The present invention is directed toward heat exchangers, and particularly toward high pressure heat exchangers.
As is well known, discharge of refrigerants into the atmosphere is considered to be a major cause of the degradation of the ozone layer. While refrigerants such as HFC's are certainly more environmentally friendly than refrigerants such as CFC's which they replaced, they nonetheless are undesirable in that they may contribute to the so-called greenhouse effect.
Both CFC's and HFC's have been used largely in vehicular applications where weight and bulk are substantial concerns. If a heat exchanger in an automotive air conditioning system is too heavy, fuel economy of the vehicle will suffer. Similarly, if it is too bulky, not only may a weight penalty be involved, but the design of the heat exchanger may inhibit the designer of the vehicle in achieving an aerodynamically “slippery” design that would also improve fuel economy.
Refrigerant leakage to the atmosphere occurs from vehicular air-conditioning systems because the compressor cannot be hermetically sealed as in stationary systems, typically requiring rotary power via a belt or the like from the engine of the vehicle. Consequently, it is desirable to provide a refrigeration system for use in vehicular applications wherein any refrigerant that escapes to the atmosphere would not be as potentially damaging to the environment and wherein system components remain small and lightweight so as to not have adverse consequences on fuel economy.
These concerns have led to consideration of transcritical CO2 systems for use in vehicular applications. For one, the CO2 utilized as a refrigerant in such systems could be claimed from the atmosphere at the outset with the result that if it were to leak from the system in which it was used back to the atmosphere, there would be no net increase in atmospheric CO2 content. Moreover, while CO2 is undesirable from the standpoint of the greenhouse effect, it does not affect the ozone layer and would not cause an increase in the greenhouse effect since there would be no net increase in atmospheric CO2 content as a result of leakage.
However, transcritical systems typically involve very high pressures on the refrigerant side, and therefore heat exchangers used in such systems must be able to withstand such pressures, preferably (particularly in automotive systems) without significantly increasing size and weight.
U.S. Pat. No. 5,875,837 discloses a heat exchanger with serpentine tubes interleaved with flattened plate-like tubes, there being cross flow between the serpentine tube runs and the plate-like tubes. The plate-like tubes define a plurality of discrete flow paths which are open at the tube ends, the tube ends being connected by a header plate and header tank assemblies. It is desirable to facilitate assembly of such heat exchangers. Further, heat exchangers of this design may not be readily adapted for concurrent and countercurrent flow between the separate flow paths of the two tubes.
In one aspect of the present invention, a heat exchanger is provided, including a refrigerant inlet and outlet header portions, at least one serpentine multiport tube, a fluid heat exchanger inlet and a fluid heat exchanger outlet, and at least three plate assembly fluid paths. The serpentine tube defines a plurality of tube runs with a tube bend between adjacent tube runs, with an inlet end on one tube run for receiving refrigerant from the refrigerant inlet header portion and an outlet end on another tube run for discharging refrigerant into the refrigerant outlet header portion. Each of the plate assembly fluid paths includes a pair of spaced plates secured together at their edges to define an enclosed space with a fluid inlet to the one side of the space and a fluid outlet from the other side of the space. The fluid inlet of a first of the plate assembly fluid paths receives fluid from the fluid heat exchanger inlet, and one plate of the first of the plate assembly fluid paths is positioned against the one tube run of the first tube. The fluid outlet of a second of the plate assembly fluid paths discharges fluid to the fluid heat exchanger outlet, and one plate of the second of the plate assembly fluid paths is positioned against the other tube run of the first tube. A third of the plate assembly fluid paths is positioned between the tube runs of the first tube.
In one form of this aspect of the present invention, a second serpentine multiport tube is generally aligned with and behind the first tube, with the one plate of the first of the plate assembly fluid paths positioned against the inlet tube run of the second tube, the one plate of the second of the plate assembly fluid paths positioned against the outlet tube run of the second tube, and the third of the plate assembly fluid paths positioned between the tube runs of the second tube.
In alternate forms of this aspect of the present invention, the fluid paths may flow transverse to the tube runs, in substantially the same direction as the refrigerant flow in adjacent tube runs, or in substantially the opposite direction.
In still other forms, turbulating elements may be provided in the enclosed space between the fluid inlet and the fluid outlet. Also, the refrigerant may be CO2.
In another form, the heat exchanger may be used in a transcritical cooling system.
