This invention relates to high pressure fuel pumps and, more particularly, to pumps having inwardly pumping radial plungers.
It is known in the art relating to high pressure fuel pumps to use close fitting reciprocating plungers to provide efficient pumping members suitable for developing high fuel pressures for direct injection of fuel into engine combustion chambers. Such pumps are widely used in diesel engines for direct injection of fuel at high cylinder pressures for compression ignition of the fuel. However diesel fuel has relatively high lubricity, higher viscosity and other characteristics which differ from current automotive gasoline for use in spark ignition engines. It was desired to develop a high pressure plunger fuel pump suitable for use with spark ignition or dual mode engines to inject gasoline and similar fuels directly into engine combustion chambers for ignition and burning.
The present invention provides a fuel pump for supplying fuel at high fuel pressures, the pump including a stationary body having a plurality of radial cylinders connecting inwardly with a central fuel chamber. Inlet and outlet passages communicate with the fuel chamber for admitting and discharging fuel from the chamber. Plungers are reciprocable in the cylinders and connect outwardly with cam followers reciprocable in follower recesses of the body.
A rotary internal cam engages the cam followers and is rotatably supported around the body. The cam is configured to reciprocate the plungers in timed relation to sequentially draw fuel from the inlet passage into the central fuel chamber and alternately force fuel from the central fuel chamber to the outlet passage in response to rotation of the rotary cam. Materials of the cylinders and plungers are selected for extended wear under operation with gasoline fuel, which has relatively low lubricity and viscosity. A preferred embodiment includes paired small and larger diameter cylinders and pistons which are sequentially actuated in overlapping fashion to minimize pulsing of the pressurized fuel discharged from the pump into associated engine fuel lines.
These and other features and advantages of the invention will be more fully understood from the following description of certain specific embodiments of the invention taken together with the accompanying drawings.
In the drawings:
Referring now to the drawings in detail, numeral 10 generally indicates a radial piston fuel pump according to the invention. Pump 10 includes a stationary body 12 having an end portion 14 sealingly mounted to an enclosing housing 16. The housing includes a flared portion 18 defining a circular enclosure 20 and a flanged extension 22 defining a mounting portion.
The housing 16 rotatably supports a cam member 24 having a drive shaft 26 supported by a ball bearing 28 carried adjacent a mounting flange 30 on the extension 22. The drive shaft connects with a radial disk 32 supporting a cam ring 34 for rotation within the enclosure 20. A mechanical fuel seal 35 sealingly engages the disk 32 adjacent to the drive shaft 26.
The interior of the ring 34 is provided with four equiangularly spaced inwardly raised cam lobes 36 that extend inward from the otherwise circular inner surface 38 of the ring 34. The cam lobes are shown as flat surfaces but may be made with any desired configuration suitable for their subsequently described purpose.
A generally cylindrical portion 40 of the body 12 extends into the cam ring 34 within the circular enclosure 20 of the housing 16. Within the cylindrical portion 40, a plurality of radial bores or cylinders are provided. These include two pairs of pumping cylinders including two radially aligned small cylinders 42 and two radially aligned larger cylinders 44. The smaller cylinders are positioned at predetermined angles ahead of the larger cylinders in the direction of rotation of the cam ring (clockwise as shown in
Within the cylinders, 42, 44, suitably sized plungers 46, 48, respectively are reciprocably received. The plungers are biased outward by springs 50, 52 to engage cam followers including follower shoes 54 and follower rollers 56. The shoes 54 are received in follower slots or recesses 58 in the body 12 and the follower rollers 56 are carried for rotation in the shoes 54. Springs 60 urge the shoes outward to maintain the rollers against the interior surface of the cam ring 34. The interiors of the plungers are hollow to provide for radial inflow of excess fuel from the follower recesses. Ball check valves 62 are provided to prevent backflow of the fuel outward through the plungers.
The cylinders 42, 44 are open at their inner ends to an axially extending central fuel chamber 64 into which fuel is drawn through an inlet port 66 in the end portion 14 of the stationary body 12. A valve, such as a spring loaded inlet check valve 68 prevents return fuel flow out of the port 66.
