High-Pressure Fuel Pump Drive Circuit for Engine

Abstract
There is provided a high-pressure fuel pump drive circuit for manipulating the electric current to be passed to a solenoid coil for controlling a high-pressure pump. This circuit is characterized in that a first switching element, the solenoid coil and a second switching element are connected in series with each other in a rout from a source voltage side to the ground side, that a flywheel diode for passing electric current to a power source is disposed parallel with the solenoid and with the first switching element, and that a Zener diode connected with the power source is disposed parallel with the second switching element, wherein a counter electromotive force to be developed at the opposite ends of solenoid coil on the occasion when the second switching element is changed from ON to OFF is consumed by the flywheel diode provided that the first switching element is in a state of ON, and the counter electromotive force is more rapidly consumed by the Zener diode provided that the first switching element is turned OFF.
Description

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING


FIG. 1 is a diagram illustrating a conventional circuit configuration of a high-pressure fuel pump drive circuit for engine;



FIG. 2 is a diagram illustrating a representative waveform of input voltage and a representative waveform of inflow current in a high-pressure fuel pump drive circuit for engine;



FIG. 3 is a diagram illustrating a conventional circuit configuration of a high-pressure fuel pump drive circuit for engine, wherein a Zener diode is additionally incorporated;



FIG. 4 is a diagram illustrating a circuit configuration of a high-pressure fuel pump drive circuit for engine according to Example 1;



FIG. 5 is a diagram illustrating a circuit configuration modified of the high-pressure fuel pump drive circuit for engine according to Example 1;



FIG. 6 is a diagram illustrating a circuit configuration of a high-pressure fuel pump drive circuit for engine according to Example 2;



FIG. 7 is a diagram illustrating a circuit configuration modified of the high-pressure fuel pump drive circuit for engine according to Example 2;



FIG. 8 is a diagram illustrating a circuit configuration of a high-pressure fuel pump drive circuit for engine according to Example 3;



FIG. 9 is a diagram illustrating a circuit configuration modified of the high-pressure fuel pump drive circuit for engine according to Example 3;



FIG. 10 is a diagram illustrating a circuit configuration of a high-pressure fuel pump drive circuit for engine according to Example 4;



FIG. 11 is a diagram illustrating a circuit configuration modified of the high-pressure fuel pump drive circuit for engine according to Example 4; and



FIG. 12 is a diagram illustrating a circuit configuration of a high-pressure fuel pump drive circuit for engine according to Example 5.





DETAILED DESCRIPTION OF THE INVENTION

Next, specific embodiments of the present invention will be explained with reference to drawings.


EXAMPLE 1


FIG. 4 illustrates a circuit configuration of a high-pressure fuel pump drive circuit for engine according to Example 1.


In this circuit, the solenoid 13 of high-pressure pump is connected with the drain of switching MOSFET (Nch) 14, and the cathode of flywheel diode 12 is connected with the source voltage VB and the anode of flywheel diode 12 is connected with the solenoid. Further, the cathode of Zener diode 10 is connected with the VB and the anode thereof is connected with the solenoid coil. The MOSFET (Pch) 11 is connected, in parallel, with the Zener diode. When an input voltage is impressed to the gates of the MOSFET (Pch) 11 and the MOSFET (Nch) 14, not only the MOSFET (Pch) 11 but also the MOSFET (Nch) 14 is turned ON, permitting an electric current IL to flow into the solenoid coil 13. At this moment, the drain voltage VD of MOSFET (Nch) 14 is caused to fall from the VB to about zero volt and, at the same time, the electric current IL flowing through the solenoid coil 13 is caused to rise transiently and electromagnetic energy is caused to accumulate in the solenoid coil 13 due to this electric current IL.


When the gate voltage of the MOSFET (Nch) 14 is dropped to 0 volt, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, thus raising the electric potential of the VD. Namely, large voltages, opposite in direction, are imposed on the opposite ends of the solenoid coil 13, respectively. These large voltages developed on the opposite ends of the solenoid coil 13 can be vanished by passing electric current to the flywheel diode 12 which is connected, in parallel, with the solenoid coil 13.


