Next, specific embodiments of the present invention will be explained with reference to drawings.
In this circuit, the solenoid 13 of high-pressure pump is connected with the drain of switching MOSFET (Nch) 14, and the cathode of flywheel diode 12 is connected with the source voltage VB and the anode of flywheel diode 12 is connected with the solenoid. Further, the cathode of Zener diode 10 is connected with the VB and the anode thereof is connected with the solenoid coil. The MOSFET (Pch) 11 is connected, in parallel, with the Zener diode. When an input voltage is impressed to the gates of the MOSFET (Pch) 11 and the MOSFET (Nch) 14, not only the MOSFET (Pch) 11 but also the MOSFET (Nch) 14 is turned ON, permitting an electric current IL to flow into the solenoid coil 13. At this moment, the drain voltage VD of MOSFET (Nch) 14 is caused to fall from the VB to about zero volt and, at the same time, the electric current IL flowing through the solenoid coil 13 is caused to rise transiently and electromagnetic energy is caused to accumulate in the solenoid coil 13 due to this electric current IL.
When the gate voltage of the MOSFET (Nch) 14 is dropped to 0 volt, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, thus raising the electric potential of the VD. Namely, large voltages, opposite in direction, are imposed on the opposite ends of the solenoid coil 13, respectively. These large voltages developed on the opposite ends of the solenoid coil 13 can be vanished by passing electric current to the flywheel diode 12 which is connected, in parallel, with the solenoid coil 13.
Meanwhile, in a steady state wherein the MOSFET (Nch) 14 is turned ON and an input voltage as indicated by the number 5 in
The configuration of circuit described above is the same as that of the conventional circuit shown in
In the case of the circuit configuration as described above, even if the solenoid coils 13, 17 are brought into short-circuiting with VB, it is possible to protect the circuit by the switching of the MOSFETs (Nch) 14, 18 to OFF. On the contrary, when the solenoid coils 13, 17 are brought into short-circuiting with GND, it is possible to protect the circuit by the switching of the MOSFET (Pch) 11 and the clamp Zener diode-attached IPD 15 to OFF. Further, when the opposite ends of solenoid coils 13, 17 are brought into short-circuiting due to harness, it is possible to detect the abnormality of electric current by changing the MOSFETs (Nch) 14, 18 into an over-current protection function-attached (Nch) IPD, respectively. Further, although it may become more expensive, a current-detecting circuit may be additionally attached to the aforementioned circuit configuration without changing the MOSFETs (Nch) 14, 18 into the IPD, respectively, thereby making it possible to detect the abnormality of electric current and also to improve the accuracy of electric current flowing into the solenoid coils.
In this circuit, the solenoid coil 20 of high-pressure pump is connected with the drain of switching MOSFET (Pch) 19, and the cathode of flywheel diode 21 is connected with the drain of switching MOSFET (Pch) 19 and the anode of flywheel diode 21 is connected with the GND. Further, the cathode of Zener diode 22 is connected with the solenoid coil 20 and the anode thereof is connected with the GND. The MOSFET (Nch) 23 is connected, in parallel, with the Zener diode.
When an input voltage is impressed to the MOSFET (Pch) 19 and the MOSFET (Nch) 23, not only the MOSFET (Pch) 19 but also the MOSFET (Nch) 23 is turned ON, permitting an electric current IL to flow into the solenoid coil 20. At this moment, the drain voltage VD of MOSFET (Pch) 19 is caused to fall from the source voltage VB to about zero volt and, at the same time, the electric current IL flowing through the solenoid coil 20 is caused to rise transiently and electromagnetic energy is caused to accumulate in the solenoid coil 20 due to this electric current IL. When the gate voltage of the MOSFET (Pch) 19 is dropped to 0 volt, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, thereby causing the electric potential of VD to rise. Namely, large voltages, opposite in direction, are imposed on the opposite ends of the solenoid coil 20, respectively. These large voltages developed on the opposite ends of the solenoid coil 20 can be vanished by passing electric current to the flywheel diode 21 which is connected, in parallel, with the solenoid coil 20.
Meanwhile, in a steady state wherein the MOSFET (Pch) 19 is turned ON and an input signal as indicated by the number 5 in
When the MOSFET (Pch) 19 is turned OFF concurrent with the switching of the switching MOSFET (Nch) 23 to OFF in order to accelerate the fall time of electric current, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, whereby the electric potential of VD is caused to rise, thus imposing a large voltage on the opposite ends of Zener diode 22. This large voltage developed on the opposite ends of Zener diode 22 cannot be consumed by the flywheel diode 21 due to the existence of the Zener diode 22 but can be completely consumed by the Zener diode. Because of this, it is possible to further shorten the fall time of electric current as compared with the conventional circuit configuration shown in
In the case of the circuit configuration as described above, it is possible to protect the circuit by the switching of the MOSFET (Nch) 23 and the clamp Zener diode-attached IPD 27 to OFF when the solenoid coils 20, 25 are brought into short-circuiting with VB. Further, it is possible to protect the circuit by the switching of the MOSFETs (Pch) 19, 24 to OFF when the solenoid coils 20, 25 are brought into short-circuiting with the GND. Furthermore, when the opposite ends of solenoid coils 20, 25 are brought into short-circuiting due to harness, it is possible to detect the abnormality of electric current by changing the MOSFETs (Pch) 19, 24 into an over-current protection function-attached (Pch) IPD. Further, although it may become more expensive, a current-detecting circuit may be additionally attached to the aforementioned circuit configuration without changing the MOSFETs (Pch) 19, 24 into the IPD, thereby making it possible to detect the abnormality of electric current and also to improve the accuracy of electric current flowing into the solenoid coils 20, 25.
