HIGH-PRESSURE, FLUID STORAGE TANKS

Information

  • Patent Application
  • 20080026167
  • Publication Number
    20080026167
  • Date Filed
    July 25, 2006
    18 years ago
  • Date Published
    January 31, 2008
    17 years ago
Abstract
The invention comprehends a tank for storing fluid under pressure and a method for manufacturing the tank. The tank has an inner core of an open-celled foam that is characterized by open voids that are at least partially interconnected by passages and are surrounded by a fibrous or ligament structure/network (collectively, “ligaments”). Attached to the inner core is an outer skin.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 includes cross-sectional views of a prior art open-celled metallic foam at different magnifications;



FIG. 2 is a cross-sectional view of a close-packed idealized CAD model of open-celled foam;



FIG. 3 is a multi-sectional view of a close-packed idealized CAD model of open-celled foam showing at the upper right the ligament nature of the material between the voids;



FIG. 4 is a unit cell of the close-packed idealized CAD model of open-celled foam where the material is transparent—passageways through the foam are visible;



FIG. 5 is a sectional 2-D illustration of an added layer of a material, different from the foam that mechanically interlaces with the outer layer of cells to integrate the outer skin;



FIG. 6 is a fragmented, sectional 2-D illustration of decreased void size near the outer skin and in the region of an exhaust valve attachment to the tank;



FIG. 7 is a process flow diagram illustrating the steps in making a syntactic-foam version of the disclosed invention; and



FIG. 8 is a process flow diagram illustrating the steps in making a gas-bubbled and coated version of the disclosed invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

The invention includes a tank for storing a fluid, such as a gas, under pressure. The tank has an inner core of an open-celled foam that is characterized by voids that are at least partially interconnected by passages and are surrounded by a fibrous or ligament structure/network (collectively, “ligaments”). Attached to the inner core is an outer skin.



FIG. 1 depicts a known open-celled metallic foam 10 made up of voids 11 and surrounding material 12 that appear as a network of ligaments. As shown in FIGS. 2-4, the pressurized gas is stored inside an open-celled structural foam 10 that has an outer skin 13, thus loading the foam internally. Pressure acts outwardly on the cells and ultimately on the outer skin 13. As shown in FIG. 2, the cellular ligament structure 12 holds patches or regions (for example 14) of the outer skin in balance through a load path (for example 15), with distally located patches/regions of outer skin (for example 16).


The outer skin 13 can be of the same material as the core and thus can be created at the same time as the interior open-celled foam region. Or, the outer skin can be of different material from the core and be added to an open-celled foam structure.


If the materials are the same, localized welding (a “weldment”) occurs between the molten skin material (upon dipping or plasma spraying, for instance) and the cells in the outer layer(s) cell of the foam. As depicted in FIG. 5, in the case of a different material (e.g., an epoxy dipped, sprayed or spread on the surface), the outer skin 13 integrates with the foam through not only adhesion but also via mechanical interlacing 17 with the outer layers of cell structures.


The open-celled nature of the invention allows a fluid, such as the gas to be stored under pressure to diffuse throughout the inner space. However, since the cells can be small in size, 25 micrometers for instance, there is some point at which the gas flow through the open-celled structure is regulated due to the resulting flow restriction. Flow may be restricted by the small passageways from cell to cell. This increases the drag for a given flow velocity, noting that flow drag increases also with the square of flow velocity. As such, the entire tank can be self-regulating to some degree.


Alternatively, (FIG. 6), the cell size can be larger in the interior 18. In this embodiment, smaller cells lie along the exterior 19 and near an exhaust valve attachment 20, the latter serving as a final regulator for useful-flow characteristics. The former serves to regulate flow should the outer skin be compromised, such as in an accident.



FIGS. 7-8 show the main steps in making two embodiments that are conducive to different applications. The syntactic foam version of FIG. 7 is useful when significant, overall flow regulation is desired. As used herein, the term “syntactic foam” means a lightweight foam that includes glass hollow spheres that are embedded in a matrix. Such spheres typically may range from 10 to 200 microns in diameter. The spheres may be made of glass, ceramic, polymers, and mixtures thereof. Flow constriction is desirable when a tank is penetrated during an accident.


