The European patent specification EP 0 991 107 B1 describes, on page 4, lines 12 to 26 of column 6, a high-pressure discharge lamp with a base at one end for a motor vehicle headlamp which has a discharge vessel surrounded by a vitreous outer bulb, the outer bulb being provided with a transparent, electrically conductive layer, which extends over the entire discharge space of the lamp. This layer is connected to the circuit-internal ground reference potential of the control gear of the high-pressure discharge lamp in order to improve the electromagnetic compatibility of the lamp.
The object of the invention is to provide a high-pressure discharge lamp, in particular a mercury-free metal-halide high-pressure discharge lamp for vehicle headlamps with an improved ignition response.
This object is achieved according to the invention by the features of claim 1. Particularly advantageous embodiments of the invention are described in the dependent claims.
The high-pressure discharge lamp according to the invention has a discharge vessel which is sealed at two ends, an ionizable filling which is enclosed in the discharge space of the discharge vessel and electrodes, which extend into the discharge space, for generating a gas discharge, the discharge vessel having an electrically conductive coating, which is in the form of an ignition aid and is arranged at least in the boundary region between the discharge space and a first sealed end of the discharge vessel. This coating forms, with the first electrode of the high-pressure discharge lamp which protrudes out of the first sealed end and into the discharge space, a capacitor, the quartz glass of the discharge vessel lying therebetween and the filling gas in the discharge space forming the dielectric of this capacitor. As a result, a dielectric barrier discharge between the first electrode and the coating is generated in the discharge space, in particular by means of the high-frequency components of the ignition pulse. This dielectric barrier discharge generates a sufficient number of free charge carriers in the discharge space for enabling the electrical breakdown between the two electrodes of the high-pressure discharge lamp or for significantly reducing the ignition voltage required therefor. The invention is therefore particularly well suited for mercury-free metal-halide high-pressure discharge lamps which, owing to the lack of mercury, have an increased ignition voltage.
Advantageously, the coating in the form of an ignition aid is additionally also arranged in the boundary region between the discharge space and the second sealed end of the discharge vessel.
Advantageously, the coating is additionally applied on a surface section of the first sealed end of the discharge vessel. As a result, the required high voltage for igniting the gas discharge in the high-pressure discharge lamp can be further reduced. As shown by the 3rd bar in
In accordance with the two particularly preferred exemplary embodiments of the invention, the ignition aid coating is also extended onto a surface section of that part of the discharge vessel which surrounds the discharge space, with the result that the ignition aid coating preferably extends onto a surface section of the first sealed end and of that part of the discharge vessel which surrounds the discharge space and onto the two boundary regions between the discharge space and the sealed ends of the discharge vessel. In accordance with the two preferred exemplary embodiments, the ignition aid coating forms a strip which runs on the surface of the first sealed end and of the abovementioned part of the discharge vessel which surrounds the discharge space. The 4th and 5th bars in
Preferably, the abovementioned first sealed end of the discharge vessel is that end whose power supply line and electrode have the high-voltage pulses required for the ignition of the gas discharge in the high-pressure discharge lamp applied to them. As a result, the abovementioned dielectric barrier discharge between the electrode or power supply line protruding out of the first sealed end and the ignition aid coating is produced.
The invention can advantageously be applied in high-pressure discharge lamps which are provided for operation in the horizontal position, with electrodes arranged in a horizontal plane, such as, for example, in metal-halide high-pressure discharge lamps for motor vehicle headlamps. In this case, the surface section, which is provided with the ignition aid coating, of that part of the discharge vessel which surrounds the discharge space is arranged beneath the electrodes. As a result, the coating reflects some of the infrared radiation generated by the discharge back into the discharge space and therefore ensures selective heating of the colder regions of the discharge vessel which are located beneath the electrodes and in which the metal halides used for the light generation accumulate. As a result, the efficiency of the lamp can be increased without the hot regions of the discharge vessel which lie above the electrodes likewise being heated. In addition, the application of the coating only on the colder underside of the discharge vessel reduces the thermal loading of the coating, with the result that correspondingly fewer demands can be placed on the thermal loading capacity of the coating materials.
The ignition aid coating of the high-pressure discharge lamps according to the invention is preferably designed to be transparent in order to ensure as little light absorption as possible and as high a luminous efficiency as possible.
Preferably, the power supply line which is passed out of the first sealed end of the discharge vessel is connected to at least one molybdenum foil embedded in the first sealed end, and the at least one molybdenum foil is oriented in such a way that one of its two sides faces the coating arranged on the surface section of the first sealed end. As a result, capacitive coupling between the abovementioned molybdenum foil and the ignition aid coating applied on the first sealed end is achieved.