Additional radial bores connecting with the central fuel chamber include an outlet passage 70, a spill passage 72 and an internal relief passage 74. The outlet passage 70 includes an outlet check valve 76 for preventing fuel return inflow and connects with an outlet port 78 opening axially through the body end portion 14 for connection to a fuel distribution line, not shown. The spill passage 72 connects with a spill port 80 opening axially through end portion 14 for connection with an external pressure control valve, not shown, to control fuel outlet pressure. The internal relief passage 74 includes a spring loaded pressure relief valve 82 that opens to relieve excessive fuel pressure through an open outer end of the passage 74 to a clearance volume 84 surrounding the cylindrical portion 40 of the body 12. High fuel pressure in this clearance volume may be relieved by return fuel flow through the plungers 46, 48 to the central fuel chamber 64.
In addition to the ball bearing 28 supporting the drive shaft 26 of the cam member 24, the cam ring 34 is directly supported by a journal sleeve 86 mounted on the cam ring and engaging an internal bearing sleeve 88 mounted in the housing 16 of the body 12. These bearing sleeves are preferably made of a hard wear resistant material, such as tungsten carbide, to provide long wear in spite of the poor lubricating characteristics of the gasoline fuel pressurized by the pump.
In operation of the fuel pump 10, the drive shaft 26 is driven by an external power source, such as the engine crankshaft, not shown. The shaft rotates the cam ring 34 clockwise in the direction of arrow 90 as shown in
Since the cam ring 34 is provided with four cam lobes 36, the plungers are each actuated four times for every revolution of the cam member. Thus the pump discharges four moderated sequential fuel pulses from both pairs of smaller and larger plungers with each turn of the pump drive shaft.
The normal fuel outlet pressure of the pump may be controlled by an external pressure regulator connected to the outlet of the pump or by means of an electronically controlled spill valve, not shown, connected to the optional spill port 80, which ports fuel directly from the cylinder volume, bypassing the inlet and outlet valves. A spill valve connected to the port 80, and additionally to the inlet supply line, thus provides a means for a variable volume of fuel to bypass the pumping event and pass through the spill valve to the inlet side of the pump. Functioning effectively as a variable displacement pump, a net energy savings can be realized. Implementation of a spill valve pressure control system would normally include a pressure feedback loop and may also require pump-cylinder position reference. If a maximum outlet pressure is exceeded, the internal pressure relief valve opens and discharges fuel into the clearance volume 84 within the cam ring 34 to reduce the pressure. If pressure build-up in the clearance volume 84 occurs, it is relieved by fuel flow through the plungers and back to the central fuel chamber 64. The shaft seal 35 acts to prevent loss of fuel through leakage past the drive shaft 26.
In
Because pump 92 is simplified by omission of the smaller cylinders, its operation is subject to increased pressure pulsations without the modulation from the more gradual pressure build-up provided by the smaller cylinders. However, in both cases, the pumps provide efficient high pressure output in a compact unit with a minimum of external leakage and with fuel connections limited to inlet and outlet ports in the housing end portion.
While the invention has been described by reference to certain preferred embodiments, it should be understood that numerous changes could be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the disclosed embodiments, but that it have the full scope permitted by the language of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3267861 | Jean et al. | Aug 1966 | A |
4846631 | Parrott | Jul 1989 | A |
4889096 | Brunel | Dec 1989 | A |
5090295 | Cunningham et al. | Feb 1992 | A |
5215449 | Ilija | Jun 1993 | A |
5228844 | Klopfer et al. | Jul 1993 | A |
5318001 | Djordjevic | Jun 1994 | A |
RE34956 | Djordjevic | May 1995 | E |
5592920 | Fehlmann | Jan 1997 | A |
5746584 | Nakamura et al. | May 1998 | A |
5850817 | Bouchauveau et al. | Dec 1998 | A |
6041760 | Fehlmann et al. | Mar 2000 | A |
RE37632 | Bouchauveau et al. | Apr 2002 | E |
6447263 | Cooke et al. | Sep 2002 | B1 |
6651625 | Knight et al. | Nov 2003 | B1 |
Number | Date | Country |
---|---|---|
101 15 167 | Dec 2002 | DE |
Number | Date | Country | |
---|---|---|---|
20040247470 A1 | Dec 2004 | US |