In one embodiment, the gas-bubbled foam with applied outer skin (FIG. 8) is useful when high regulation is not needed and/or there is a demand for no contamination that may otherwise result from broken micro-sphere pieces. The inventive process includes an optional surface densification crushing step that can be employed to decrease void density at the outer layers as a means to increase regulation in the event of a surface-level breach.


In some embodiments, the void density of the core structural foam exceeds 75%. Correspondingly, the foam mass density of the bulk material is less than about 25%. In some cases, the void density may decrease closer to the outer skin of the tank.


If desired, the structural foam core is made by passing gas bubbles through or creating gas bubbles in a molten polymer or metal. Alternatively, the structural foam is made by dissolving gas from a molten polymer or metal by changing ambient pressure and/or temperature during solidification.


Where the core is made of structural foam that is of a syntactic type, the foam is made by injecting a molten polymer or metal to fill spaces between hollow spheres. In such cases, the outer skin may be attached to the structural foam core by a weldment during solidification of the foam core. Optionally, hollow spheres can be broken to allow fluid to access their inner space.


As noted earlier, the structural foam core can be made from a material that is selected from the group consisting of polymers, metals, metal alloys, and ceramics.


Thus, the present invention makes use of open-celled foam to provide increased pressure capacity for a given tank mass or external tank volume. The invention employs an impermeable outer skin having a shape that may be symmetrical or asymmetrical (i.e., shape is not necessarily cylindrical or spherical as are typical pressure vessels/tanks). The pressurized fluid is stored under pressure inside the voids of the foam structure. The outer skin is supported in many places by the ligament structure of the foam.


An internal pressure creates tensile loading of the ligament network that is relatively equal in all directions, if there are substantial uniformities of cell size. This yields greater overall pressure-to-mass capability than, for example, a cylindrical (shell-only) or spherical tank. The tank shape is constrained only by the combination of cells, i.e., it can be any shape with geometric features larger than the cell size.


Since the ligament structure impedes fluid flow, as it does when metallic foams are used for constriction, the invention can provide some degree of self-regulation for controlled delivery of the fluid. For example, it is anticipated that upon compromising the outer skin, less violent exhaust occurs of the pressurized fluid to the environment, and explosive forces are substantially reduced.


An increased pressure capability results for a given type of tank material (e.g., aluminum foam versus an aluminum and/or carbon-fiber-wound cylindrical tank), since the ligament network within the structural foam acts as miniature cables that hold all the outer surfaces to each other.


It may be possible to create an “interior cabling” structure, such as a matrix of fibers (like ceramic fibers) with an outer shell. However, geometrical assessment of the volume that individual fibers would consume indicates it would be excessive since the fibers must run in all (three, for instance) directions, and where they cross, they must overlap rather than intersect. In contrast, the ligament structure of the open-celled structural foam is like many intersecting fibers, not overlapping fibers. Hence, it can provide better strength per material/fiber volume. Furthermore, using structural foam provides a natural way of creating the fibrous matrix structure.


Arbitrary shape of the pressure vessel is possible since the pressure acting on a small element of the outer skin, the area corresponding to a single void in the structural foam, is carried as a tensile stress in the ligaments surrounding that void. That load is then transferred to other ligaments, and eventually balanced by the pressure acting on the outer skin on an opposite side of the tank. Since the ligament network has a spatial resolution that is very small, it can accommodate any shape that is made up of “cells” of that size. This has a similar effect to the pixel size on a computer screen and its relation to the shapes one can draw in a specified envelope. In fact, it is similar to the idealized case of many nested (in a close-packed structure) spheres with solid ligaments filling in around them, each sphere acting like a microscopic spherical pressure tank that is linked to and overlaps with its adjacent spherical tanks.


Traditional spherical or cylindrical tanks, on the other hand, even if made smaller and nested together, would have to become micro-sized to achieve the similar effect. Of course, they would not be integrated or “glued” together as in this structural foam approach. This would mean that their effective ligaments (micro-cylinder walls) would be doubled and less weight-effective.


There are various ways of manufacturing the tanks of the present invention. They can be manufactured, for example, from polymers, ceramics, and metal alloys. The material to use depends on the particular application and its relative prioritization of tank mass versus total external volume.