Meanwhile, in a steady state wherein the MOSFET (Nch) 14 is turned ON and an input voltage as indicated by the number 5 in FIG. 2 is given thereto, since the time for shifting the MOSFET (Nch) 14 from OFF to ON can be made shorter as the switching cycle is made faster, the magnitude of voltage to be developed at the opposite ends of solenoid coil 13 can be confined to a small value and, at the same time, the magnitude of energy to be consumed by the flywheel diode 12 can be minimized, thereby making it possible to minimize the generation of heat in the device.


The configuration of circuit described above is the same as that of the conventional circuit shown in FIG. 1. However, the circuit of this example is additionally provided with the following features. Namely, in order to accelerate the fall time of electric current, when the switching MOSFET (Nch) 14 is turned OFF, the MOSFET (Pch) 11 is also concurrently turned OFF. When the gate voltage of MOSFET (Pch) 11 and of MOSFET (Nch) 14 is decreased to zero volt, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, whereby the electric potential of VD is caused to rise, thus imposing a large voltage on the opposite ends of Zener diode 10. This large voltage developed on the opposite ends of Zener diode 10 cannot be consumed by the flywheel diode 12 due to the existence of the Zener diode 10 but can be completely consumed by the Zener diode. Because of this, it is possible to further shorten the fall time of electric current as compared with the conventional circuit configuration shown in FIG. 1. Furthermore, in contrast to the circuit of FIG. 3, the consumption of energy by the Zener diode 10 cannot be executed unless the switching MOSFET (Pch) 11 is turned OFF even if the MOSFET (Nch) 14 is switched, thus making it possible to suppress the generation of heat in the device. If saving of cost is taken into consideration, it may be advisable to employ a clamp Zener diode-attached IPD 15 as shown in FIG. 5 instead of singly employing the Zener diode 10, thereby making it possible to suppress the manufacturing cost.


In the case of the circuit configuration as described above, even if the solenoid coils 13, 17 are brought into short-circuiting with VB, it is possible to protect the circuit by the switching of the MOSFETs (Nch) 14, 18 to OFF. On the contrary, when the solenoid coils 13, 17 are brought into short-circuiting with GND, it is possible to protect the circuit by the switching of the MOSFET (Pch) 11 and the clamp Zener diode-attached IPD 15 to OFF. Further, when the opposite ends of solenoid coils 13, 17 are brought into short-circuiting due to harness, it is possible to detect the abnormality of electric current by changing the MOSFETs (Nch) 14, 18 into an over-current protection function-attached (Nch) IPD, respectively. Further, although it may become more expensive, a current-detecting circuit may be additionally attached to the aforementioned circuit configuration without changing the MOSFETs (Nch) 14, 18 into the IPD, respectively, thereby making it possible to detect the abnormality of electric current and also to improve the accuracy of electric current flowing into the solenoid coils.


EXAMPLE 2


FIG. 6 illustrates a circuit configuration of a high-pressure fuel pump drive circuit for engine according to Example 2.


In this circuit, the solenoid coil 20 of high-pressure pump is connected with the drain of switching MOSFET (Pch) 19, and the cathode of flywheel diode 21 is connected with the drain of switching MOSFET (Pch) 19 and the anode of flywheel diode 21 is connected with the GND. Further, the cathode of Zener diode 22 is connected with the solenoid coil 20 and the anode thereof is connected with the GND. The MOSFET (Nch) 23 is connected, in parallel, with the Zener diode.


