1. Field of the Invention
This invention relates to a high-pressure generating device for generating high-pressure fluid like a high-pressure pump for ejecting a water jet, a gas compressor for discharging gas such as air and a compressor for discharging various fluids at high pressure.
2. Description of the Related Art
There has been used a plunger pump (sometimes called “piston pump”) for discharging fluid, especially, aqueous fluid at high pressure. The plunger pump can eject the fluid by introducing the fluid into a cylinder and driving a piston in the cylinder with kinetic energy given from an external power source to energize the fluid within the cylinder. Further, there are plenty of other pumps capable of ejecting fluid such as an axial type pump, an in-line piston pump, a vane pump, and a gear pump. Since any pump of this type inevitably carries out compression motion, it necessitates a plurality of pistons to stably generate a required discharge pressure with small pulsation of flow.
Japanese Examined Patent Publication SHO 62-21994(B) discloses a pressure transforming device comprising two pairs of pistons and cylinders for discharging high-pressure hydraulic oil by automatically reciprocating the pistons.
Of gas compressors as seen in an air conditioner, there are various types of pumps such as of a plunger type and a vane type. Most of pumps of these types have functions of compressing gas such as air introduced thereinside by reciprocating the pistons or an equivalent thereof and equalizing the pressure of the compressed air or gas discharged therefrom.
In compressing the gas, a multistage type pump can efficiently compress the gas at high pressure in comparison with a single-stage type pump. As shown in
Of the aforementioned plunger pump for compressing liquid, a non-pulsation type pump capable of uniformly producing liquid pressure with no pulsation of pressure is preferably used. The fluctuation of the discharge pressure can be lessened with increasing the number of pistons, but the increase of the pistons disadvantageously results in increasing the overall size of the pump and the production costs. Moreover, even the plunger pump having a relatively large number of pistons frequently causes pulsating flow Δp with large discharge pressure p, as illustrated in
Where compressing liquid from a non-pressurized state (zero pressure state), it will wastefully take time to increase the pressure to a prescribed pressure level, since the liquid to be compressed contains air in most cases. Such a waste of time is negligible. For instance, pressure drop in cutting a material at high speed with a water jet may possibly cause imperfect cutting. In a case of precisely controlling the depth of cut to be formed in the surface of the material, it is desirable to use a non-pulsation type pump or a similar high pressure pump capable of constantly producing a prescribed pressure, but there has been no such pump capable of fulfilling the desired function.
In the conventional pressure transforming device described in Japanese Examined Patent Publication SHO 62-21994(B), it has also commenced to compress the fluid from the zero pressure state in the compression stroke of one piston. However, the pump of the conventional device entails a disadvantage such that the discharge pressure p thus produced undergoes a pulsating change as shown in
Although increasing of the number of pistons may diminish the pulsation in pressure of the fluid discharged from the gas compressor similarly to the plunger pump, it brings about an inconvenience of increasing the size of the pump and driving up the cost of production. Furthermore, the aforenoted multistage gas compressor 99 having the multiple cylinders with pistons, which are connected with one another through pipes becomes complicated and expensive and is not applicable to a pressure system, which has been recently forced to take prompt measures against an environmental chlorofluorocarbon problem.
It is an object of the present invention to provide a high-pressure generating device capable of stably generating high pressure with no pulsation of pressure.
Another object of the present invention is to provide a high-pressure generating device capable of being manufactured inexpensively and applicable for a pump or a compressor.
Briefly described, these and other objects and advantages of the invention are attained by providing a high-pressure generating device comprising a housing having intake and outlet ports and a pressure chamber having a series of pressure chamber sections, a piston reciprocally disposed within the pressure chamber, and actuating means for reciprocating the piston.
The chamber sections defined in the pressure chamber and the intake and outlet ports are interconnected through check valve means, so as to force fluid such as gas or liquid to flow at high pressure from the intake port to the outlet port through the pressure chamber sections.
The actuating means may comprise hydraulic control chambers to which hydraulic pressure is alternately supplied to reciprocate the piston. The reciprocating motion of the piston may be fulfilled by an actuator including mechanical driving means and an electric motor.
