The disclosures made herein relate generally to munitions and, more specifically, to munitions designed for low-pressure weapon systems.
Beginning in the 1950s, a family of 40 mm grenade launchers was developed to assist soldiers to cover the area between the longest range of the hand grenade (30-40 yards) and the middle range of the 60 mm mortar (300-400 yards). The family of 40 mm grenade launchers includes: the M79, the M203 and the M203a. Each of the 40 mm grenade launchers fires various types of 40 mm cartridges including: high explosive (“HE”) rounds, projectile practice rounds, chemical rounds, buckshot rounds and pyrotechnic signal and spotting rounds.
The 40 mm M79 grenade launcher resembles a large bore, single aluminum barrel, sawn off shotgun. The M79 grenade launcher was developed in the 1950s and was first delivered to the US Army in 1961.
The 40 mm M203 grenade launcher was developed to attach to an existing M-16 rifle and M-4 carbine. It consists of a 10-inch long aluminum barrel and a receiver clamped underneath an M-16 barrel. A variation of the M203 is the M203a, which consists of an 8-inch long aluminum barrel and a receiver clamped underneath a M-4 carbine. The working pressure of each of the M79/M203/M203a is 3000 psi.
Because the HE rounds require an arming delay of an internal fuze device, and because of the blast radius associated with the high explosive, the HE round is not effective at close ranges.
To provide close range potential for an M79, M203 or M203a grenade launcher, a shotgun shell type round was developed, known as an XM576. The XM576 includes 20 No. 4 buckshot pellets (each 0.24-inch in diameter) that leave the M79/M203/M203a muzzle at only 885 feet per second. Unfortunately, the XM576 has not performed as hoped either by the military or by law enforcement.
In another effort to improve the close range effectiveness of the M79/M203/M203a family of grenade launchers, a 12-gauge sub-caliber device was developed and was issued to service personnel in Vietnam on an experimental basis. The sub-caliber device consisted of a steel rim and liner with a spring-loaded extractor inside a 40 mm plastic bushing. The device was about 9-inches long and would accept any commercial 12-gauge buckshot load. Other such devices have been constructed in lengths of 5-inches overall. Unfortunately, neither the XM576 nor the sub-caliber devices can provide satisfactory shot patterns or velocity at ranges beyond approximately 10 yards.
What is needed is a device that can be used in existing M79/M203/M203a grenade launchers, or other sizes of low pressure launching systems, to provide a close quarter battle load and at the same time, overcome the problems that exist with the XM576 round and sub-caliber adapters.
A high-pressure fixed munition for a low-pressure launching system having a cylindrical body with a centrally located bore is provided. The bore of the munition has a reduced diameter on the charge end in which a primer charge is positioned. The bore is filled above the primer charge with a propellant and above the propellant with a payload. The payload may include multiple buckshot pellets, frangible buckshot pellets, tear gas, multiple slugs, frangible slugs, paint balls, rubber pellets, bean bags, or the like. The munition may also include a pressure disk between the propellant and the payload, and tactile ridges or on the outside surface of the munition body or be of a specific color for purposes of identification of the payload.
Closed cell foam can be inserted in the top of the high-pressure fixed munition to seal off the contents from mud, sand, water or other debris.
The resulting inventive high-pressure fixed munition provides an improved muzzle velocity, range and shot pattern in comparison to conventional munitions used with low pressure launching systems.
The following table, viewed together with the enclosed figures and detailed description, is provided to understand clearly a preferred embodiment of the invention:
Referring now to
In
Both the XM576 (P1) and the sub-caliber adapter (P2) are designed to be fired from an M79 grenade launcher, designated as C in
The inventive high-pressure fixed munition is designated in
The upper large diameter 68a and the lower large diameter 68b center the high-pressure munition A within the chamber of the barrel B1a and C1 (
A conventional .38 Smith and Wesson cartridge case 56 is inserted into the small bore 57 of the high-pressure munition A as best seen in
An alternative embodiment shown in
An optional burst disk 60 is inserted above the propellant 58. The burst disk 60 seals off propellant charge from the base of the high-pressure munition A, retaining the propellant 58 sufficient for efficient power combustion. Because the propellant 58 bears against the burst disk 60 and does not use an expansion chamber, the pressure front from the propellant gasses is prevented from distorting the body 52 of the high-pressure munition A.
The burning characteristics of the propellant 58 can be adjusted to allow the use of frangible projectiles, which can distort and fracture under pressure.
A wad 62 is inserted above the burst disk 60. The wad 62 includes a shot cup portion 65, into which projectiles are inserted. Because of the large volume available in the bore 55 of the high-pressure fixed munition A relative to the volume available in a conventional shotgun shell 35 shown with the prior art sub-caliber adapter P2 in
It should be appreciated that the bore 55 can be enlarged for example, when paint balls are to be used, and can be otherwise changed in size as desired.