When an input voltage is impressed to the MOSFET (Pch) 19 and the MOSFET (Nch) 23, not only the MOSFET (Pch) 19 but also the MOSFET (Nch) 23 is turned ON, permitting an electric current IL to flow into the solenoid coil 20. At this moment, the drain voltage VD of MOSFET (Pch) 19 is caused to fall from the source voltage VB to about zero volt and, at the same time, the electric current IL flowing through the solenoid coil 20 is caused to rise transiently and electromagnetic energy is caused to accumulate in the solenoid coil 20 due to this electric current IL. When the gate voltage of the MOSFET (Pch) 19 is dropped to 0 volt, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, thereby causing the electric potential of VD to rise. Namely, large voltages, opposite in direction, are imposed on the opposite ends of the solenoid coil 20, respectively. These large voltages developed on the opposite ends of the solenoid coil 20 can be vanished by passing electric current to the flywheel diode 21 which is connected, in parallel, with the solenoid coil 20.


Meanwhile, in a steady state wherein the MOSFET (Pch) 19 is turned ON and an input signal as indicated by the number 5 in FIG. 2 is given thereto, since the time for shifting the MOSFET (Pch) 19 from OFF to ON can be made shorter as the switching cycle is made faster, the magnitude of voltage to be developed at the opposite ends of solenoid coil 20 can be confined to a small value and, at the same time, the magnitude of energy to be consumed by the flywheel diode 21 can be minimized, thereby making it possible to minimize the generation of heat in the device.


When the MOSFET (Pch) 19 is turned OFF concurrent with the switching of the switching MOSFET (Nch) 23 to OFF in order to accelerate the fall time of electric current, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, whereby the electric potential of VD is caused to rise, thus imposing a large voltage on the opposite ends of Zener diode 22. This large voltage developed on the opposite ends of Zener diode 22 cannot be consumed by the flywheel diode 21 due to the existence of the Zener diode 22 but can be completely consumed by the Zener diode. Because of this, it is possible to further shorten the fall time of electric current as compared with the conventional circuit configuration shown in FIG. 1. Furthermore, in contrast to the circuit of FIG. 3, the consumption of energy by the Zener diode 22 cannot be executed unless the switching MOSFET (Nch) 23 is turned OFF even if the MOSFET (Pch) 19 is switched, thus making it possible to suppress the generation of heat in the device. If saving of cost is taken into consideration, it may be advisable to employ a clamp Zener diode-attached IPD 27 as shown in FIG. 7 instead of singly employing the Zener diode 22, thereby making it possible to suppress the manufacturing cost.


In the case of the circuit configuration as described above, it is possible to protect the circuit by the switching of the MOSFET (Nch) 23 and the clamp Zener diode-attached IPD 27 to OFF when the solenoid coils 20, 25 are brought into short-circuiting with VB. Further, it is possible to protect the circuit by the switching of the MOSFETs (Pch) 19, 24 to OFF when the solenoid coils 20, 25 are brought into short-circuiting with the GND. Furthermore, when the opposite ends of solenoid coils 20, 25 are brought into short-circuiting due to harness, it is possible to detect the abnormality of electric current by changing the MOSFETs (Pch) 19, 24 into an over-current protection function-attached (Pch) IPD. Further, although it may become more expensive, a current-detecting circuit may be additionally attached to the aforementioned circuit configuration without changing the MOSFETs (Pch) 19, 24 into the IPD, thereby making it possible to detect the abnormality of electric current and also to improve the accuracy of electric current flowing into the solenoid coils 20, 25.


EXAMPLE 3


FIG. 8 illustrates a circuit configuration of a high-pressure fuel pump drive circuit for engine according to Example 3.


In this circuit, the solenoid coil 30 of high-pressure pump is connected with the drain of switching MOSFET (Nch) 35, and the anode of flywheel diode 32 is connected with the drain of MOSFET (Nch) 35 and the cathode of flywheel diode 32 is connected with the source of MOSFET (Pch) 28. Further, the anode of Zener diode 31 is connected with the source voltage VB and the cathode thereof is connected with the cathode of flywheel diode 32. The MOSFET (Pch) 28 is connected, in parallel, with the Zener diode. When an input voltage is impressed to the gates of the MOSFET (Pch) 28 and the MOSFET (Nch) 35, not only the MOSFET (Pch) 28 but also the MOSFET (Nch) 35 is turned ON, permitting an electric current IL to flow into the solenoid coil 30. At this moment, the drain voltage VD of MOSFET (Nch) 35 is caused to fall from the VB to about zero volt and, at the same time, the electric current IL flowing through the solenoid coil 30 is caused to rise transiently and electromagnetic energy is caused to accumulate in the solenoid coil 30 due to this electric current IL.