Structural foams, both polymeric and metallic, can be made to void densities greater than 90%. As void density increases, there is more internal volume (relative to a given external tank volume) for gas to consume, though maximum gas pressure would decrease. Thus, a larger external volume may be needed to hold the same mass of gas. Since the density of gas increases disproportionately (at a slower rate) as the pressure increases, increased void density at lower gas pressure can contain a greater mass of hydrogen per mass of the tank, though possibly at some sacrifice of total external volume. There is a variety of optimum void densities depending on the relative importance placed on mass of the tank versus total external volume of the tank.


One way in which polymer foams can be made is by gas bubbles forming during solidification. Bubbles form due to change in pressure and temperature. The gas that is in solution in the molten polymer may come out of solution, in the same way carbonation comes out of solution from a carbonated beverage when the pressure changes upon opening the container. When the bubbles form, a void is created. Depending on the concentration of gas in solution and other factors, the void density can be controlled. The quick cooling of the outer layer at the die surface can freeze the outer layer without bubble formation, potentially yielding the desired outer skin. This may also be extendible to metallic foam manufacture.


However, since the spheres (e.g., hollow glass spheres or cenospheres, byproducts of fly ash formed in coal-fired power generation) are brittle, slight deformation in multiple directions causes the spheres to fracture. This creates pathways between them along which the small gas molecules may travel. By encapsulating the matrix of spheres with a layer of material (e.g., a binder) that will burn away when the molten metal hits it, an outer skin would be formed around the cellular interior. This approach could enhance the self regulating nature, though it could be over regulated when the pressure becomes lower as the tank becomes partially emptied.


One material of choice is often high strength aluminum. However, if weight is not a concern, e.g. for SCUBA applications, steel can be used. Titanium may also be a suitable material, depending on the application. However, its cost is high compared to aluminum, so it is likely to be effective only for special applications, perhaps for hydrogen (and even oxygen) needs on the battle field.


While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.

Claims
  • 1. A tank for storing fluid under pressure, the tank comprising: an inner core of an open-celled structural foam characterized by voids that are at least partially interconnected by passages and surrounded by fibrous material; andan outer skin that is attached to the inner core.
  • 2. The tank of claim 1, wherein the void density of the core structural foam is greater than 75%.
  • 3. The tank of claim 1, wherein the structural foam core is of a material selected from the group consisting of a polymer, a metal, and a ceramic.
  • 4. The tank of claim 1, wherein void density decreases proximate the outer skin.
  • 5. The tank of claim 1, wherein the outer skin is made of the same material as the structural foam core.
  • 6. The tank of claim 5, wherein the outer skin is attached to the structural foam core by a weldment.
  • 7. The tank of claim 1, wherein the outer skin is made of a different material form the structural foam core.
  • 8. The tank of claim 7, wherein the outer skin is attached to the structural foam core by adherence.
  • 9. The tank of claim 8, wherein the outer skin is attached to the structural foam core by a mechanical interlacing with one or more of the group consisting of cells, voids, and ligaments of the outer layers of structural foam.
  • 10. The tank of claim 1, wherein the structural foam core is made by passing gas bubbles through a molten polymer or metal.
  • 11. The tank of claim 1, wherein the structural foam core is made by creating and passing gas bubbles through a molten polymer or metal.
  • 12. The tank of claim 1, wherein the structural foam core is made by dissolution of dissolved gas from the molten polymer or metal upon a change in pressure and temperature during solidification.
  • 13. The tank of claim 1, wherein the structural foam core is of the syntactic type and is made by injecting melt to fill at least some spaces between at least some hollow spheres.
  • 14. The tank of claim 13, wherein the outer skin is attached to the structural foam core by a weldment during solidification of the foam core.
  • 15. The tank of claim 13, wherein the hollow spheres are broken to allow fluid to access their inner space.
  • 16. The tank of claim 13, wherein the melt is selected from the group consisting of a polymer, a metal, and combinations thereof.
  • 17. A method of making a tank for containing a gaseous fluid comprising the steps of: mixing hollow spheres with an inorganic binder;adding a layer of inorganic binder to serve as a skin of the tank to form an intermediate product;placing the intermediate product in a squeeze casting die and injecting melt, burning away the binder; andcompressing the intermediate product so as to fracture brittle hollow spheres.
  • 18. A method of making a tank for storing a gaseous fluid comprising the steps of: cutting an open-cell foam blank from a sheet;applying a material to the open-cell foam that is prepared from the previous step, the materials serving as a skin thereof; andallowing the skin to solidify.