This application is a 35 U.S.C. §371 National Stage Application of PCT/EP2014/062806, filed on Jun. 18, 2014, which claims the benefit of priority to Serial No. DE 10 2013 215 275.2, filed on Aug. 2, 2013 in Germany, the disclosures of which are incorporated herein by reference in their entirety.
The disclosure concerns a high-pressure fuel pump.
High-pressure fuel pumps, in particular piston pumps for a fuel system for an internal combustion engine, are known from the market. Frequently, such high-pressure fuel pumps comprise an inlet valve and an outlet valve which can open and close depending on a control command and/or depending on a fuel pressure. The outlet valve allows a pressurized fuel accumulator (rail) to close against a delivery chamber of the high-pressure fuel pump during a suction stroke. When however the fuel pressure in the delivery chamber exceeds a counter-force caused by the pressure in the fuel accumulator plus a closing spring force, the outlet valve can open.
The problem on which the disclosure is based is solved by a high-pressure fuel pump as described herein. Advantageous refinements are given in the subclaims. Features important to the disclosure are also contained in the description which follows and in the drawings, wherein the features may be important for the disclosure both alone and in different combinations, without this being explicitly mentioned.
The disclosure concerns a high-pressure fuel pump having an outlet valve, a valve ball, a valve spring acting on the valve ball in the closing direction, and a stop body for the valve ball with a stop portion which limits the opening stroke of the valve ball, wherein the valve spring rests on the stop body. The stop body has a recess in which the valve spring is received at least in regions, and the radially inner limiting surface of which forms a guide for the valve spring. By means of the recess, the valve spring can be guided comparatively precisely, whereby the outlet valve can be constructed smaller. Thus the high-pressure fuel pump can be made particularly versatile in design. The disclosure has the advantage that an outlet valve of a high-pressure fuel pump has a comparatively low hydraulic adhesion of a valve element to a sealing seat, since this can be formed linear. Accordingly, the noise during an opening process of the outlet valve can be reduced.
In one embodiment of the high-pressure fuel pump, an edge of the recess facing the valve ball in the stop body forms an annular stop portion. This allows a defined limitation for the opening travel (stroke) of the valve element, whereby the function of the outlet valve can be improved. In particular, as a result of the stroke limitation, a closing time of the outlet valve can be kept comparatively short and relatively constant. This allows a reduction in so-called “back flow losses” during an incipient suction phase of the high-pressure fuel pump, wherein a fuel already compressed to high pressure can flow back from the high-pressure accumulator (rail) to the delivery chamber of the high-pressure fuel pump. A delivery level of the high-pressure fuel pump can thus be increased. Preferably, the stop portion is designed at least approximately conical. In this way, the valve ball can be held definedly in an opened state of the outlet valve.
The outlet valve becomes cheaper if the valve ball comprises a comparatively economic steel material. A comparatively costly valve ball made of a ceramic material is therefore not necessary for the outlet valve according to the disclosure.
In a further embodiment of the high-pressure fuel pump, the recess has a simple cylindrical cross-section. In this way, production of the outlet valve can be simplified and made cheaper. In a further embodiment of the high-pressure fuel pump, the valve spring is configured as a pressure-loaded coil spring and has different diameters in an axial direction, and in particular is waisted. In this way, the construction space of the valve spring or coil spring can be reduced and the function of the outlet valve improved, in particular a non-linear spring characteristic can be achieved.
In a preferred embodiment, the outlet valve of the high-pressure fuel pump has a valve body on which a sealing seat is formed and which has a guide collar in which the valve ball is guided radially, wherein the guide collar has a first plurality of recesses which are arranged distributed—preferably evenly—in the peripheral direction and form first flow channels, and wherein the stop body, radially outside the recess, has a second plurality of recesses which are arranged distributed —preferably evenly—in the peripheral direction and form second flow channels, wherein the cross-section areas of the second flow channels are selected such that, independently of the radial orientation of the stop body, at least one second flow channel at least partly overlaps with a first flow channel. This describes a particularly suitable embodiment of the high-pressure fuel pump according to the disclosure. In particular, the mounting of the valve body, valve ball, coil spring and stop body may be particularly simple. In this way, production of the high-pressure fuel pump may be made cheaper. Elements of the outlet valve may be mounted independently of a radial angle of the elements to each other, and installation is therefore simplified.