When the gate voltage of the MOSFET (Nch) 35 is dropped to 0 volt, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, thus raising the electric potential of the VD. Namely, large voltages, opposite in direction, are imposed on the opposite ends of the solenoid coil 30, respectively. These large voltages developed on the opposite ends of the solenoid coil 30 can be vanished by passing electric current to the flywheel diode 32 which is connected, in parallel, with the solenoid coil 30.


Meanwhile, in a steady state wherein the MOSFET (Nch) 35 is turned ON and an input voltage as indicated by the number 5 in FIG. 2 is given thereto, since the time for shifting the MOSFET (Nch) 35 from OFF to ON can be made shorter as the switching cycle is made faster, the magnitude of voltage to be developed at the opposite ends of solenoid coil 30 can be confined to a small value and, at the same time, the magnitude of energy to be consumed by the flywheel diode 32 can be minimized, thereby making it possible to minimize the generation of heat in the device.


When the MOSFET (Pch) 28 is turned OFF concurrent with the switching of switching MOSFET (Nch) 35 to OFF in order to accelerate the fall time of electric current, the gate voltage of MOSFET (Pch) 28 and of MOSFET (Nch) 35 is dropped to zero volt, so that a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, whereby the electric potential of VD is caused to rise, thus imposing a large voltage on the opposite ends of Zener diode 31. This large voltage developed on the opposite ends of Zener diode 31 cannot be consumed by the flywheel diode 32 due to the existence of the Zener diode 31 but can be completely consumed by the Zener diode. Because of this, it is possible to further shorten the fall time of electric current as compared with the conventional circuit configuration shown in FIG. 1. Furthermore, in contrast to the circuit of FIG. 3, the consumption of energy by the Zener diode 31 cannot be executed unless the switching MOSFET (Pch) 28 is turned OFF even if the MOSFET (Nch) 35 is switched, thus making it possible to suppress the generation of heat in the device. If saving of cost is taken into consideration, it may be advisable to employ a clamp Zener diode-attached IPD 15 as shown in FIG. 9 instead of singly employing the Zener diode 31, thereby making it possible to suppress the manufacturing cost.


In the case of the circuit configuration as described above, it is impossible to protect the circuit when the solenoid coils 30, 36 are brought into short-circuiting with the GND. However, when the opposite ends of solenoid coils 30, 36 are brought into short-circuiting due to harness, it is possible to detect the abnormality of electric current by changing the MOSFETs (Nch) 35, 42 into an over-current protection function-attached (Pch) IPD. Further, although it may become more expensive, a current-detecting circuit may be additionally attached to the aforementioned circuit configuration without changing the MOSFETs (Pch) 35, 42 into the IPD, thereby making it possible to detect the abnormality of electric current and also to improve the accuracy of electric current flowing into the solenoid coils.


EXAMPLE 4


FIG. 10 illustrates a circuit configuration of a high-pressure fuel pump drive circuit for engine according to Example 4.


In this circuit, the solenoid 44 of high-pressure pump is connected with the drain of switching MOSFET (Pch) 43, and the cathode of flywheel diode 45 is connected with the drain of switching MOSFET (Pch) 43 and the anode of flywheel diode 45 is connected with the source of MOSFET (Nch) 48. Further, the anode of Zener diode 47 is connected with the anode of flywheel diode 45 and the cathode thereof is connected with the GND. The MOSFET (Nch) 48 is connected, in parallel, with the Zener diode.