In another aspect of the present invention, a heat exchanger is provided including a first and second fluid paths for first and second fluids. The first path includes a multiport serpentine tube defining a plurality of tube runs with tube bends on the order of 180 degrees between adjacent spaced tube runs. The second fluid path includes a plurality of plate heat exchanger sets, each plate heat exchanger set including two plate heat exchangers each defined by a pair of spaced plates secured together at their edges to define an enclosed space. The first and second fluid paths are interleaved with each tube run including the plate heat exchangers of one of the plate heat exchanger sets disposed against opposite sides of the tube run.
In one form of this aspect of the invention, one of the tube runs has an inlet for receiving the first fluid from an inlet header portion and another of the tube runs has an outlet for discharging the first fluid to an outlet header portion, and one of the plate heat exchanger sets has an inlet for receiving the second fluid from a fluid heat exchanger inlet and another of the plate heat exchanger sets has an outlet for discharging the second fluid to a fluid heat exchanger outlet. With this form, the one of the plate heat exchanger sets may have an outlet for discharging the second fluid to an inlet of the other of the plate heat exchanger sets. Additionally, the one plate heat exchanger set may be disposed against a side of the other tube run and the other of the plate heat exchanger sets may be disposed against a side of said one tube run.
In still other forms, turbulating elements may be provided in the enclosed space between the fluid inlet and the fluid outlet, the plate heat exchangers may be drawn cup heat exchangers, and/or the first fluid may be refrigerant, including CO2.
In alternate forms of this aspect of the present invention, the plate heat exchangers may have inlets and outlets disposed so that the second fluid flows through the plate heat exchangers transverse to the tube runs, in substantially the same direction as the first fluid flows in adjacent tube runs, or in substantially the opposite direction.
In another form of this aspect of the invention, the heat exchanger may be used in a transcritical cooling system.
In still another aspect of the present invention, a heat exchanger is provided, including refrigerant inlet and outlet header portions, first and second serpentine multiport tubes, a fluid heat exchanger inlet, a fluid heat exchanger outlet, and first, second, third and fourth plate heat exchangers. Each multiport tube defines a plurality of tube runs with a tube bend between adjacent tube runs with the tube runs of the second tube being substantially aligned with the tube runs of the first tube. Each tube also has an inlet end on one tube run for receiving refrigerant from the refrigerant inlet header portion and an outlet end on another tube run for discharging refrigerant into the refrigerant outlet header portion. Each plate heat exchanger includes a pair of spaced plates secured together at their edges to define an enclosed space with a fluid inlet to one side of the space and a fluid outlet from the other side of the space. The fluid inlet of the first and second plate heat exchangers receives fluid from the fluid heat exchanger inlet, and the fluid outlet of the third and fourth plate heat exchangers discharges fluid to the fluid heat exchanger outlet. One plate of the first plate heat exchanger is positioned against one side of the one tube run of the first and second tubes and one plate of the second plate heat exchanger is positioned against the other side of the one tube run of the first and second tubes. One plate of the third plate heat exchanger is positioned against one side of the other tube run of the first and second tubes and one plate of the fourth plate heat exchanger is positioned against the other side of the other tube run of the first and second tubes.
In one form of this aspect of the present invention, a fluid outlet for the first and second plate heat exchangers is generally disposed at the opposite end of the one tube run from the first and second plate heat exchanger fluid inlet, and a fluid inlet to the third and fourth plate heat exchangers is generally disposed at the opposite end of the other tube run from the third and fourth plate heat exchanger fluid outlet. In this form, the fluid flow in the plate heat exchangers may be in substantially the same direction, or in substantially the opposite direction, as the refrigerant flows in the tube run between the plate heat exchangers. Alternately, the tube runs of both tubes may be between the fluid inlets and outlets of the associated plate heat exchangers, whereby the fluid in the plate heat exchangers flows in a direction substantially transverse to the direction of flow of the refrigerant in the tube runs.
Previously described forms of the other aspects of the invention may also be used with this aspect of the present invention including, for example, drawn cup plate heat exchangers, turbulating elements in the plate heat exchanger enclosed spaces, CO2 refrigerant, and use in a transcritical cooling system.
