The present disclosure relates to a fuel supply pump that generates pressurized fuel for a direct injection system and a low-pressure fuel outlet hydraulically isolated from the high-pressure pumping mechanism.
High-pressure fuel supply pumps are used to supply pressurized fuel to gasoline direct injection (GDI) systems for motor vehicles. In a GDI system, a pumping mechanism is configured to deliver pressurized fuel to a fuel accumulator connected to fuel injectors arranged in each engine cylinder. Under control of an engine control unit (ECU) the fuel injectors release highly pressurized fuel directly into the engine cylinders, where the fuel-air mixture is ignited. The precision with which fuel is released through the fuel injectors plays a role in the fuel economy, performance, and emissions of the engine. The consistency of pressure in the fuel accumulator, or “common rail” impacts the accuracy of the quantity, rate of flow, and timing of fuel injection, so high-pressure fuel supply pumps are designed to regulate the quantity of pressurized fuel delivered to the common rail so that fuel pressure in the common rail stays within a pre-defined range of pressures.
Recent requirements for vehicle manufacturers to lower emissions have led to gasoline engines being equipped with both high-pressure GDI and low-pressure port injection PFI systems. In terms of emissions of nitrogen oxides and particulates, port fuel injection system is superior to a GDI system in low load and at low engine speeds, while the GDI system is superior when the engine is under load or at high engine speeds. Both the GDI and port injection systems need a source of fuel at a pre-determined, regulated pressure that is as stable as possible.
High-pressure fuel supply pumps for GDI systems receive fuel at low-pressure (3-6 bar) from a fuel supply pump typically arranged in or near a fuel tank. Most high-pressure fuel supply pumps pressurize fuel using a plunger or piston that reciprocates in a bore to cyclically increase and decrease the volume of a pumping chamber. An inlet valve allows fuel to flow into the pumping chamber as the volume of the pumping chamber is expanded when the plunger is retracted (the intake stroke), and an outlet check valve is opened by the pressurized fuel as the pumping chamber volume is reduced when the plunger is advanced (the pumping stroke). To maintain consistent pressure in the common rail, the quantity of fuel pressurized by the pumping mechanism must be matched to the fuel consumed by the GDI system. An electronically controlled inlet valve is used to regulate the quantity of fuel pressurized during each pumping stroke of the high-pressure pumping mechanism by remaining open during all or a portion of the pumping stroke. When the intake valve is open, fuel that would otherwise be pressurized is instead returned to the inlet of the pump without being pressurized, which is known to generate pressure pulses at the intake of the fuel pump. GDI fuel pumps are equipped with damping mechanisms to reduce these pressure pulses at the low-pressure inlet area of the pump, but they cannot be entirely eliminated.
High pressure gasoline direct injection (GDI) pumps include a plunger seal surrounding a stem portion of the plunger extending between the pump bore and the driven end of the plunger. The GDI pump is typically mounted to an internal combustion engine so that the driven end of the plunger and an associated cam follower extend into a gallery through which engine oil is circulated to lubricate the cam, cam follower and driven end of the plunger which translate rotation of an engine shaft into axial reciprocation of the plunger. The plunger has a sealing diameter that is closely received within the pump bore, with a diametric clearance between the outside of the plunger and the inside of the bore on the order of 7-12 microns. It is known that a small amount of fuel is pushed through this diametric clearance when high pressures are generated in the pumping (compression) chamber of the pump. This “leakage flow” is known to lubricate and cool the pumping plunger and a film of liquid fuel between the plunger and pump bore is critical to prevent plunger abrasion and possible seizure. The plunger seal separates a seal chamber containing the leakage flow of fuel being pumped from the engine oil in the gallery. It is common for the stem portion of the plunger to have a diameter where the stem passes through the plunger seal that is smaller than the sealing diameter of the plunger in the pump bore. This difference in diameter results in a “pumping effect” as the plunger reciprocates in the seal chamber. The pumping effect of the plunger can also generate undesirable pressure pulses in regions of the pump connected to the seal chamber. It is known to return leakage flow from the seal chamber to the fuel tank by a return flow path that is separate from the low-pressure fuel flow supplied to the pump, which requires additional fuel piping and undesirably provide additional locations for fuel leakage.
Some operating conditions of an internal combustion engine do not call for high pressure fuel, so the inlet control valve is held open and fuel is not pressurized by the pump. Under these conditions, there may be insufficient leakage flow to cool and lubricate the pumping plunger. It is known to circulate low pressure fuel through the seal chamber of a GDI pump to ensure that the plunger is cooled and lubricated even when high pressure fuel is not being generated by the pump. For example, U.S. Pat. No. 9,145,860 discloses a GDI fuel pump where low-pressure fuel is circulated through the seal chamber in a low-pressure fuel feed path that is in fluid communication with the damper chamber of the pump before being delivered to a low-pressure outlet for a PFI system.