The exit of the bore 55 can be reduced in diameter to form a choked taper 74 (
The body 52 of the high-pressure fixed munition A is typically constructed of thermoplastic nylon 6/12, but can also be constructed of glass filled nylon, other desired polymer or a desired metal, such as aluminum. Other metallic materials or a combination of different materials, including, but not limited to polymer with metallic construction are also contemplated.
The high-pressure fixed munition A may be used as an expendable munition or may be reloaded. The body 52 material may be reused many times if desired.
The pressure containment properties of the body 52 allow the high-pressure fixed munition A to retain the high pressure of the gasses from the propellant 58 thereby allowing the use of the high-pressure fixed munition A in the M79/M203/M203a grenade launchers, which were originally designed for use with low pressure munitions. The pressure developed in the high-pressure fixed munition A is 12,000-15,000 psi, which exceeds the allowable working pressure of 3,000 of the M79/M203/M203a grenade launchers. The reason the high-pressure fixed munition can be operated safely in the low-pressure grenade launchers is because the bore 55 of the high-pressure fixed munition A acts as the barrel, effectively replacing the barrel B1a of the M203 (
Closed cell foam 68 may be inserted in the top of the high-pressure fixed munition A to seal off the contents thereof from mud, sand, water or other debris. Multi-purpose latex foam, such as that manufactured by DAP.®, may be used but other foams can also be used. The important characteristics include: providing a water barrier, low density, high toughness and resilience. Biodegradable, closed cell foam can also be used to allow the high-pressure fixed munition A to be environmentally compatible.
Raised ridges 50 (
As indicated by the following tables, the performance of the high-pressure fixed munition A is far superior to the performance of either the XM576 (P1) or the sub-caliber adapter (P2).
The high-pressure fixed munition A is a more effective munition than either the XM576 (P1) or the sub-caliber adapter (P2). The high-pressure fixed munition A has a higher muzzle velocity than both the XM576 (P1) and the sub-caliber adapter (P2), even though the high-pressure fixed munition A fires projectile loads that are heavier than those fired in the XM576 (P1) and the sub-caliber adapter (P2). The larger pressures that are developed in the high-pressure fixed munition A results in the higher velocities and also provides increased ranges of the projectiles. Furthermore, loads of 18 or 20 pellets of “00” buckshot or 25 pellets of frangible “00” buckshot shot from the high-pressure fixed munition result in a shot pattern of approximately 4″ at 10 feet and 8″ at 30 feet. It is believed that the tight shot pattern is the result of a pressure front that travels in front of the propellant and that surrounds the pellet load as it travels away from the barrel B1, B1A. The pressure front tends to contain the pellet load in a desirable, tight pattern.
Even though the high-pressure fixed munition A develops pressures exit pressures that are 12,000-15,000 psi, the high pressures in combination with the large loads do not create large recoils to the shooter. Instead, it is believed that the large mass of the weapons in which the high-pressure fixed munition A are fired absorbs the energy and resists transferring the recoil inertia back to the shooter. The lack of heavy recoil is an important feature with the high-pressure fixed munition A because it reduces the tendency for a shooter to flinch, in anticipation of a large recoil, thereby losing his or her concentration and accuracy.
The length of the barrel C1 on the M79 (C) (
Because many varying and different embodiments may be made within the scope of the inventive concept herein taught and claimed, and because many modifications may be made in the embodiments herein detailed in accordance with the descriptive requirements of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.
This patent application claims priority from U.S. Non-Provisional Patent Application having Ser. No. 11/015,014, filed on Dec. 20, 2004, now U.S. Pat. No. 7,481,167, entitled “High-Pressure Fixed Munition For Low-Pressure Launching System”, having a common applicant herewith and being incorporated herein in its entirety by reference, which claims priority from U.S. Provisional Patent Application having Ser. No. 60/541,935, filed on Feb. 6, 2004, having a common applicant herewith and being incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
2466714 | Kroeger et al. | Apr 1949 | A |
3422761 | Whitmore | Jan 1969 | A |
3618250 | Grandy | Nov 1971 | A |
3724378 | Knight et al. | Apr 1973 | A |
3991682 | Peak | Nov 1976 | A |
4762068 | Lubbers | Aug 1988 | A |
5033386 | Vatsvog | Jul 1991 | A |
5085147 | Gold et al. | Feb 1992 | A |
5363769 | Bellak et al. | Nov 1994 | A |
5644100 | Puckett et al. | Jul 1997 | A |
6041712 | Lyon | Mar 2000 | A |
6311623 | Zaruba | Nov 2001 | B1 |
7481167 | Engel et al. | Jan 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20090095187 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60541935 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11015014 | Dec 2004 | US |
Child | 12316188 | US |