In yet another aspect of the present invention, a heat exchanger, is provided including a refrigerant path including a multiport serpentine tube defining a plurality of tube runs with tube bends therebetween, and a fluid path including a plurality of plate heat exchangers. Each plate heat exchanger includes a pair of plate members each having a rim therearound, the rims being securable together to enclose a space between the plate members, with an inlet through at least one of the plate members and an outlet through at least one of the plate members. The plate members are substantially identical except that selected ones of the plate members have both an inlet and an outlet, and the plate members are stacked to define a selected fluid path with tube runs of the serpentine tube interleaved between the plate heat exchangers with at least one plate member of a plate heat exchanger disposed against each side of the tube runs.
In one form of this aspect of the invention, the inlets and outlets of the plate members are selectively aligned to provide a selective fluid path.
In another form of this aspect of the invention, a flange is provided at each inlet and outlet, with the flange being raised from the associated plate member substantially half the thickness of the tube.
Multiport tubes 12, 14, 16 are now well known in the art, and include web members extending between the sides of the tubes 12, 14, 16 to provide strength against internal pressure and to further assist in heat transfer of the refrigerant to the tube walls. Such tubes 12, 14, 16 may be microchannel tubes, the hydraulic diameter of which can be varied according to design requirements. It should also be appreciated that, depending on required heat exchange capacity, more or less than three such tubes could be used within the scope of the present invention, with greater numbers of tubes (and ports) resulting in less pressure drop therein but also potentially undesirably increasing the size, weight and cost of the heat exchanger as well.
The serpentine tubes 12, 14, 16 each include five 180 degree bends between six separate spaced and parallel tube runs 30, with the tube runs 30 of the three tubes 12, 14, 16 being generally aligned with one another. It should be appreciated, however, that the serpentine tubes 30 could have more or less than the illustrated six tube runs 30.
Interleaved or layered between the tube runs 30 are a plurality of plate-type heat exchangers 40, 41, 42, 43, 44, 45, 46, seven such heat exchangers 40-46 being shown in the
The plates of the plate heat exchanger 40-46 are suitably disposed against walls on opposite sides of the adjacent tube runs 30 of the serpentine tubes 12, 14,16 whereby an effective heat transfer contact therebetween exists.
A heat exchanger fluid inlet 50 is provided at one corner of the bottom-most of the illustrated plate heat exchangers 40, and a heat exchanger fluid outlet 52 is provided at one corner of the top-most of the illustrated plate heat exchanger 46. Though not shown in
As illustrated, the heat exchanger 10 also uses counterflow, with the heat exchanger fluid inlet 50 being with plate heat exchanger 40 adjacent the tube run 30 having the outlet end 24 and the heat exchanger fluid outlet 52 being with the plate heat exchanger 46 adjacent the tube run 30 having the inlet end 20. However, it should be appreciated that the inlets and outlets could be switched where convenient for an application, with the heat exchanger fluid inlet being with a plate heat exchanger adjacent the tube run with the inlet end, and the heat exchanger fluid outlet being with a plate heat exchanger adjacent the tube run with the outlet end.
As noted with the first described embodiment, it should be appreciated that more than the one tube 62 could be used within the scope of the present invention, depending upon the requirements of the intended application. It should also be appreciated that the serpentine tube 62 could have more than the illustrated two tube runs 64, 66.
Two sets of plate heat exchangers 80, 82 are provided, one for each of the tube runs 64, 66 respectively. Each plate heat exchanger set 80, 82 includes two plate heat exchangers, 84, 86 and 88, 90 respectively, disposed against opposite sides of the associated tube run 64, 66. Preferably, a gap is provided between facing plate surfaces of the inner two plate heat exchangers 86, 88.
As illustrated in
It should thus now be appreciated that a counterflow of fluid will occur in the plate heat exchangers, whereby (in the orientation as illustrated in FIG. 3):
Specifically, the heat exchanger 110 includes three serpentine tubes 134, 136, 138 extending between outlet and inlet headers 140, 142 (generally, though specific inlets and outlets are indicated in the descriptions herein, it should be understood that which port is the inlet and which is the outlet could be switched depending upon the application). Like the embodiment illustrated in
Baffles 146, 148 (partially seen in the broken away view of the headers 140, 142 in
Where such sequential flow through the tubes 134-138 is not desired, the baffles 146, 148 may be eliminated.