The check valve 3 is arranged to prevent transmission of pressure pulses in the damper chamber 4 upstream toward the low-pressure fuel supply pump 2. A low-pressure fuel path 11 is branched from passage 10 downstream of the check valve 3 and in communication with the damper chamber 4. Low-pressure fuel passes through a seal chamber of the pumping plunger 8 and an outlet orifice 12, leaving a low-pressure outlet in the body of the high-pressure fuel supply pump 1 for use by a PFI system. The orifice 12 is a flow restriction that reduces fluctuation of pressure in low-pressure fuel delivered to the PFI system. However, since the low-pressure path 11 is in fluid communication with the damper chamber 4 and inlet control valve 5, the low-pressure path 11 is exposed to pressure fluctuations caused by fuel returned to the low-pressure accumulator 4 when the inlet control valve 5 acts to reduce the quantity of high-pressure fuel supplied to the spark ignition direct injection (SIDI) rail.
GDI pumps are configured to generate very high-pressures up to 500 bar. To generate such high-pressures, the outside diameter of the pumping plunger is very tightly received in the bore within which the plunger 8 reciprocates. When the GDI pump is compressing fuel to high-pressures, some fuel is forced between the outside diameter of the plunger and the inside diameter of the bore, which lubricates and cools the pumping plunger to prevent seizure. The pump includes a seal surrounding the driven end of the pumping plunger to prevent this fuel from leaving the pump, as is known in the art. A seal chamber is defined above the plunger seal and is typically connected to the low-pressure region of the pump. The high-pressure fuel supply pump 1 of
In an engine equipped with direct injection and port injection systems, there are times when there is no demand for high-pressure fuel by the direct injection system, so all the fuel flowing into the pumping chamber is returned to the damper chamber 4 through the inlet control valve 5. This condition produces the largest pressure fluctuations in the low-pressure side of the pump 1 and also coincides with the need to supply low-pressure fuel to the PFI system. The PFI system operates at low-pressure, so the pressure fluctuations caused by no demand for high-pressure fuel can represent a significant proportion of the operating pressure of the PFI system, resulting in inaccurate fuel metering by the PFI system. In the high-pressure fuel supply pump configuration of
When the inlet control valve 5 remains open in no-demand for high-pressure fuel situation, there is little or no fuel passing between the outside diameter of the plunger and the inside diameter of the pump bore. This can result in loss of a film of fuel between the plunger and bore, and seizure of the plunger to the bore causing failure of the pump. Circulating low-pressure fuel through the seal chamber of the pump 1 prevents loss of fuel film by providing a flow of fuel to the seal chamber even when the engine is not calling for high-pressure fuel and the inlet control valve 5 remains open for an extended period.
Port fuel injection systems operate at much lower pressures than the GDI systems and can be supplied directly from the low-pressure fuel supply pump that feeds low-pressure fuel to the high-pressure fuel supply pump. The addition of a port fuel injection (PFI) system to a GDI system to improve emissions is driving demand for a stable pressure low-pressure fuel outlet on the GDI pump for use by the PFI system.
There is a need for a GDI pump with a stable low-pressure fuel outlet for use by a PFI system.
In some embodiments, a high-pressure fuel supply pump for a fuel system that supplies a high-pressure fuel injection (GDI) apparatus and a low-pressure fuel injection (PFI) apparatus incorporates an inlet check valve to isolate a low-pressure fuel feed channel in the pump from pressure fluctuations at a damper chamber or fuel path on the inlet side of an inlet control valve. Upstream of the inlet check valve, the low-pressure fuel feed channel is connected to the seal chamber surrounding the pumping plunger. Circulating fresh low-pressure fuel through the seal chamber ensures that the pumping plunger and the clearance between the plunger and the pump bore are cooled and lubricated with fuel, even when high pressure fuel is not produced by the high-pressure pump. The low-pressure fuel feed channel is connected to the low-pressure PFI outlet downstream of the seal chamber. The disclosed pump configuration separates a low-pressure fuel feed path through a high-pressure fuel pump from pressure fluctuations generated by the inlet control valve, while ensuring that the pumping plunger is cooled and lubricated even when high pressure fuel is not being produced by the pump.