When an input voltage is impressed to the MOSFET (Pch) 43 and the MOSFET (Nch) 48, not only the MOSFET (Pch) 43 but also the MOSFET (Nch) 48 is turned ON, permitting an electric current IL to flow into the solenoid coil 44. At this moment, the drain voltage VD of MOSFET (Pch) 43 is caused to fall from the source voltage VB to about zero volt and, at the same time, the electric current IL flowing through the solenoid coil 44 is caused to rise transiently and electromagnetic energy is caused to accumulate in the solenoid coil 44 due to this electric current IL. When the gate voltage of the MOSFET (Pch) 43 is dropped to 0 volt, the MOSFET (Pch) 43 is turned ON, so that a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy. As a result, the electric potential of VD is caused to rise, whereby large voltages, opposite in direction, are imposed on the opposite ends of the solenoid coil 44, respectively. These large voltages developed on the opposite ends of the solenoid coil 44 can be vanished by passing electric current to the flywheel diode 45 which is connected, in parallel, with the solenoid coil 44.


Meanwhile, in a steady state wherein the MOSFET (Pch) 43 is turned ON and an input signal as indicated by the number 5 in FIG. 2 is given thereto, since the time for shifting the MOSFET (Pch) 43 from OFF to ON can be made shorter as the switching cycle is made faster, the magnitude of voltage to be developed at the opposite ends of solenoid coil 44 can be confined to a small value and, at the same time, the magnitude of energy to be consumed by the flywheel diode 45 can be minimized, thereby making it possible to minimize the generation of heat in the device.


When the MOSFET (Pch) 43 is turned OFF concurrent with the switching of the switching MOSFET (Nch) 48 to OFF in order to accelerate the fall time of electric current, a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, whereby the electric potential of VD is caused to rise, thus imposing a large voltage on the opposite ends of Zener diode 47. This large voltage developed on the opposite ends of Zener diode 47 cannot be consumed by the flywheel diode 45 due to the existence of the Zener diode but can be completely consumed by the Zener diode. Because of this, it is possible to further shorten the fall time of electric current as compared with the conventional circuit configuration shown in FIG. 1. Furthermore, in contrast to the circuit of FIG. 3, the consumption of energy by the Zener diode 47 cannot be executed unless the switching MOSFET (Nch) 48 is turned OFF even if the MOSFET (Pch) 43 is switched, thus making it possible to suppress the generation of heat in the device. If saving of cost is taken into consideration, it may be advisable to employ a clamp Zener diode-attached IPD 53 as shown in FIG. 11 instead of singly employing the Zener diode 47, thereby making it possible to suppress the manufacturing cost.


In the case of the circuit configuration as described above, it is impossible to protect the circuit when the solenoid coils 44, 51 are brought into short-circuiting with VB. However, when the opposite ends of solenoid coils 44, 51 are brought into short-circuiting due to harness, it is possible to detect the abnormality of electric current by changing the MOSFETs (Pch) 43, 50 into an over-current protection function-attached (Pch) IPD. Further, although it may become more expensive, a current-detecting circuit may be additionally attached to the aforementioned circuit configuration without changing the MOSFETs (Pch) 43, 50 into the IPD, thereby making it possible to detect the abnormality of electric current and also to improve the accuracy of electric current flowing into the solenoid coils 44, 51.


EXAMPLE 5


FIG. 12 illustrates a circuit configuration of a high-pressure fuel pump drive circuit for engine according to Example 5.


In this circuit, the solenoid 58 of high-pressure pump is connected with the drain of switching MOSFET (Pch) 57, and the cathode of flywheel diode 60 is connected with the drain of switching MOSFET (Pch) 57 and the anode of flywheel diode 60 is connected with the GND. This circuit differs from that of Example 2 in that instead of connecting the Zener diode with the circuit, an MOSFET (Nch) 59 is employed in such a manner that the drain of the MOSFET (Nch) 59 is connected, in series, with a diode 56 and a booster electrolytic capacitor 61.