In the disclosed embodiment, the plate tube heat exchangers 112-124 are each formed from two spaced plates 150 suitably secured to an enclosing side wall 152. A turbulator 156 is secured between the spaced plates 150. Inlet and outlet openings 162, 164 are provided at opposite corners of the plates 150. (It should be understood that though the disclosed embodiment has such openings at opposite corners, it would be within the scope of the invention in any of the disclosed embodiments if the inlets and outlets were located elsewhere including, for example, the middle of the plate heat exchanger end.
Spacer inserts 166 are provided between the plate heat exchangers 112-124 at the ends, which inserts 166 have openings 168 therethrough in alignment with the plate openings 162, 164. The inserts 166 preferably have a thickness substantially equal to the thickness of the serpentine tubes 134-138, allowing the inserts 166 to be sealed securely to the plate heat exchangers abutting opposite sides thereof (providing a leak-free fluid path between the openings of adjacent plate heat exchangers 112-124), while also allowing plate heat exchangers 112-124 to abut securely against the tubes 134-138 for desired heat transfer therebetween. Additional intermediate inserts 170 also having a thickness substantially equal to the thickness of the serpentine tubes 134-138 may also be provided for support between the tubes 134-138.
It should thus be particularly appreciated from the
It should also be appreciated that counterflow could also be readily provided in a similarly modular fashion. For example, each plate could be provided with only one opening therethrough, with the plates alternately turned to provide inlets and outlets at opposite corners. Alternatively, plates with two openings such as shown in
Lateral flanges 190, 192 may be provided on the plates 180, 182, each flange 190, 192 having an opening 194 therethrough and a boss 196, 198 extending in the opposite direction from the plate member 186 from the rims 184. The plates 180, 182 may be stacked such as illustrated, with facing bosses 196, 198 connected together to define a fluid path between plate heat exchangers (and the bosses 196, 198 preferably being raised a combined amount equal to the thickness of the serpentine tubes being used therewith to provide proper spacing in which the plate members 186 are disposed against the wall of the adjacent tubes).
If formed in a stamping operation, it will be appreciated that the blanks used in such an operation may be identical for the different plates 180, 182, with the direction of stamping merely being different for forming the two different plates 180, 182.
As with the other described embodiments, it should be appreciated that plates embodying the concept of those disclosed in
Of course, it should also be appreciated that plates of the type such as illustrated in
It should be appreciated that heat exchangers according to the present invention are particularly suitable for modular type manufacturing allowing easy and relatively inexpensive manufacturing of such heat exchangers for different applications, where different numbers of tubes and/or tube runs may be required. Further, such compact and lightweight designs can be provided in a single brazing operation with a constant pressure placed over the entire heat exchanger during such operation.
Further, the fluid used in such heat exchangers may be readily contained without the necessity of a surrounding shell, with such fluid being advantageously distributed for good heat transfer due, for example, to the short header lengths possible with such heat exchangers. Refrigerant will also be advantageously distributed in the structure, which structure will also be able to handle high refrigerant pressures (e.g., in transcritical CO2 systems, typical burst pressures might be up to 4000 psi if used as a heat source and up to 6000 psi if used as a heat sink).
Still further, where turbulators are used, their height may be easily varied to give the fluid-side surface area required for the particular application in which the heat exchanger is to be used.
It should also be appreciated that while the above description has generally been made in the context of transcritical refrigeration systems, the present invention could also be advantageously used in a wide variety of heat exchange applications.
Still other aspects, objects, and advantages of the present invention can be obtained from a study of the specification, the drawings, and the appended claims. It should be understood, however, that the present invention could be used in alternate forms where less than all of the objects and advantages of the present invention and preferred embodiment as described above would be obtained.
Number | Name | Date | Kind |
---|---|---|---|
1720768 | Spreen | Jul 1929 | A |
4587701 | Koisuka et al. | May 1986 | A |
4602674 | Eriksson | Jul 1986 | A |
4747450 | Ikegame et al. | May 1988 | A |
4942654 | Wright et al. | Jul 1990 | A |
5036909 | Whitehead et al. | Aug 1991 | A |
5704123 | Paulman et al. | Jan 1998 | A |
5875837 | Hughes | Mar 1999 | A |
5964284 | Ikejima et al. | Oct 1999 | A |
6212764 | Schornhorst et al. | Apr 2001 | B1 |
6540015 | Kawachi et al. | Apr 2003 | B1 |
Number | Date | Country |
---|---|---|
19836889 | Feb 2000 | DE |
2001-174083 | Jun 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040094291 A1 | May 2004 | US |