The claimed invention relates to a connection assembly and method suitable for high-pressure applications.
A high-pressure fluid connection may be used to connect various components, such as those in high-pressure fuel systems (seeing pressures up to 40 MPa). These connections require a fairly robust seal between mating components to prevent escape of liquids or gases. Furthermore, these connections may require materials capable of withstanding various environmental conditions, depending upon the fluids being carried therein.
A high-pressure connection for corrosive fluids is provided. The connection includes a female member formed from a first material and having a female surface, and a male member formed from a second material and having a male surface. The male surface has a complementary shape to, and is configured to interface with, the female surface. A malleable coating is formed from a third material, and substantially covers the male surface. The male surface is configured to be pressed into the female surface, such that the malleable coating is sandwiched between the male and female surfaces to effect a fluid seal therebetween.
In one embodiment of the high-pressure connection, the female surface is substantially frusto-conical and the male surface is substantially spherical. The third material, from which the malleable coating is formed, may be copper or a copper alloy. One, or both, of the first and second materials, from which the female and male members are formed, respectively, may be stainless steel.
A supply line may be brazed onto the male member on an end generally opposite of the male surface, and the malleable coating plated onto the male surface and also configured to act as a brazing compound for attaching the supply line. The fluid seal may be configured to be used in a high-pressure fuel environment. The fluid seal may be characterized by the absence of a gasket or an o-ring. The malleable coating may have a thickness of between approximately 15 to 30 microns.
In one embodiment of the claimed invention, the third material has greater malleability than said first and second materials. Furthermore, the third material may have a lower melting temperature than the second material.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes and other embodiments for carrying out the invention when taken in connection with the accompanying drawings.
Referring to the drawings, wherein like reference numbers correspond to like or similar components throughout the several figures, there is shown in
The joint 11 is composed generally of two main parts: a socket 12 and a ball 16. The joint 11 is sealed by pressing the ball 16 into the socket 12. A sealing interface 15 is created by the contact force between a female surface 14 of the socket 12 and a male surface 18 of the ball 16. Respective fluid passages 13 and 17 in the socket 12 and ball 16 allow transfer of high-pressure fluids through the connection assembly 10. Those having ordinary skill in the art will recognize that the detailed structure of fluid passages 13 and 17 in
The sealing interface 15 is a portion or region of the interface or contact zone between the socket 12 and ball 16, through which fluid (such as liquid, gas, or a combination thereof) cannot pass. Those having ordinary skill in the art will recognize that it is difficult to accomplish a perfect fluid seal under all operating conditions and that, depending upon the application, some leakage or seepage across the sealing interface 15 may be acceptable.
The connection assembly 10 shown in
In the embodiment shown in
The connection assembly 10 further includes a malleable coating 20, which substantially covers the male surface 18. As the ball 16 is pressed into the socket 12, the malleable coating 20 is sandwiched between the male surface 18 and the female surface 14. Therefore, the malleable coating 20 may deform slightly to effect a fluid seal between the male surface 18 and female surface 14 and form the sealing interface 15. This sealing interface 15 may be capable of withstanding high-pressure, corrosive environments, such as those existing in systems utilizing, for example: gasoline, methanol, diesel, ethanol, jet fuel, and other fluids recognizable to those having ordinary skill in the art.
Copper is one exemplary material offering sufficient compliance and corrosion resistance to be used as the malleable coating 20. Because copper is softer than the stainless steel material forming the two mating components, the copper malleable coating 20 will conform to surface imperfections on the ball 16 or socket 12 and provide a more robust seal between the male and female surfaces 18 and 14 than the uncoated stainless steel. This may allow the joint 11 to be sealed with larger machining variations on the male and female surfaces 18 and 14.
Referring now to
Depending upon the application and the materials used for the socket 12, ball 16, and malleable coating 20, a coating thickness of 15-30 microns may be used to effect a sufficient fluid seal at the sealing interface 15 and to deform into any imperfections present. Note that the attached figures are schematic only, and the thickness of malleable coating 20 may not be shown to scale.
Referring again to
In the embodiment shown in
Connection assembly 10 further includes a fluid supply line 28, such as a high-pressure fuel line, which carries fluid from the passage 17 in the ball 16. Supply line 28 may be attached to the ball 16 by brazing with a suitable brazing medium or compound, such as copper. Brazing generally refers to distributing a filler metal between closely fitted facing surfaces—such as those in contact between the supply line 28 and ball 16—by capillary action. Excess brazing compound may interfere with the ability to fluidly seal fuel joints using stainless steel directly contacting stainless steel.
The malleable coating 20 may be applied concurrently with the brazing process, where the melted material—such as copper or copper alloy—comprising the malleable coating 20 is applied to the ball 16 to evenly coat male surface 18. The copper material is distributed over the male surface 18 by a heated plating process.
Alternatively, the ball 16 may have the malleable coating 20 applied prior to the brazing process attaching the supply line 28 to the ball 16. By depositing the malleable coating 20 prior to the brazing process, the brazing compound, which may otherwise be applied as a braze insert, is already in place as the components are assembled. The supply line 28 may be pressed into the ball 16 and the two components then placed in a braze furnace. The malleable coating 20 in the contact zone between the supply line 28 and ball 16 would then fuse the two together.
The ball 16 is formed from a material having a higher melting temperature than the melting temperature of the material of the malleable coating 20 (the brazing medium). Additionally, the socket 12 and ball 16 may be formed from materials having substantially lower malleability or ductility than the material forming the malleable coating 20.
Where copper or copper alloy is used both as the braze medium and to form the malleable coating 20, the ball 16 may be coated as part of the brazing process. This may increase efficiency of the manufacturing process for the connection assembly 10 following machining of the socket 12 and ball 16, as separate processes or steps would not be required for attaching the supply line 28 to the ball 16 and for applying the malleable coating 20.
The sealing interface 15 formed between the male and female surfaces 18 and 14 by the malleable coating 20 does not require a rubber or plastic gasket or o-ring for the primary fluid seal of the joint 11. However, where additional sealing is desired, an optional flexible sealing member 32 may also be included in the connection assembly 10, as shown in
As viewed in
The specific geometry of the male and female surfaces 18 and 14 in
In the embodiment shown in
Malleable coating 20 further provides an assembly barrier between the stainless steel nut 22 and the stainless steel ball 16. This barrier reduces friction between the two materials, allowing more of the assembly force (torque applied to tighten the nut 22 to the socket 12) to be directed to the sealing interfaces 15 and 34, instead of friction between the two components (22, 16). Additionally, the malleable coating 20 between the nut 22 and ball 16 helps to prevent galling (fretting, gouging, or wearing away of material) as the nut 22 is tightened onto the socket 12.
Referring now to
Those having ordinary skill in the art will recognize that while the embodiments shown in
While the best modes and other embodiments for carrying out the claimed invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.