In this circuit, the solenoid coil 30 of high-pressure pump is connected with the drain of switching MOSFET (Nch) 35, and the anode of flywheel diode 32 is connected with the drain of MOSFET (Nch) 35 and the cathode of flywheel diode 32 is connected with the source of MOSFET (Pch) 28. Further, the anode of Zener diode 31 is connected with the source voltage VB and the cathode thereof is connected with the cathode of flywheel diode 32. The MOSFET (Pch) 28 is connected, in parallel, with the Zener diode. When an input voltage is impressed to the gates of the MOSFET (Pch) 28 and the MOSFET (Nch) 35, not only the MOSFET (Pch) 28 but also the MOSFET (Nch) 35 is turned ON, permitting an electric current IL to flow into the solenoid coil 30. At this moment, the drain voltage VD of MOSFET (Nch) 35 is caused to fall from the VB to about zero volt and, at the same time, the electric current IL flowing through the solenoid coil 30 is caused to rise transiently and electromagnetic energy is caused to accumulate in the solenoid coil 30 due to this electric current IL.
When the gate voltage of the MOSFET (Nch) 35 is dropped to 0 volt, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, thus raising the electric potential of the VD. Namely, large voltages, opposite in direction, are imposed on the opposite ends of the solenoid coil 30, respectively. These large voltages developed on the opposite ends of the solenoid coil 30 can be vanished by passing electric current to the flywheel diode 32 which is connected, in parallel, with the solenoid coil 30.
Meanwhile, in a steady state wherein the MOSFET (Nch) 35 is turned ON and an input voltage as indicated by the number 5 in
When the MOSFET (Pch) 28 is turned OFF concurrent with the switching of switching MOSFET (Nch) 35 to OFF in order to accelerate the fall time of electric current, the gate voltage of MOSFET (Pch) 28 and of MOSFET (Nch) 35 is dropped to zero volt, so that a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, whereby the electric potential of VD is caused to rise, thus imposing a large voltage on the opposite ends of Zener diode 31. This large voltage developed on the opposite ends of Zener diode 31 cannot be consumed by the flywheel diode 32 due to the existence of the Zener diode 31 but can be completely consumed by the Zener diode. Because of this, it is possible to further shorten the fall time of electric current as compared with the conventional circuit configuration shown in
In the case of the circuit configuration as described above, it is impossible to protect the circuit when the solenoid coils 30, 36 are brought into short-circuiting with the GND. However, when the opposite ends of solenoid coils 30, 36 are brought into short-circuiting due to harness, it is possible to detect the abnormality of electric current by changing the MOSFETs (Nch) 35, 42 into an over-current protection function-attached (Pch) IPD. Further, although it may become more expensive, a current-detecting circuit may be additionally attached to the aforementioned circuit configuration without changing the MOSFETs (Pch) 35, 42 into the IPD, thereby making it possible to detect the abnormality of electric current and also to improve the accuracy of electric current flowing into the solenoid coils.
In this circuit, the solenoid 44 of high-pressure pump is connected with the drain of switching MOSFET (Pch) 43, and the cathode of flywheel diode 45 is connected with the drain of switching MOSFET (Pch) 43 and the anode of flywheel diode 45 is connected with the source of MOSFET (Nch) 48. Further, the anode of Zener diode 47 is connected with the anode of flywheel diode 45 and the cathode thereof is connected with the GND. The MOSFET (Nch) 48 is connected, in parallel, with the Zener diode.
When an input voltage is impressed to the MOSFET (Pch) 43 and the MOSFET (Nch) 48, not only the MOSFET (Pch) 43 but also the MOSFET (Nch) 48 is turned ON, permitting an electric current IL to flow into the solenoid coil 44. At this moment, the drain voltage VD of MOSFET (Pch) 43 is caused to fall from the source voltage VB to about zero volt and, at the same time, the electric current IL flowing through the solenoid coil 44 is caused to rise transiently and electromagnetic energy is caused to accumulate in the solenoid coil 44 due to this electric current IL. When the gate voltage of the MOSFET (Pch) 43 is dropped to 0 volt, the MOSFET (Pch) 43 is turned ON, so that a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy. As a result, the electric potential of VD is caused to rise, whereby large voltages, opposite in direction, are imposed on the opposite ends of the solenoid coil 44, respectively. These large voltages developed on the opposite ends of the solenoid coil 44 can be vanished by passing electric current to the flywheel diode 45 which is connected, in parallel, with the solenoid coil 44.