The aforementioned and other objects and advantages of the invention will become more apparent from the following detailed description of particular embodiments of the invention taken in conjunction with the accompanying drawings.
a) and 16(b) are cross sectional views showing a fifth embodiment of the high-pressure generating device according to the invention.
a) and 22(b) are graphs showing waveforms theoretically deduced on the basis of pressures generated by the conventional high-pressure generating device and the high-pressure generating device of the invention.
Preferred embodiments of a high-pressure generating device according to the present invention will be described in detail with reference to the accompanying drawings.
The high-pressure generating device 100 is a non-pulsation type pump device capable of stably raising the pressure of fluid F introduced thereto to produce high-pressure fluid. As one example, the pump may be connected to a water jet device for cutting almost any type of material.
The high-pressure generating device 100 assumes the shape of a cylinder and comprises, as shown in
The piston 1 has an H-shaped cross section and comprises a first (right) baffle member 11, a second (left) baffle member 12, and a connection portion 10. The connection portion 10 is provided on its first baffle member side with a cylindrical bore 13 defining a first chamber section 31 and on its second baffle member side with a cylindrical bore 14 defining second and third chamber sections. The inner diameter D1 of the cylindrical bore 13 is made larger than the inner diameter D2 of the cylindrical bore 14 by a prescribed dimension.
The cylindrical bores 13 and 14 formed in the piston 1 are separated by a partition wall 15 integrally formed inside the connection portion 10 of the piston 1. Within the partition wall 15, there is disposed a check valve 82 for allowing the fluid F supplied to the pump to flow only in the direction from the cylindrical bore 13 (first chamber section 31) to the cylindrical bore 14 (second chamber section 32). The check valve 82 comprises a ball 822 and a spring 823.
The piston 1 has working faces 112 and 122 on which the operating fluid L from the actuator 6 acts, as will be described later.
The housing 2 is formed of a peripheral portion 20, a right end member 211 and a left end member 26. On the central portion of the right end member 211, there is integrally formed a first protrusion 25. Although the peripheral portion 20 and the right and left end members 211 and 26 of the housing 2 in the embodiment illustrated in
The first protrusion 25 of the housing 2 has an intake port 257 and an intake passage 254 for introducing the fluid F into the pressure chamber 3 and a check valve 81. The check valve 81 comprises a ball 812 and a spring 813 to allow the fluid F to flow from the intake port 257 to the first chamber section 31.
The second protrusion 261 of the end member 26 extends into the inside of the second baffle member 12 and is provided at its innermost end with a partition member 27 by which the second chamber section 32 and the third chamber section 33 are partitioned. The second protrusion 261 further has a check valve 83, an outlet passage 264 and an outlet port 267. The check valve 83 comprises a ball 832 and a spring 833 to allow the fluid F to flow from the second chamber section 32 to the third chamber section 33 and the outlet port 267.
The partition member 27 is fixedly formed at the inner end of the second protrusion 261 to partition the second chamber section 32 and the third chamber section 33 and has a communication port 271 at the center thereof.
In the end member 211 of the housing 2, there is formed an air hole 213 for preventing positive or negative fluid pressure brought about by movement of the piston 1 in a space 34 from blocking the movement of the piston 1. Likewise in the end member 26 of the housing 2, there is formed an air hole 268 for preventing positive or negative fluid pressure brought about by movement of the piston 1 in a space 37 from blocking the movement of the piston 1.
At the longitudinal center of the housing 2, there are formed control ports 221 and 222 for feeding and discharging an operating fluid L to and from a first hydraulic control chamber 35 and a second hydraulic control chamber 36 through passages 223 and 224. The fluid pressure p35 in the first hydraulic control chamber 35 is exerted on the working face 112 of the first baffle member 11. The fluid pressure p36 in the second hydraulic control chamber 36 is exerted on the working face 122 of the second baffle member 12.
The first, second and third chamber sections 31, 32 and 33 defined inside the piston 1 are linearly connected so as to continuously discharge the pressure fluid from the outlet port 267 formed in the housing 2 in the manner as mentioned later.
The first chamber section 31 is defined by the inner wall of the cylindrical bore 13 and an end member 258 of the first protrusion 25 and leads to the intake port 257 through the intake passage 254 and check valve 81.
