The invention relates to a high-pressure discharge lamp in accordance with the precharacterizing clause of patent claim 1.
Such a high-pressure discharge lamp has been disclosed, for example, in EP-A 0 858 098. This document describes a metal-halide high-pressure discharge lamp for a motor vehicle headlamp having a discharge vessel consisting of quartz glass, which has two ends provided with a molybdenum foil seal, and two electrodes, which are each connected to one of the molybdenum foil seals and protrude into the interior of the discharge vessel. One section of the respective electrode which is arranged in the region of that end of the lamp vessel which is provided with the molybdenum foil seal, outside of the molybdenum foil seal, is surrounded by a filament in order to avoid cracks in the quartz glass of the discharge vessel. The pitch of the filament is less than 600 percent and is preferably even less than 300 percent. The inner diameter of the filament is at least as large as the electrode diameter and smaller than 1.5 times the electrode diameter. One disadvantage here is the fact that, owing to the filament, cavities may be produced between the quartz glass and the electrode, into which cavities filling substances may enter from the discharge space. As a result, the molybdenum foil seal may be damaged.
DE 198 12 298 has disclosed a metal-halide high-pressure discharge lamp for a motor vehicle headlamp having a discharge vessel consisting of quartz glass, which has two ends provided with a molybdenum foil seal, and two electrodes, which are each connected to one of the molybdenum foil seals and protrude into the interior of the discharge vessel. The electrodes are each surrounded by a filament, the filament having, in the front region facing the discharge space, a tight winding density and being arranged at a distance from the electrode and, in the rear region facing the molybdenum foil seal, having a clearer winding density and bearing tightly against the electrode. One disadvantage here is the complex production method for the power supply line.
The object of the invention is to provide a high-pressure discharge lamp of the generic type having improved power supply lines, which avoid the disadvantages of the prior art.
This object is achieved according to the invention by the features of patent claim 1. Particularly advantageous embodiments of the invention are described in the dependent patent claims.
The high-pressure discharge lamp according to the invention has a discharge vessel consisting of quartz glass, which has at least one end provided with a molybdenum foil seal, and at least one electrode, which is connected to the molybdenum foil seal and protrudes into the interior of the discharge vessel, a filament with a pitch of greater than or equal to 600 percent being provided which surrounds a section of the electrode which is arranged in the region of that end of the lamp vessel which is provided with the molybdenum foil seal, outside of the molybdenum foil seal. This ensures that no relatively large cracks can form in the region of the electrode in the quartz glass of the end of the discharge vessel which are brought about by the different thermal expansion of the electrode material and the quartz glass and would lead to failure of the lamp, and also that no filling substances can push forward from the interior of the discharge vessel to the molybdenum foil seals, which filling substances would cause corrosion of the molybdenum foils and would therefore damage the molybdenum foil seals.
Owing to the relatively high pitch of the abovementioned filament, its turns are far apart from one another, with the result that, when the end of the discharge vessel is sealed off, the softened quartz glass can enter between adjacent turns of the filament and can cover the surface of the electrode. Owing to its relatively high pitch, the filament also has a low thermal capacity, with the result that the quartz glass cools down more slowly as it flows around the filament and thus good sealing is achieved.
It is assumed that, during operation of the high-pressure discharge lamp, microscopically small cracks form in the quartz glass surrounding the electrode owing to the different coefficients of thermal expansion of the quartz glass and the electrode material, which cracks, owing to the existence of the filament, cannot grow to become larger cracks, which would cause a leak in the sealed end of the discharge vessel and would impair the ability of the high-pressure discharge lamp to function.
The wire diameter or the wire thickness of the filament wire is advantageously less than 100 micrometers in order not to significantly increase the diameter of the power supply line in the region of the electrode section surrounded by the filament. Advantageously, the wire diameter of the filament wire is matched to the electrode diameter in the range of from 0.25 millimeter to 0.4 millimeter, and preferably 0.30 millimeter to 0.35 millimeter, as are generally used in mercury-free metal-halide high-pressure discharge lamps for motor vehicle headlamps. The electrodes of this type of lamp are in the form of pin electrodes.
For manufacturing reasons, the first and last turns of the filament are more tightly wound than the filament section lying therebetween. It has been shown that, as a result, the desired effect of the filament is not impaired.
The invention is particularly well suited to high-pressure discharge lamps having a comparatively small discharge vessel volume of a maximum of 30 mm3, whose ionizable filling contains metal halides and xenon, and having relatively thick electrodes with a diameter in the range of from 0.25 mm to 0.4 mm, such as, for example, the abovementioned mercury-free metal-halide high-pressure discharge lamps for motor vehicle headlamps.
The invention will be explained in more detail below with reference to a preferred exemplary embodiment. In the drawing:
The power supply line has a molybdenum foil 2, which is embedded in a gas-tight manner in the closed end 11 of the discharge vessel 1. The molybdenum foil 2 has a length of 6.5 mm, a width of 2 mm and a thickness of 25 μm. That end of the molybdenum foil 2 which faces away from the interior 10 of the discharge vessel 1 is welded to a molybdenum wire 3, which protrudes out of the sealed end 11 of the discharge vessel 1. That end of the molybdenum foil 2 which faces the interior 10 of the discharge vessel 1 is welded to a bar-type electrode 4 which consists of tungsten and protrudes into the discharge space 10. The length of the electrode 4 is 7.5 mm, and its thickness or its diameter is 0.30 mm. The overlap between the electrode 4 and the molybdenum foil 2 is 1.30 mm±0.15 mm. A filament 5 is arranged centrally on the electrode 4 such that its distance from the two ends of the electrode 4 is in each case 2.25 mm. The filament 5 has a length of 3 mm. It consists of a tungsten wire, whose wire thickness or wire diameter is D=60 μm. The inner diameter of the filament 5 corresponds to the diameter or the thickness of the electrode 4. In accordance with the preferred exemplary embodiment of the invention, as is illustrated schematically in
The high-pressure discharge lamp in accordance with the preferred exemplary embodiment also has an outer bulb, which surrounds the discharge vessel 1 in the region of the discharge space 10, and a lamp base. These details are described and illustrated by way of example in EP 1 465 237 A2.
The invention is not restricted to the exemplary embodiments explained in more detail above. For example, the inner diameter of the filament 5 or 5′ may also be larger than the diameter of the electrode 4. Good results are also achieved with a filament 5 whose inner diameter is 0.33 mm and which is arranged on an electrode 4 having a diameter of 0.30 mm and which is identical in terms of its other dimensions to the filament 5 of the first exemplary embodiment.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 057 906 | Nov 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2005/002072 | 11/18/2005 | WO | 00 | 5/24/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/058513 | 6/8/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5936350 | Yoshida et al. | Aug 1999 | A |
6121729 | Takao et al. | Sep 2000 | A |
6137228 | Aizawa et al. | Oct 2000 | A |
6856079 | Zhu | Feb 2005 | B1 |
20030178940 | Yoshida et al. | Sep 2003 | A1 |
Number | Date | Country |
---|---|---|
198 12 298 | Oct 1998 | DE |
0 858 098 | Aug 1998 | EP |
1465237 | Oct 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20070296339 A1 | Dec 2007 | US |