In addition, it may be provided that the first plurality and the second plurality are different. In this way, above all with an even distribution of recesses, effectively a radial “interference” is created between the first and second flow channels, whereby a total resulting hydraulic opening cross-section is substantially independent of a radial angle between the guide collar and the stop body. This improves the function of the outlet valve and simplifies the installation, since the elements need not be aligned in the peripheral direction.
In a further embodiment it is proposed that the stop body is formed as a punched part and/or deep-drawn part. In this way, the outlet valve and hence the high-pressure fuel pump according to the disclosure become cheaper.
In a further embodiment, the stop body and/or the valve body are arranged by force fit—in particular by pressing—in a housing of the outlet valve. In this way, installation of the outlet valve becomes simpler and its production therefore cheaper.
Exemplary embodiments of the disclosure are described in more detail with reference to the drawings. The drawings show:
Values and elements of equivalent function, even in different embodiments, carry the same reference numerals in all figures.
Furthermore, the high-pressure fuel pump 10 comprises an inlet 24 with an inlet valve 26 connected to a low-pressure line 22, and an outlet 30 with an outlet valve 32 connected to a high-pressure line 28. A high-pressure accumulator (rail) connected to the high-pressure line 28 is not shown. In open state, the outlet valve 32 is hydraulically connected to a delivery chamber 36 via an opening 34. The outlet valve 32 comprises a valve ball 38 and a valve spring 40, and is depicted only highly diagrammatically in
The inlet valve 26 comprises a valve spring 42 and a valve body 44. The valve body 44 can be moved by a valve needle 46, displaceable horizontally in the drawing, which is coupled to the armature 18. When the electromagnet 14 is powered, the valve needle 46 moves to the left in
If the electromagnet 14 is not powered, the inlet valve 26 can be forced open by the force of the armature spring 20. A piston 48, moveable vertically in the drawing, is arranged in the delivery chamber 36. The piston 48 can be moved by means of a roller 50 of a cam 52—elliptical in the present case—in a cylinder 54. The cylinder 54 is formed in a portion of the housing 12. The inlet valve 26 is hydraulically connected to the delivery chamber 36 via an opening 56.
In operation, the high-pressure fuel pump 10 delivers fuel from the inlet 24 to the outlet 30, wherein the outlet valve 32 opens or closes according to a respective pressure difference between the delivery chamber 36 and the outlet 30 or the high-pressure line 28. On full delivery, a respective pressure difference between the inlet 24 and the delivery chamber 36 acts on the inlet valve 26; on part delivery however, the valve needle 46 or the electromagnet 14 also act thereon.
The valve spring 40 acts on the valve ball 38 in the closing direction and is received in a recess 62 of the stop body 60. The valve spring 40 here rests on a base (on the right in the drawing but without reference numeral) of the stop body 60. A radially inner limiting face of the recess 62 forms a guide for the valve spring 40. The recess 62 has a simple cylindrical cross-section. The base has an axially central opening 64 which has a smaller diameter than the valve spring 40. In the embodiment of the outlet valve 32 shown in
An edge of the recess 62 facing the valve ball 38 in the stop body 60 forms an annular stop portion 66 for the valve ball 38. An annular, linear sealing seat 68 is formed on the valve body 58. On the right of the sealing seat 68 in the drawing, the valve body 58 has a guide collar 70 in which the valve ball 38 is guided radially. The guide collar 70 has a first plurality of recesses 72 which are arranged evenly distributed in the peripheral direction and form first flow channels 74. The guide collar 70 is designed radially symmetrically in an axial region of the first flow channels 74, corresponding to the first plurality of recesses 72.