Thus, as the pressure of the fluid in the first chamber section 31 becomes lower than the pressure ps of the supplied fluid F with the movement of the piston in the leftward direction in
The second chamber section 32 is defined by the inner wall of the cylindrical bore 14 and one side of the partition member 27 and leads to the outlet port 267 through the outlet passage 264 and check valve 83. The volume of the second chamber section 32 decreases (compression) when the piston 1 moves leftward as shown in
The inner diameter D1 of the first chamber section 31 is larger than the inner diameter D2 of the second chamber section 32 so as to make the pressure of the fluid pressurized in the second chamber section 32 substantially equal to the pressure of the fluid discharged from the third chamber section 33 when the piston 1 moves rightward as shown in
Meanwhile, the pressure of the fluid F introduced into the second chamber section 32 from the first chamber section 31 further increases with the movement of the piston 1 in the leftward direction as illustrated in
The third chamber section 33 is defined by the inner wall of the cylindrical bore 14 and the other side of the partition member 27 and leads to the outlet port 267 through the passages 264 and 331. Thus, the fluid pressure p3 in the third chamber section 33 is always equal to the pressure pd at the outlet port 267 except at the beginning of rising and falling of the inner pressure.
The volume of the third chamber section 33 decreases (compression) when the piston 1 moves rightward as shown in
With the leftward movement of the piston, the high-pressure fluid F is fed out from the second chamber section 32, and with rightward movement of the piston, the high-pressure fluid F is constantly discharged from the third chamber section 33 through the outlet port 267.
The actuator 6 for reciprocally moving the piston 1 comprises an operating pressure source P for supplying the operating fluid L, a directional control valve 60 connected to the operating pressure source P for changing the direction in which the operating fluid L is supplied, a hydraulic passage 63 for feeding the operating fluid L from the operating pressure source P to the control valve 60, hydraulic passages 61 and 62 connecting the control valve 60 to the control ports 221 and 222 of the chambers 31 and 36, and a hydraulic passage connecting the directional control valve 60 to a drain tank D.
The directional control valve 60 is an electromagnetic valve capable of electrically switching the hydraulic passages. When the directional control valve 60 assumes a first state 601 as shown in
That is, in the first state 601 of the valve 60, the operating fluid L is fed from the operating pressure source P to the second chamber section 36 through the passage 63, valve 60, passage 62, port 222 and passage 224, and simultaneously, the operating fluid L is sent out from the first chamber section 31 to the drain tank D through the passage 223, port 221, passage 61, valve 60 and passage 64, consequently to move the piston leftward as shown in
Next, the operation of the high-pressure generating device 100 thus assembled will be described with reference to
In the state of
At the same time, the pressure in the third chamber section 33 increases with the rightward movement of the piston 1 until reaching the discharge pressure pd of the fluid flowing out from the third chamber section 33, which is determined according to a venturi, a pressure load and other possible external elements (not illustrated), to thereby discharge the fluid. Since the volume ΔV1 of the first chamber section 31 is larger than the volume ΔV2 of the second chamber section, the fluid flowing from the first chamber section 31 into the second chamber section 32 is forced into the third chamber section 33 through the check valve 83 with the rightward movement of the piston 1. The volume of the third chamber section 33 becomes smaller with the rightward movement of the piston 1, consequently to discharge the fluid from the third chamber section 33 from the outlet port 267.
The inner diameters D1 and D2 (corresponding to the volumes ΔV1 and ΔV2) of the first and second chamber sections 31 and 32 may be determined in accordance with the desired discharge pressure pd as appropriate. That is, when requiring a large discharge pressure pd, the inner diameter D1 of the first chamber section 31 may be made large accordingly.
For instance, water usable as the fluid F in this invention has compressibility ratio β of 0.428>×10−9 m2/N in the range of 1.01325×105 Pa to 500×1.01325×105 Pa at 20° C. Use of fluid with low compressibility ratio like water brings about the effect of producing high pressure with high efficiency in sensitive response to the movement of the piston. In this regard, however, mixing of air or other gas into the fluid F causes the compression efficiency of the device to be deteriorated.