When an input voltage is impressed to the MOSFET (Nch) 59 and the MOSFET (Pch) 57, not only the MOSFET (Nch) 59 but also the MOSFET (Pch) 57 is turned ON, permitting an electric current IL to flow into the solenoid coil 58. At this moment, the drain voltage VD of MOSFET (Pch) 57 is caused to fall from the source voltage VB to about zero volt and, at the same time, the electric current IL flowing through the solenoid coil 58 is caused to rise transiently and electromagnetic energy is caused to accumulate in the solenoid coil due to this electric current IL.


When the gate voltage of the MOSFET (Pch) 57 is dropped to 0 volt, the MOSFET (Pch) 57 is turned ON, so that a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy. As a result, the electric potential of VD is caused to rise, whereby large voltages, opposite in direction, are imposed on the opposite ends of the solenoid coil 58, respectively. These large voltages developed on the opposite ends of the solenoid coil 58 can be vanished by passing electric current to the flywheel diode 60 which is connected, in parallel, with the solenoid coil 58.


Meanwhile, in a steady state wherein the MOSFET (Pch) 57 is turned ON and an input voltage as indicated by the number 5 in FIG. 2 is given thereto, since the time for shifting the MOSFET (Nch) 57 from OFF to ON can be made shorter as the switching cycle is made faster, the magnitude of voltage to be developed at the opposite ends of solenoid coil 58 can be confined to a small value and, at the same time, the magnitude of energy to be consumed by the flywheel diode 60 can be minimized, thereby making it possible to minimize the generation of heat in the device.


When the MOSFET (Nch) 59 is turned OFF concurrent with the switching of the switching MOSFET (Pch) 57 to OFF in order to accelerate the fall time of electric current, the gate voltage of not only the MOSFET (Pch) 57 but also of the MOSFET (Nch) 59 is caused to fall down to zero volt, so that a power to force electric current to flow in the direction to inhibit any changes of magnetic flux is acted thereon due to the self-induction electromotive force (e=L*ΔI/Δt) by the electromagnetic energy, whereby the electric potential of VD is caused to rise. This increased electric potential can be turned back to the booster electrolytic capacitor 61, thereby making it possible to shorten the fall time of electric current. Furthermore, in contrast to the circuit of FIG. 3, the generation of heat in the device can be suppressed due to the unemployment of the Zener diode.


Due to the circuit configuration as described above, even if the solenoid coil 58 is brought into short-circuiting with VB, it is possible to protect the circuit by the switching of the MOSFET (Nch) 59 OFF. Further, even if the solenoid coil 58 is brought into short-circuiting with GND, it is possible to protect the circuit by the switching of the MOSFET (Pch) 57 OFF. Further, when the opposite ends of solenoid coil 58 is brought into short-circuiting due to harness, it is possible to detect the abnormality of electric current by changing the MOSFET (Pch) 57 into an over-current protection function-attached (Pch) IPD. Further, although it may become more expensive, a current-detecting circuit may be additionally attached to the aforementioned circuit configuration without changing the MOSFET (Pch) 57 into the IPD, thereby making it possible to detect the abnormality of electric current and also to improve the accuracy of electric current flowing into the solenoid coil.


The present invention is applicable not only to a high-pressure pump for engine but also to any kind of actuators which can be driven through the utilization of magnetic force to be derived from electric current applied to the solenoid coil and where the fall time of inflow current is desired to be shortened.

