This application is a 35 U.S.C. § 371 National Stage Application of PCT/EP2016/057572, filed on Apr. 7, 2016, which claims the benefit of priority to Serial No. DE 10 2015 209 539.8, filed on May 22, 2015 in Germany, the disclosures of which are incorporated herein by reference in their entirety.
The disclosure concerns a fuel pump, in particular a high-pressure fuel pump, with a piston, on the end portion of which, facing a drive, a sealing device is arranged radially surrounding the piston.
The disclosure furthermore concerns a method for production of such a fuel pump, in particular a high-pressure fuel pump.
In fuel systems of internal combustion engines, fuel pumps are used for transporting fuel. In systems with direct petrol injection, the fuel pumps are supplemented by high-pressure fuel pumps which compress the fuel, supplied for example by an electric fuel pump at a pre-pressure, in sufficient quantities to the level necessary for the high-pressure petrol injection.
Such fuel pumps usually have at least one piston which can be moved axially by means of a drive formed by a cam or an eccentric disk. A necessary return force of the piston is generated by means of a compression spring. For example, a spring plate pressurized by a compression spring is pressed onto an end portion of the piston. A piston seal, arranged radially outward on the piston, can separate a first fuel-side portion of the piston from a second oil-side portion of the piston, which keeps mixing of fuel and oil at least to a low level. One such piston seal, also called a low-pressure seal, is normally held by a holding device, also known as a seal carrier. The seal carrier is connected to the housing of the high-pressure fuel pump such that here too, the oil-side portion of the fuel pump is reliably sealed from a fuel-side portion, wherein the seal carrier constitutes a static seal against the low-pressure seal and against the housing.
The seal carriers are for example made from deep-drawn elements which undergo a substance-bonding to the housing of the high-pressure fuel pump by means of a laser weld seam, and thus provide a static seal between the oil and fuel sides.
The object of the disclosure is to provide a fuel pump, the production of which allows improved cycle times when joining or welding the seal carrier, and improved fault detection during the production process.
This object is achieved by a high-pressure fuel pump with a piston, on the end portion of which, facing a drive, a sealing device is arranged radially surrounding the piston, wherein the sealing device is held by at least one seal carrier, and wherein the seal carrier is connected at least in portions to a housing of the fuel pump, in that the seal carrier has at least one radially peripheral portion at which the seal carrier is substance-bonded to the housing by means of capacitor discharge welding.
The substance-bonded connection of the seal carrier to the fuel pump housing by means of capacitor discharge welding reduces the cycle time in production of the fuel pump, since by means of the capacitor discharge welding, a faster and more precise substance-bonded connection can be created between the seal carrier and the housing. In particular, with capacitor discharge welding in comparison with a laser welding process, almost no spatter and no smoke occur. Thus, there is also no need for regular cleaning of the protective glass, for example to verify the quality of the weld.
Any leaks which may occur on a weld seam produced using the previously normal welding processes, in particular laser welding, can only be established during the so-called line-end test during the leak test. By using capacitor discharge welding, the welding process can be monitored during production. Preferably, a so-called sink travel or settling travel and/or the current development during the capacitor discharge welding are monitored. In this way, it is possible to detect rejects significantly earlier, which facilitates adaptation of the production process and reduces fault costs.
According to a possible embodiment, the seal carrier comprises a first portion extending substantially axially and surrounding the sealing device radially, a second portion adjacent to the first portion and extending substantially radially outward, and a radially outer connecting portion adjacent to the second portion and substance-bonded to the housing of the fuel pump by means of capacitor discharge welding. Preferably, the connecting portion of the seal carrier has an angle of approximately 30° to 60°, preferably approximately 40° to 50° relative to the axis of the piston. The radial extension of this connecting portion is approximately 2 mm to 4 mm, preferably around 3 mm. With these embodiments, a connecting length of at least around 1 mm can be achieved with capacitor discharge welding, whereby a robust and securely sealed weld seam is created.
According to a preferred embodiment, a gap of at least approximately 0.1 mm is formed between the second portion of the seal carrier and the housing. This ensures that no undesirable or undefined shunt occurs during performance of the capacitor discharge welding.
According to another possible embodiment, the second portion of the seal carrier is connected to the housing of the fuel pump by means of a press fit. In this embodiment, a particularly stable connection can be achieved between the seal carrier and the housing.
Preferably, the connecting portion of the seal carrier is substance-bonded to the housing by means of capacitor discharge welding at a radially peripheral shoulder of the housing. The provision of the radially peripheral shoulder on the housing allows improved production of the fuel pump and increases the stability of the substance-bonded connection.
The object is also achieved by a method for production of the fuel pump, wherein the method comprises the following steps:
By means of this method, a substance-bonded connection can be created between the seal carrier and the housing of the high-pressure fuel pump, whereby the above advantages are achieved.
According to a possible embodiment, the second portion of the seal carrier is pressed by means of a press fit into a radially inner portion of the housing, and the capacitor discharge welding is carried out on a connecting portion of the seal carrier.