That is, the hydraulic fluid produced by the operating pressure source P is constantly given to the first chamber section 31 until just before the state shown in
At the time of switching the directional control valve 60, the piston 1 stops for a moment. Since the pressure in the second chamber section 32 is however increased to be substantially equal to the discharge pressure pd of the fluid, the discharge pressure pd decreases little, consequently to constantly send the pressure fluid to the third chamber section 33 with the leftward movement of the piston 1. Whereas the pressure fluid F sent out from the second chamber section 32 is partly introduced into the third chamber section 33 expands with the leftward movement of the piston 1, the amount of fluid discharged when moving the piston 1 in one direction (leftward direction as shown in
That is, the discharge volume VR (substantially equal to the discharge amount) of the fluid discharged from the third chamber section 33 with the rightward movement of the piston 1 is expressed by the following Equation (1):
VR=(π/4)×(D22−D32)×s (1)
where s is a stroke at the prescribed time, D1 is the inner diameter of the first chamber section 31, and D2 is the inner diameter of the second chamber section 32.
Meanwhile, the equation expressing the discharge volume VL (substantially equal to the discharge amount) of the fluid discharged from the third chamber section 33 with the leftward movement of the piston 1 can be obtained by subtracting the volume of the third chamber section 33 in expanding from the volume V32 of the second chamber section 32 in compressing, as follows:
VL=(π/4)×D32×s (2)
Assuming VR=VL, the discharge pressure pd is kept constant, to thus obtain Equation (3) below from Equations (1) and (2), namely,
(π/4)×(D22−D32)×s=(π/4)×D32×s
For simplicity, this can be written to D22=2D32, thus:
D2=√{square root over ( )}2×(D3) (3)
Accordingly, the inner diameter D2 of the second chamber section 32 should be determined to √{square root over ( )}2 times (about 1.414 times) larger than the outer diameter D3 of the protrusion 261.
When the piston 1 moves leftward until just before the end member 121 of the second baffle member 12 collides with the inner wall of the end member 26, the directional control valve 60 is switched over to set the piston 1 moving in the reverse direction (rightward direction).
While the directional control valve 60 is switched over, the piston 1 stops. Since the pressure in the third chamber section 33 is however increased to be substantially equal to the discharge pressure pd of the fluid, the discharge pressure pd decreases little, consequently to constantly discharge the pressure fluid from the third chamber section 33 with the rightward movement of the piston 1. The second chamber section 32 expands with the rightward movement of the piston 1 and the check valve 82 opens. Consequently, the fluid pressure p2 in the second chamber section 32 becomes substantially equal to the pressure p1 in the first chamber section 31 and the pressure p3 in the third chamber section 33.
In
As will be appreciated from the waveform shown in
On the other hand, the discharge pressure pd from the high-pressure generating device 100 of the invention can be maintained substantially constant except at starting the pumping operation, as shown in
According to the high-pressure generating device 100 of the invention, the pressure fluid F can be continuously discharged at a constant pressure by driving the piston 1 consecutively. Since the drop in pressure does not occur in the device 100 of the invention, an accumulator or other means for diminishing the drop in pressure caused when the piston reverses as described above is not required at all.
Furthermore, a common operating pressure source such as a hydraulic pump and a common directional control valve, which have been available commercially, are applicable for the high-pressure generating device 100 of the invention. The operating pressure source P and the directional control valve 60 can be separated from the housing 2 of the device 100 to provide a small and inexpensive explosion-proof type pumping system. Besides, the device of the invention, which can produce high-pressure fluid within the piston 1, offers advantages that it does not need a high-pressure pipe arrangement for a reciprocating-type water jet device requiring an intensifier and so on, to thus prevent the danger of bursting, in addition to the advantage that it can be made small and manufactured at low cost.
The high-pressure generating device 200 shown in
The high-pressure generating device 200 is formed in a substantially cylindrical shape having a central part of rectangular parallelepiped as shown in
The piston 1 has a substantially H-shape section and constituted by a first (right) baffle member 11, a second (left) baffle member 12, and a connection portion 10 connecting the first and second baffle members 11 and 12. The second baffle member 12 and connection portion 10 are integrally formed. The connection portion 10 is united with the first baffle member 11 with male and female screws formed at their joint portions. The connection portion 10 has a sealing groove 101 incorporating a sealing ring 102 to make the junction between the connection portion 10 and first baffle member 11 airtight.
The cylindrical bores 13 and 14 formed in the piston 1 are separated by a partition wall 15 integrally formed inside the connection portion 10 of the piston 1. The check valve 82 comprises a ball 822 and a spring 823.
The piston 1 has a collar ring 16 screwed to the inner end portion of the baffle member 12 to airtightly define the cylindrical bore 14. Denoted by 161 and 162 are a sealing groove formed in the outer periphery of the collar ring 16 and a sealing member incorporated in the sealing groove 161.