The invention will be explained in more detail below with reference to a preferred exemplary embodiment. In the drawing:
The preferred exemplary embodiment of the invention illustrated schematically in
That surface region of the discharge vessel 10 which faces the power supply line 17 is provided with a transparent, electrically conductive coating 107. This coating 107 extends in the longitudinal direction of the lamp over the entire length of the discharge space 106 and over part, approximately 50%, of the length of the base-side, sealed end 102 of the discharge vessel 10. The coating 107 is applied on the outside of the discharge vessel 10 and extends, for example, over approximately 5% to 50% of the circumference of the discharge vessel 10. It is formed as a strip in the region of the discharge space 106 and in the region of the base-side sealed end 102. In the boundary region 109 between the base-side sealed end 102 and the discharge space 106 and in the boundary region 108 between the sealed end 101 remote from the base and the discharge space 106 the coating 107 is in each case formed as a ring, which surrounds the discharge vessel 10. The boundary regions are formed by an annular groove 108, 109 which runs circumferentially around the discharge vessel 10, a so-called curl, in which the discharge vessel 10 has the smallest diameter and therefore there is a particularly small distance between the ignition aid coating 107 and the corresponding electrode 11 or 12. The coating 107 consists of doped tin oxide, for example of tin oxide doped with fluorine or antimony. The layer thickness of the ignition aid coating 107 is preferably selected in such a way that the resistance of the ignition aid coating 107, measured between any two points arranged at a distance of 1 cm on the ignition aid coating 107, is of the order of magnitude of approximately 1 ohms. The mean breakdown voltage of the discharge path of the high-pressure discharge lamp with the ignition aid coating 107 illustrated in
The interspace between the outer bulb 16 and the discharge vessel 10 is preferably filled with an inert gas with a coldfilling pressure in a range of from 5 kPa to 150 kPa to which a small quantity of oxygen is admixed. The oxygen quantity is fed in such a way that, firstly, diffusion of oxygen out of the tin oxide layer 107 is prevented and, secondly, no oxidation of the dopants in the tin oxide coating 107 is caused. Even a few ppm as an oxygen content, for example 100 ppm of oxygen content (by weight) is sufficient for this purpose in the filling gas of the outer bulb. The inert gas is preferably nitrogen or a noble gas or a noble gas mixture or a nitrogen/noble gas mixture.
This high-pressure discharge lamp is operated in the horizontal position, i.e. with electrodes 11, 12 arranged in a horizontal plane, the lamp being aligned in such a way that the power return line 17 runs beneath the discharge vessel 10 and the outer bulb 16. The high voltage pulses required for igniting the gas discharge in the high-pressure discharge lamp are supplied to the base-side electrode 12 via the power supply line 14 since the base-side power supply line 14 is completely surrounded by the lamp vessels 10, 16 and the base 15 and therefore excellent electrical insulation of those parts of the high-pressure discharge lamp which conduct a high voltage is ensured. The abovementioned high voltage pulses are generated, for example, by means of a pulse ignition apparatus, whose components can be arranged in the lamp base 15.
The invention is not restricted to the exemplary embodiment explained in more detail above. For example, with the ignition aid coating 107 described in more detail above in the region of the discharge space 106 it is possible to reduce the width of the strip-like section of the coating 107, with the result that the coating 107 in the region of the discharge space 106 has a markedly narrower width than the section of the coating 107 arranged on the base-side end 102. As a result, the breakdown voltage of the discharge path of the high-pressure discharge lamp in accordance with the 4th bar in
Instead of the abovementioned material, the coating 107 can also consist of another transparent, electrically conductive material. For example, it may be in the form of a so-called ITO layer, i.e. an indium tin oxide layer. The ITO layer can have, for example, a content of 90 percent by weight of indium oxide and 10 percent by weight of tin oxide. In addition, the coating 107 can be coupled, for example, using suitable means electrically to an ignition apparatus in order to apply voltage pulses for igniting the gas discharge in the discharge space 106 via the coating 107 to the high-pressure discharge lamp. In addition, the invention can also be applied to the conventional mercury-containing metal-halide high-pressure discharge lamps in order to achieve the abovedescribed advantages.
In order to ignite the gas discharge in the high-pressure discharge lamp according to the invention, an ignition apparatus which generates the high voltage required for igniting the gas discharge by means of the magnification factor method can be used instead of a pulse ignition apparatus.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 007 218.9 | Feb 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/051129 | 2/6/2007 | WO | 00 | 8/11/2008 |