Preferably, during the capacitor discharge welding, a force and/or a movement of the seal carrier relative to the housing and/or a current development of the capacitor discharge welding is determined. The values determined in this way may be used to determine the quality of the weld connection. Preferably, the determined values are compared with stored values for the force, relative movement and/or current development.
Further features, possible applications and advantages of the disclosure arise from the description below of exemplary embodiments of the disclosure which are explained with reference to the drawings, wherein the features, both alone and in various combinations, may be important for the disclosure without further explicit reference to this being required. The drawing shows:
In the present case, the high-pressure fuel pump 28 is configured as a piston pump, wherein a piston 30 can be moved, vertically in the drawing, by means of a cam disk 32 (drive). An outlet valve 40, drawn as a spring-loaded check valve in
In operation of the fuel system 10, the predelivery pump 16 transports fuel from the fuel tank 12 into the low-pressure line 18. The quantity control valve 24 may be closed and opened depending on the respective demand for fuel. In this way, the fuel quantity delivered to the high-pressure accumulator 46 is influenced. The electromagnetic actuation device 22 is activated by a control and/or regulator device 48.
A piston seal, also known as a low-pressure seal and referred to as the sealing device 74, is arranged radially inside the seal carrier 68 and radially surrounds the lower second portion (facing the drive) of the piston 30; it also seals a fluid space (step chamber) present between the housing 50 and the seal carrier 68, outwardly towards the engine block 53. The piston 30 can move along the longitudinal axis 64 relative to the sealing device 74. In a rough approximation, the sealing device 74 as a whole has an annular structure.
In the present case, the sealing device 74 is supported axially—at the top in
Furthermore, the sealing device 74 is supported axially—at the bottom in
The sealing device 74 is arranged on the piston 30 radially outwardly along the longitudinal axis 64, and configured so as to be substantially rotationally symmetrical.
In order to achieve a connecting length 97 of around 1 mm in the performance of the capacitor discharge welding process, it is advantageous if a radius 98 of at least around 0.3 mm of the housing 50 meets a face of the seal carrier 68 or a connecting portion 94 which is angled by the angle 96. Preferably, the more solid component has the radius 98. In this way, the conduction cross-section is reduced so that the solid component (in this case, the housing 50 of the high-pressure fuel pump 28) is melted substantially as early as the thinner-walled component (in this case, the seal carrier 68) and a robust weld seam is created. In order to avoid an undesirable or undefined shunt during the welding process, according to the embodiment shown in
According to another possible embodiment, as shown in
The method begins with a step 200 in which the housing 50 of the high-pressure fuel pump 28 is positioned on the first electrode 110. In a step 201, the seal carrier 68 is inserted and pre-positioned. In a step 202, the second electrode 112 is applied and mounted in a floating fashion. Preferably, its own weight is selected such that the force necessary for the later welding process is produced.
In a step 203, the arrangement is centered, and in step 204, the monitoring of the process parameters begins, in particular the sink travel, the force and/or the current development in performance of the welding process.
In a step 205, the capacitor discharge welding takes place so that the seal carrier 68 in the connecting portion 94 is substance-bonded to the housing 50 of the high-pressure fuel pump 28.
In a step 206, the process parameters monitored in step 204 are evaluated. Here, the sink travel of the second electrode 112, also known as the settling travel, and the current development in performance of the capacitor discharge welding process, are particularly relevant. These output parameters from production are compared with predefined values in a step 207. If deviations can be found which exceed a predefinable tolerance threshold, in a step 209 the production process of this high-pressure fuel pump 28 is interrupted and it is declared rejected. Where applicable, some parameters for the welding process are adapted. If the monitored process parameters lie within the predefinable tolerance ranges, the method ends in a step 208.
Because the output parameters can be examined directly for defects, any rejection is declared significantly earlier, which substantially facilitates any corrective intervention and saves defect costs.
By the use of the capacitor discharge welding process, the cycle time is reduced in the production of the high-pressure fuel pump 28, in particular in the substance-bonding of the seal carrier 68 to the housing 50 of the high-pressure fuel pump 28. Furthermore, by the use of the capacitor discharge welding process, there is no need for regular cleaning of the protective glass, which is required for example with the laser welding process in order to verify fault-free welding.
With the method according to the disclosure, a leaking laser weld seam is not established only in the line-end test during the leak test performed there, but it is possible, already during production by the analysis of process parameters, to establish whether the welding process was successful.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 209 539 | May 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/057572 | 4/7/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/188661 | 12/1/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8556602 | Mancini | Oct 2013 | B2 |
Number | Date | Country |
---|---|---|
101094988 | Dec 2007 | CN |
101646860 | Feb 2010 | CN |
102052220 | May 2011 | CN |
103 22 598 | Dec 2004 | DE |
10 2013 205 909 | Oct 2014 | DE |
10 2013 206 930 | Oct 2014 | DE |
2 317 119 | May 2011 | EP |
2009-108784 | May 2009 | JP |
2014170105 | Oct 2014 | WO |
Entry |
---|
International Search Report corresponding to PCT Application No. PCT/EP2016/057572, dated Jun. 13, 2016 (German and English language document) (7 pages). |
Number | Date | Country | |
---|---|---|---|
20180135619 A1 | May 2018 | US |