The housing 2 is constituted by a first housing 21 on the side of the first baffle member 11, a central housing 22, and a second housing 23 on the side of the second baffle member 12, a cap 24, a right end member 211, and a left end member 26. The right end member 211 integrally formed with the first housing 21 has a center opening 212 into which a first protrusion 25 is fitted. Thus, the first protrusion 25 is firmly united to the first housing 21 at the mating portion 251 of the first protrusion 25 and is prevented from falling off by means of a clamp ring 253. The piston 1 is slidably supported by the inner walls 28a and 28b in the state of being reciprocally moveable.
The left end member 26 on the side of the second baffle member 12 has a protrusion 261 integrally connected to the end portion 231 and the inner peripheral portion 232 of the second housing 23.
The first protrusion 25 can be practically equated to an integral extension part of the first housing 21 and includes an intake port 257 from which the fluid F is introduced, a connector portion 252 for connecting a fluid supply pipe to the intake port 257, an intake passage 254, a check valve 81, a sealing groove 255 and a sealing ring 256. The check valve 81 includes a ball seat 811, a ball 812, a spring 813 and a spring seat 814 so as to allow the fluid F to flow from the intake port 257 toward the first chamber section. The ball 812 is urged by the ball 812 in one direction so as to allow the fluid F to pass from the intake port 257 into the first chamber section 31.
In the partition wall 15 of the connection portion 10 of the piston 1, there is incorporated a check valve 82 formed of a ball seat 821, a ball 822 and a spring 323 for allowing the fluid to flow from the first chamber section 11 to the second chamber section 12 in the piston chamber.
The second protrusion 261 of the left end member 26 extends inside the second piston 12 and has a partition member 27 provided at its inner end portion. The partition member 27 is fitted to the second protrusion 261 with screw means for partitioning the second chamber section 32 and the third chamber section 33.
The second protrusion 261 has an outlet passage 264 leading to an outlet port 267, so as to discharge the fluid F pressurized in the second chamber section 32 from the outlet port 267 through the check valve 83 and the outlet passage 264. The check valve 83 is formed by a ball seat 831, a ball 832 and a spring 833.
The partition member 27 is a stationary element fixed on the second protrusion 261 for partitioning the second chamber section 32 and the third chamber section 33.
The first housing 21, central housing 22 and second housing 23 are united with threaded bolts 4 through bolt holes in flanges 214, 226 and 234 and washers 41 and threaded nuts 42 fitted onto the bolts 4. Although it is preferable that the bolt 4 in this embodiment has high durability and strength in order to not only lengthen the life of the high-pressure generating device, but also eliminate the danger of possible deformation of the housing of the device due to weakening of the bolt causing a delay in generating fluid pressure.
The third chamber section 33 is defined by the partition member 27 and the collar ring 16 in the cylindrical bore 14 of the piston 1 and communicates with the outlet port 267 through the passages 331 and 264.
Prior to assembling the device, the associated component parts including the sealing members and check valves 81 and 82 are mounted into the relevant elements such as the first protrusion 25 and piston 1 in advance. The check valve 83 is previously assembled by placing the spring 833 and the ball 831 in the seat formed in the leading end portion of the protrusion 261 and screwing the partition member 27 onto the protrusion 261.
The first protrusion 25 is placed in position inside the first housing 21, the second housing 23 and central housing 22 are fitted into the piston 1, the first piston 11 is inserted into the first protrusion 25 and first housing 21, and the housing 2 is secured by the bolts 4 and nuts 42.
Upon fitting the end member 26 under assembly into the cylindrical bore 14 in the piston 1, a specific tool is inserted into a driving hole 65 formed in the collar ring 16 through a slot 269 in the end member 26 to screw the collar ring 16 into the piston 1. Finally, the cap 24 is fitted onto the second housing 23. Thus, the high-pressure generating device 200 of the invention is accomplished.
The high-pressure generating device 200 enables the high-pressure fluid to be continuously discharged at a constant pressure without causing pulsation of pressure by operating the piston with a constant driving force, similarly to the high-pressure generating device 100 described above. According to this device, a high-performance high-pressure pump can be achieved.
