html>. pp. 1-2.
Brooks, Michael. “Space Storm Alert: 90 Seconds from Catastrophe.” NewScientist. Mar. 23, 2009. pp. 1-7.
Doggett, William. “Measuring Internal Combustion Engine In-Cylinder Pressure with LabVIEW.” National Instruments. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://sine.ni.com/cs/app/doc/p/id/cs-217>. pp. 1-2.
Erjavec, Jack. “Automotive Technology: a Systems Approach, vol. 2.” Thomson Delmar Learning. Clifton Park, NY. 2005. p. 845.
Hodgin, Rick. “NASA Studies Solar Flare Dangers to Earth-based Technology.” TG Daily. Published: Jan. 6, 2009. Accessed: May 17, 2011. <http://www.tgdaily.com/trendwatch/40830-nasa-studies-solar-flare-dangers-to-earth-based-technology>. pp. 1-2.
Hollembeak, Barry. “Automotive Fuels & Emissions.” Thomson Delmar Learning. Clifton Park, NY. 2005. p. 298.
InfraTec GmbH. “Evaluation Kit for FPI Detectors | Datasheet—Detector Accessory.” 2009. pp. 1-2.
Lewis Research Center. “Fabry-Perot Fiber-Optic Temperature Sensor.” NASA Tech Briefs. Published: Jan. 1, 2009. Accessed: May 16, 2011. <http://www.techbriefs.com/content/view/2114/32/>.
Pall Corporation, Pall Industrial Hydraulics. Increase Power Output and Reduce Fugitive Emissions by Upgrading Hydrogen Seal Oil System Filtration. 2000. pp. 1-4.
Riza et al. “All-Silicon Carbide Hybrid Wireless-Wired Optics Temperature Sensor Network Basic Design Engineering for Power Plant Gas Turbines.” International Journal of Optomechatronics, vol. 4, Issue 1. Jan 2010. pp. 1-9.
Riza et al. “Hybrid Wireless-Wired Optical Sensor for Extreme Temperature Measurement in Next Generation Energy Efficient Gas Turbines.” Journal of Engineering for Gas Turbines and Power, vol. 132, Issue 5. May 2010. pp. 051601-1-51601-11.
Salib et al. “Role of Parallel Reformable Bonds in the Self-Healing of Cross-Linked Nanogel Particles.” Langmuir, vol. 27, Issue 7. 2011. pp. 3991-4003.
International Search Report and Written Opinion for Application No. PCT/US2009/067044; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 14, 2010 (11 pages).
International Search Report and Written Opinion for Application No. PCT/US2010/002080; Applicant: McAlister Technologies, LLC; Date of Mailing: Jul. 7, 2011 (8 pages).
International Search Report and Written Opinion for Application No. PCT/US2011/024778 Applicant: McAllister Technologies, LLC.; Date of Mailing: Sep. 27, 2011 (10 pages).
International Search Report and Written Opinion for Application No. PCT/US2010/054364; Applicant: McAlister Technologies, LLC.; Date of Mailing: Aug. 22, 2011, 8 pages.
Supplementary European Search Report for Application No. EP 10846264.9; Applicant McAlister Technologies, LLC; Date of Mailin Oct. 2, 2013, 5 pages.
PCT International Search Report issued in connection with Application No. PCT/US2014/025899 received on Feb. 10, 2014, (3 pages).
Related Publications (1)
Number Date Country
20140261304 A1 Sep 2014 US