In some embodiments, a high-pressure fuel pump may incorporate a pumping plunger having a high-pressure sealing diameter D within the pump bore equal to a low-pressure sealing diameter d where the plunger passes through the plunger seal. Alternatively, diameter d may be selected to be less than 30% smaller than diameter D. Reducing or eliminating the difference between the high-pressure sealing diameter D and the low-pressure sealing diameter d of the pumping plunger reduces a pumping effect of the lower end of the pumping plunger as it reciprocates in the seal chamber and reduces pressure pulsations in the low pressure PFI outlet downstream of the seal chamber.
An advantage of the disclosed low pressure bypass configuration is that pressure pulsations within the pump are prevented from entering the low-pressure fuel flow path by a check valve upstream of the low-pressure fuel flow path leading to the low-pressure fuel outlet on the GDI pump. In a fuel pump such as illustrated in
One specific embodiment of a high-pressure fuel supply pump for an internal combustion engine fuel system that includes a high-pressure fuel injection apparatus, a low-pressure fuel injection apparatus, a low-pressure fuel supply pump, and a low-pressure feed line extending from the low-pressure fuel supply pump, includes a plunger reciprocating in a pumping chamber and driven by a cam to generate high-pressure fuel, a low-pressure inlet connection receiving low-pressure fuel from the low-pressure fuel line, a first low-pressure fuel flow path from the low-pressure inlet connection communicating with a damper chamber and a solenoid driven flow control valve assembly arranged to regulate a quantity of fuel pressurized by the plunger. The pump includes a check valve between the low-pressure inlet connection and the first low-pressure fuel flow path, the check valve arranged to close against fuel flow toward the low-pressure inlet connection. The pump includes a second low-pressure fuel flow path from the low-pressure inlet connection upstream of the check valve, the second low-pressure fuel flow path communicating first with a low-pressure seal chamber region around the plunger and then to a low-pressure fuel outlet. In this embodiment of the pump, the second low pressure fuel flow path is fluidly separated from the damper chamber and the flow control valve from the low-pressure inlet connection to the low-pressure fuel outlet and low-pressure fuel is circulated through the low-pressure seal chamber before leaving the fuel supply pump at the low-pressure fuel outlet.
This combination of features substantially eliminates pressure pulses at a low-pressure outlet on a high-pressure GDI pump for use by a low-pressure PFI system.
Embodiments of a high-pressure fuel supply pump with a stable low-pressure outlet will be described with reference to
While the pump embodiments of
Delivering low-pressure fuel to the PFI system through the seal chamber maintains cooling and lubrication of the plunger, even when there is no demand for high-pressure fuel and the inlet control valve remains open for an extended time.
The low-pressure fuel inlet 104 includes a filter 134 to remove particulates and defines two flow paths 136 and 138. Flow path 136 communicates with an intake region of the inlet control valve 110 and includes a check valve 140. Flow path 138 communicates with the seal chamber 132. Check valve 140 closes against fuel flowing back toward the low-pressure fuel inlet 104 when the control valve 110 is open during a pumping stroke of the plunger 116, effectively preventing the pressure pulses from propagating back toward the low-pressure fuel inlet 104 or in low pressure flow path 138. This check valve 140 replaces a check valve that would otherwise be required in the low-pressure fuel line between the low-pressure fuel supply pump and the GDI pump 100 to prevent pressure pulses from propagating in the fuel line. Providing check valve 140 in the GDI pump 100 allows the check valve to serve this function and isolate the low-pressure fuel flow path through the GDI pump 100 to low pressure outlet 108. Containing the check valve 140 and divided low pressure fuel flow paths within the pump simplifies the fuel system piping and reduces locations for fuel leaks. According to aspects of the disclosure, the check valve 140 is arranged in a cylindrical fitting 142 that is secured to the pump body 102 by press-fitting or welding. This allows the check valve 140 to be installed in the fitting 142 and tested prior to attachment to the GDI pump 100. However providing the check valve 140 in a separate fitting is not required and the check valve may be mounted in a bore in the body 102 of the pump 100.
A constant diameter pumping plunger 116 may slip out of the plunger bore 119 before the GDI pump 100 is mounted to an internal combustion engine. To prevent this, a cap 144 is snap fit over the pumping end of the plunger 116. The cap has an outside diameter slightly larger than the inside diameter of the plunger bore 119 defined by the plunger sleeve 118. Other than retaining the plunger 116 in the plunger bore 119 and occupying a small volume of the pumping chamber 128, the cap does not alter operation of the GDI pump 100.
As illustrated in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/044504 | 8/4/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63060871 | Aug 2020 | US |