The switching valve 85 has a spool valve 850, a bypass passage 225 for the operating fluid L, an intake passage 254, and a bypass passage 259 leading to the intake port 257. The spool valve 850 is composed of a land 851, a spool shaft 852, and a valve body 853.
As shown in
When the piston 1 moves close to the right end as shown in
The subsequent operation for generating the high-pressure fluid is performed in the same manner as that in the first embodiment described above except for the operation of the switching valve 85, as shown in
According to the high-pressure generating device 300 in this third embodiment, the switching valve 85 is operated in short order when the piston 1 changes its moving direction. To be more specific, the switching valve 85 is closed at a high speed in comparison with the check valve 81 in the foregoing embodiments, so that the wasteful time of operating the switching valve can be eliminated, and besides, the efficiency of generating the high pressure fluid can be enhanced. As a result, a high-efficiency high-pressure pump can be achieved.
The high-pressure generating device 400 shown in
The actuator 6 including the automatic switching mechanism 70 comprises an operating pressure source P for supplying the operating fluid L, a selection valve 71 for changing the direction in which the piston 1 moves, a first pilot valve means 72, and a second pilot valve means 73. The first pilot valve means 72 is operated by one working face 122 of the piston 1 being forced by the operating fluid L and operated to switch the passages for operating fluid L when the piston 1 moves close to one inner wall 215 of the housing 2 to allow the selection valve 71 to move in one direction. The second pilot valve means 73 is operated by the other working face 112 of the piston being forced by the operating fluid and operated to switch the passages for operating fluid L when the piston 1 moves close to the other inner wall 26a of the housing 2 to allow the selection valve 71 to move in the reverse direction.
The selection valve 71 serves to change the passages for the operating fluid L so as to selectively feed the fluid L to either first hydraulic control chamber 35 or second hydraulic control chamber 36.
As the piston 1 further moves rightward from the state shown in
In the same manner, when moving the piston 1 leftward, the selection valve 71 is automatically switched as the result of causing the working face 112 of the piston 1 to force the push rod 731 in the second pilot valve means 73, symmetrically with the first pilot valve means 72.
That is, when the piston 1 moves close to one end portion, the push rod of one of the pilot valve means is thrust by the piston 1 to have the operating fluid acting on the selection valve 71 assuming its one position to force the selection valve 71 to the other position, consequently to allow the operating fluid to act on the piston 1 in the opposite direction. Thus, the reciprocating motion of the piston 1 is achieved in conjunction with the alternating motions of the first and second pilot valve means.
According to the high-pressure generating device 400 having the automatic switching mechanism 70 with the actuator 6, high-pressure fluid can be generated reliably with high efficiency without using electrical switching means as found in the first embodiment.
The high-pressure generating device 500 shown in
The piston extension member 17 is connected to a driving shaft 75b of a rotating drive device such as a motor (not shown) through a universal joint 75a and a rotation-to-linear motion converter 75c. With this mechanism, the piston 1 can be moved to and fro.
According to this fifth embodiment, since the device 500 adopts such a direct driving mechanism as described, the high-pressure fluid can be generated with high efficiency.
By rotating the eccentric cam 76a, the piston 1 is moved reciprocally through the medium of the piston extension member 17. According to this embodiment, the high-pressure fluid can be generated with high efficiency.
In the device 700, the first chamber section 31 defined by the end face of the piston and the inner wall of the housing has the inner diameter D1 equal to the inner diameter of the housing 2. The third chamber section 33 is separated from the outlet passage 264 by the check valve 84 so as to compress fluid (gas G) fed from the second chamber section 32 and discharge the compressed fluid outward. The check valve 84, which is composed of a ball seat 844 formed in the second protrusion 261, a ball 842 and a spring 843, is disposed between the third chamber section 33 and the outlet passage 264 to allow the gas G to flow out from the third chamber section.
In the high-pressure generating device 700, the check valve 81 is opened with the leftward movement of the piston 1 to feed the gas G into the first chamber section 31. The gas G in the first chamber section 31 is compressed with the rightward movement of the piston 1, and simultaneously, the gas G in the second chamber section 32 becomes negative, similarly to the first embodiment. However, since the first chamber section 31 has a larger inner diameter than that of the second chamber section 32, the check valve 82 is opened to increase the pressures in the first and second chamber sections 31 and 32.