Claims
  • 1. A high-pressure fuel pump drive circuit for manipulating the electric current to be passed to a solenoid coil for controlling a high-pressure pump; said circuit being characterized in that;a first switching element, the solenoid coil and a second switching element are connected in series with each other in a rout from a source voltage side to the ground side;a flywheel diode for passing electric current to a power source is disposed parallel with the solenoid and with the first switching element; anda Zener diode connected with the power source is disposed parallel with the second switching element;wherein a feedback circuit comprising the solenoid coil, the flywheel diode and the Zener diode is designed to be created on the occasion when the second switching element is turned OFF and the first switching element is also turned OFF.
  • 2. The high-pressure fuel pump drive circuit according to claim 1, wherein the Zener diode is omitted and the first switching element is formed of a clamp Zener diode-attached IPD.
  • 3. The high-pressure fuel pump drive circuit according to claim 1, wherein the first switching element is additionally provided with a current-detecting circuit.
  • 4. A high-pressure fuel pump drive circuit for manipulating the electric current to be passed to a solenoid coil for controlling a high-pressure pump; said circuit being characterized in that;a first switching element, the solenoid coil and a second switching element are connected in series with each other in a rout from a source voltage side to the ground side;a flywheel diode for passing electric current to the first switching element to the ground is disposed parallel with the second switching element and with the solenoid; anda Zener diode connecting the ground with the solenoid is disposed parallel with the second switching element;wherein a feedback circuit comprising the solenoid coil, the Zener diode and the flywheel diode is designed to be created on the occasion when the first switching element is turned OFF and the second switching element is also turned OFF.
  • 5. The high-pressure fuel pump drive circuit according to claim 4, wherein the Zener diode is omitted and the second switching element is formed of a clamp Zener diode-attached IPD.
  • 6. The high-pressure fuel pump drive circuit according to claim 4, wherein the second switching element is additionally provided with a current-detecting circuit.
  • 7. A high-pressure fuel pump drive circuit for manipulating the electric current to be passed to a solenoid coil for controlling a high-pressure pump; said circuit being characterized in that;the solenoid coil and a second switching element are connected in series with each other in a rout from a source voltage side to the ground side;a flywheel diode for passing electric current to a power source is disposed in series with the first switching element and in parallel with the solenoid; anda Zener diode connected with the power source is disposed parallel with the first switching element;wherein a feedback circuit comprising the solenoid coil, the flywheel diode and the Zener diode is designed to be created on the occasion when the second switching element is turned OFF and the first switching element is also turned OFF.
  • 8. The high-pressure fuel pump drive circuit according to claim 7, wherein the Zener diode is omitted and the first switching element is formed of a clamp Zener diode-attached IPD.
  • 9. The high-pressure fuel pump drive circuit according to claim 7, wherein the first switching element is additionally provided with a current-detecting circuit.
  • 10. A high-pressure fuel pump drive circuit for manipulating the electric current to be passed to a solenoid coil for controlling a high-pressure pump; said circuit being characterized in that;a first switching element and the solenoid coil are connected in series with each other in a rout from a source voltage side to the ground side;a second switching element for passing electric current from the ground side to the first switching element is disposed in series with the flywheel diode and in parallel with the solenoid; anda Zener diode connecting the ground with the flywheel diode is disposed parallel with the second switching element;wherein a feedback circuit comprising the solenoid coil, the Zener diode and the flywheel diode is designed to be created on the occasion when the first switching element is turned OFF and the second switching element is also turned OFF.
  • 11. The high-pressure fuel pump drive circuit according to claim 10, wherein the Zener diode is omitted and the second switching element is formed of a clamp Zener diode-attached IPD.
  • 12. The high-pressure fuel pump drive circuit according to claim 10, wherein the second switching element is additionally provided with a current-detecting circuit.
  • 13. A high-pressure fuel pump drive circuit for manipulating the electric current to be passed to a solenoid coil for controlling a high-pressure pump; said circuit being characterized in that;a first switching element, the solenoid coil and a second switching element are connected in series with each other in a rout from a source voltage side to the ground side;a flywheel diode for passing electric current from the ground side is disposed parallel with the solenoid and with the second switching element; anda diode for passing electric current from the second switching element of solenoid to a booster electrolytic capacitor is disposed;wherein a feedback circuit comprising the solenoid coil, the diode, the booster electrolytic capacitor and the flywheel diode is designed to be created on the occasion when the first switching element is turned OFF and the second switching element is also turned OFF.
  • 14. The high-pressure fuel pump drive circuit according to claim 13, wherein the first switching element is formed of an over-current protection function-attached (Nch) IPD or is additionally provided with a current-detecting circuit.
Priority Claims (1)
Number Date Country Kind
2006-213760 Aug 2006 JP national