Meanwhile, in a steady state wherein the MOSFET (Pch) 43 is turned ON and an input signal as indicated by the number 5 in
When the MOSFET (Pch) 43 is turned OFF concurrent with the switching of the switching MOSFET (Nch) 48 to OFF in order to accelerate the fall time of electric current, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, whereby the electric potential of VD is caused to rise, thus imposing a large voltage on the opposite ends of Zener diode 47. This large voltage developed on the opposite ends of Zener diode 47 cannot be consumed by the flywheel diode 45 due to the existence of the Zener diode but can be completely consumed by the Zener diode. Because of this, it is possible to further shorten the fall time of electric current as compared with the conventional circuit configuration shown in
In the case of the circuit configuration as described above, it is impossible to protect the circuit when the solenoid coils 44, 51 are brought into short-circuiting with VB. However, when the opposite ends of solenoid coils 44, 51 are brought into short-circuiting due to harness, it is possible to detect the abnormality of electric current by changing the MOSFETs (Pch) 43, 50 into an over-current protection function-attached (Pch) IPD. Further, although it may become more expensive, a current-detecting circuit may be additionally attached to the aforementioned circuit configuration without changing the MOSFETs (Pch) 43, 50 into the IPD, thereby making it possible to detect the abnormality of electric current and also to improve the accuracy of electric current flowing into the solenoid coils 44, 51.
In this circuit, the solenoid 58 of high-pressure pump is connected with the drain of switching MOSFET (Pch) 57, and the cathode of flywheel diode 60 is connected with the drain of switching MOSFET (Pch) 57 and the anode of flywheel diode 60 is connected with the GND. This circuit differs from that of Example 2 in that instead of connecting the Zener diode with the circuit, an MOSFET (Nch) 59 is employed in such a manner that the drain of the MOSFET (Nch) 59 is connected, in series, with a diode 56 and a booster electrolytic capacitor 61.
When an input voltage is impressed to the MOSFET (Nch) 59 and the MOSFET (Pch) 57, not only the MOSFET (Nch) 59 but also the MOSFET (Pch) 57 is turned ON, permitting an electric current IL to flow into the solenoid coil 58. At this moment, the drain voltage VD of MOSFET (Pch) 57 is caused to fall from the source voltage VB to about zero volt and, at the same time, the electric current IL flowing through the solenoid coil 58 is caused to rise transiently and electromagnetic energy is caused to accumulate in the solenoid coil due to this electric current IL.
When the gate voltage of the MOSFET (Pch) 57 is dropped to 0 volt, the MOSFET (Pch) 57 is turned ON, so that a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy. As a result, the electric potential of VD is caused to rise, whereby large voltages, opposite in direction, are imposed on the opposite ends of the solenoid coil 58, respectively. These large voltages developed on the opposite ends of the solenoid coil 58 can be vanished by passing electric current to the flywheel diode 60 which is connected, in parallel, with the solenoid coil 58.
Meanwhile, in a steady state wherein the MOSFET (Pch) 57 is turned ON and an input voltage as indicated by the number 5 in
When the MOSFET (Nch) 59 is turned OFF concurrent with the switching of the switching MOSFET (Pch) 57 to OFF in order to accelerate the fall time of electric current, the gate voltage of not only the MOSFET (Pch) 57 but also of the MOSFET (Nch) 59 is caused to fall down to zero volt, so that a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, whereby the electric potential of VD is caused to rise. This increased electric potential can be turned back to the booster electrolytic capacitor 61, thereby making it possible to shorten the fall time of electric current. Furthermore, in contrast to the circuit of
Due to the circuit configuration as described above, even if the solenoid coil 58 is brought into short-circuiting with VB, it is possible to protect the circuit by the switching of the MOSFET (Nch) 59 OFF. Further, even if the solenoid coil 58 is brought into short-circuiting with GND, it is possible to protect the circuit by the switching of the MOSFET (Pch) 57 OFF. Further, when the opposite ends of solenoid coil 58 is brought into short-circuiting due to harness, it is possible to detect the abnormality of electric current by changing the MOSFET (Pch) 57 into an over-current protection function-attached (Pch) IPD. Further, although it may become more expensive, a current-detecting circuit may be additionally attached to the aforementioned circuit configuration without changing the MOSFET (Pch) 57 into the IPD, thereby making it possible to detect the abnormality of electric current and also to improve the accuracy of electric current flowing into the solenoid coil.
The present invention is applicable not only to a high-pressure pump for engine but also to any kind of actuators which can be driven through the utilization of magnetic force to be derived from electric current applied to the solenoid coil and where the fall time of inflow current is desired to be shortened.
Number | Date | Country | Kind |
---|---|---|---|
2006-213760 | Aug 2006 | JP | national |