Just as the gas G is introduced into the first chamber section with the leftward movement of the piston 1, the gas G in the second chamber section 32 is compressed to open the check valve 83, consequently feeding the gas G into the third chamber section 33. Since the third chamber section 33 expanding at this time is smaller in volume than the second chamber section 32, the third chamber section 33 is pressurized by introducing the gas G thereinto to increase the pressure of the gas in the third chamber section 33. In a case where the pressure of a load connected to the outlet port 267 is small, the gas G corresponding to a surplus volume expanded in the third chamber section 33 flows out from the third chamber section 33 to the outside of the housing 2. On the other hand, when the pressure of the load connected to the outlet port 267 is large, the gas G is supplied from the second chamber section 32 to the third chamber section 33 until the pressure of the gas in the third chamber section becomes equal, and then, when the pressure of the gas in the third chamber section exceeds the pressure of the load, the gas G is discharged.
When the piston 1 moves rightward, the gases G in the first and second chamber sections 31 and 32 are compressed, and simultaneously, the third chamber section 33 decreases its volume to compress the gas G in the third chamber section 33, consequently to discharge the gas G to the outside of the housing 2. Thus, as long as the pressure of the load connected to the outlet port 267 is small, the gas G is continuously discharged.
The piston 1 in this embodiment has working faces 181 and 182 on both sides of a central brim 18 for acting on the operating fluid L, but the structure and arrangement of these elements are not specifically limited. Namely, the arrangement in which the piston 1 is provided on its right and left end portions with the working faces for acting on the operating fluid L as shown in
According to the high-pressure generating device 700 of the aforementioned embodiment in which the gas G supplied to the device is compressed practically three times in the three chambers, the gas can be efficiently compressed to generate high-pressure gas. In passing, since the gas can be compressed with slight heat by performing the compression at multiple stages, the device of this embodiment can produce high-pressure gas with high efficiency without causing pulsation of pressure. Besides, the device of the invention composed of a single piston can be made compact at low cost compared with the conventional multistage gas compressor 99 having a plurality of pistons.
To generate stronger fluid pressure, the high-pressure generating device of the invention may be provided with a fourth chamber. Although the high-pressure generating devices in the foregoing embodiments except for the seventh embodiment have a function of generating high-pressure fluid, the device may be designed to make the first and second chamber sections 35 and 36 smaller and the pressure chamber 3 larger in volume, so that a large amount of low-pressure fluid can be discharged in one cycle. This device is used as a high volume pump applicable to construction machines, irrigation pumps, fire pumps or the like.
The high-pressure generating device according to the present invention was actually manufactured by way of trial on the basis of the embodiment shown in
In the measuring test, the piston was moved at the speed of approximately one reciprocating cycle per second. As seen in the graph, subtle pressure drop Δpd took place in a moment every about 0.5 seconds, i.e. at the time when the piston 1 changed its moving direction. Since the pressure drop takes place periodically for a very short time in vanishingly small amount, it is negligible. The change in pressure in the device of the invention is 4% at the most, which is remarkably lower than that in the conventional high-pressure pump. Thus, the experimental measuring tests have given proof that the high-pressure generating device according to the invention is substantially superior to the conventional device of this type.
Furthermore, the high-pressure generating device of the invention has an advantage in that it does not give rise to high frequency oscillation in discharging the pressure fluid, which is generally called “surge pressure” and often seen in the conventional high-pressure pump.
As is apparent from the foregoing description, according to the present invention, the high-pressure generating device capable of stably generating high-pressure fluid with high efficiency without causing pulsation of pressure can be manufactured at low cost.
While the invention has been explained by reference to particular embodiments thereof, and while these embodiments have been described in considerable detail, the invention is not limited to the representative apparatus and methods described. Those of ordinary skill in the art will recognize various modifications which may be made to the embodiments described herein without departing from the scope of the invention. Accordingly, the scope of the invention is to be determined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5190373 | Dickson et al. | Mar 1993 | A |
6068448 | Muratsubaki et al. | May 2000 | A |
6279854 | Lindahl | Aug 2001 | B1 |
6412457 | Vorih et al. | Jul 2002 | B1 |
Number | Date | Country |
---|---|---|
56-129778 | Oct 1981 | JP |
Number | Date | Country | |
---|---|---|---|
20050013716 A1 | Jan 2005 | US |