Radially on its outside i.e. outside the recess 62, the stop body 60 has a second plurality of recesses 76 which are arranged evenly distributed in the peripheral direction and form second flow channels 78. In an axial region of the second flow channels 78, the stop body 60 is designed radially symmetrical, corresponding to the second plurality of recesses 76. In the present case, the first plurality and the second plurality are different and amount to three and five respectively, see
In
In the present case, the valve ball 38 is made of a steel material. The stop body 60 is produced by means of punching and deep-drawing. In total, the outlet valve 32 is dimensioned or configured such that in open state of the outlet valve 32, a resulting hydraulic cross-section area is sufficiently large to deliver a necessary fuel quantity with a comparatively low hydraulic flow resistance.
When, in operation of the high-pressure fuel pump 10, a fuel pressure in the delivery chamber 36 or in a region of the opening 34 is smaller than a fuel pressure in a region of the recess 62 plus the force of the valve spring 40, the valve ball 38 is pressed against the sealing seat 68, to the left in the drawing. The outlet valve 32 is thus closed.
When however the fuel pressure in the region of the opening 34 is greater than the fuel pressure in the region of the recess 62 plus the force of the valve spring 40, the valve ball 38 can lift away from the sealing seat 68, to the right in the drawing. The outlet valve 32 is thus opened.
Insofar as the fuel pressure in the region of the opening 34 is sufficiently large, the valve ball 38 can be pressed fully to the right in the drawing, up to the stop portion 66. This gives a “travel limitation” for the valve ball 38. A circle 80 shown in dotted lines indicates the position of the valve ball 38 in this extreme case. It is evident that the valve body 58 and the stop body 60 allow a radial guidance of the valve ball 38, see also
An arrow 82 illustrates the resulting flow of fuel when the outlet valve 32 is opened. The flow takes place from left to right in the drawing, through the opening 34, then past the valve ball 38, then through the first flow channels 74 into the valve body 58, then through the second flow channels 78 into the stop body 60, then into the high-pressure line 28 and through to the high-pressure accumulator (not shown).
It is evident that the valve body 58 is designed radially symmetrical in a region of the guide collar 70, and in the present case comprises three first flow channels 74, wherein for reasons of clarity only one is marked with a reference numeral. The stop body 60 is also designed radially symmetrical in the region of the recesses 76, and in the present case comprises five second flow channels 78, wherein for reasons of clarity again only one carries a reference numeral.
Firstly, the cross-section areas of the second flow channels 78 are selected such that, independently of the radial orientation of the stop body 60 relative to the valve body 58, at least one of the second flow channels 78 at least partly overlaps one of the first flow channels 74. Secondly, because the first plurality and the second plurality are different, effectively a “radial interference” is created between the three first and the five second flow channels 74 and 78. This gives a resulting total hydraulic opening cross-section of the outlet valve 32 which is substantially independent of any arbitrary radial mounting angle between the guide collar 70 and the stop body 60.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 215 275 | Aug 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/062806 | 6/18/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/014536 | 2/5/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3894556 | Pareja | Jul 1975 | A |
4365648 | Grothe | Dec 1982 | A |
5609182 | Beck | Mar 1997 | A |
5967180 | Yates, III | Oct 1999 | A |
6550698 | Ness | Apr 2003 | B2 |
6910494 | Warsakis | Jun 2005 | B2 |
7708026 | Neto | May 2010 | B2 |
20020036014 | De Matthaeis | Mar 2002 | A1 |
20080292473 | Marino et al. | Nov 2008 | A1 |
20100242922 | Mancini | Sep 2010 | A1 |
20130333770 | Maita | Dec 2013 | A1 |
20140311597 | Mooney | Oct 2014 | A1 |
20150040868 | Graham | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
0 976 925 | Feb 2000 | EP |
2 775 326 | Aug 1999 | FR |
Entry |
---|
International Search Report corresponding to PCT Application No. PCT/EP2014/062806, dated Sep. 23, 2014 (German and English language document) (5 pages). |
Number | Date | Country | |
---|---|---|---|
20160169174 A1 | Jun 2016 | US |