The present invention pertains generally to the field of internal combustion engines, more particularly to the field of fuel injection systems for internal combustion engines.
Related material may be found in U.S. Pat. No. 7,721,716 titled “High Pressure Piezoelectric Fuel Injector”, filed Jul. 14, 2009 by Harwood, which is incorporated herein by reference in its entirety.
Typical injectors for a Diesel engine operate in conjunction with a heavy, high pressure pump to operate the injector. The systems are well suited to the large diesel engines in trucking, automotive and marine service, however the systems scale poorly for smaller engines or where light weight is needed as in aircraft applications. As engine size decreases, the injectors and injector pump do not scale proportionately. The engine ends up with a significant fraction of the total weight invested in the injection system. Thus, there is a need for simple light weight injector systems and pump systems for small and light weight applications.
Briefly, the present invention relates to a combined injector and fuel pump suitable for high pressure direct injection of heavy fuels into Diesel engines, in particular small light weight Diesel engines as may be used in small aircraft. The injector utilizes a piezoelectric actuator driving a piston assembly comprising an inlet reed check valve disposed thereon. The piston houses an injection needle valve component spring loaded against the piston on one end of the needle component and a valve seat on the other end of the needle component. Fuel enters an inlet port coupled to an inlet passage within the piston. Piezoelectric actuator contraction transfers fuel from the inlet passage through the reed valve to a pressurization chamber. Piezoelectric actuator expansion drives the piston to pressurize the fuel in the pressurization chamber, which forces open the needle valve and nozzle assembly, injecting a finely atomized mist of fuel into a cylinder. A poppet injection valve embodiment is described.
In one aspect of the invention, the piston/valve architecture is configured to achieve a small residual volume of fuel in the injection chamber to minimize the effect of the compressibility of the fuel.
In one aspect of the invention, the injector is adapted to receive fuel at low pressure, including gravity feed pressures.
In another aspect the injector may be adapted to deliver fuel by direct injection into a cylinder at high pressure during a combustion interval.
In another embodiment, the injector may be adapted to accurately deliver very low quantities of fuel per stroke.
In another aspect of the invention, the output valve and injector spray nozzle features are integrated into the same structure and utilize the same components.
In another aspect of the invention, the injector may direct the spray pattern at any desired angle with respect to a plane perpendicular to the injector axis.
In a further feature of the invention, the nozzle generates fine atomization without requiring protrusions into the combustion chamber that tend to collect carbon deposits.
In a further feature, the nozzle presents a substantially flush and rugged face to the combustion chamber for minimum combustion gas flow disturbance and minimum deposit buildup.
In a further feature of the invention, the injector directly injects fuel at a desired angle into the cylinder, avoiding protrusions within the cylinder subject to carbon deposit buildup.
In a further aspect of the invention, the actuator length dimension is coupled to the piston to move the piston to compress a volume of fuel to cause injection. In one embodiment, the width dimension is decoupled from the fluid by a close fitting piston or by O-rings or other sealants.
In a further aspect of the invention, the actuator is coupled to the piston by an axial coupling having rotational decoupling to minimize torque transmitted to the actuator, for example, a flexible coupling, a spherical dome coupling, a contact coupling. The coupling may be spring loaded to provide return motion.
In a further aspect of the invention, the actuator is coupled to the piston with one mating surface being flat and the other being domed to allow misalignments and assure center loading on the actuator.
In a further embodiment, the input reed valve seat includes small holes for fuel transfer. The holes should be small enough so that full pressure on the reed does not flex the reed enough across the span of the hole under maximum peak pressure to cause long term fatigue concerns in the reed. Standard stress strain analysis may be used to determine the strain, which is then compared with known fatigue properties for the reed material.
In a further aspect of the invention, the input reed valve may be an arc section leaf spring operable on the outer perimeter of the face of the piston.
In one aspect of the invention the injector may utilize a needle valve supported by the piston and retracting into the piston to open and release fuel.
In an alternative aspect of the invention, the injector may utilize a poppet valve that is pushed into the engine cylinder to open and release fuel.
In one aspect of the invention, the needle valve may be fabricated with a soft material, for example brass, copper, delrin, or glass filled delrin. The needle valve seat may be a hard metal, for example steel and may be a conical bevel or may be a sharp edge. The sharp edge needle valve seat may be treated by staking with a precision ground hard metal conical needle pressed with a light force to ensure a precise round shape free of burrs and slightly round the edge of the sharp seat.
The injector may include various nozzle styles. In particular, the needle valve allows coupling to compact nozzle structures formed in or attached to the valve seat partition wall. One alternative may include a valve covered orifice. One orifice structure may comprise a plurality of holes in the range of 0.002 to 0.003 inch diameter with a 2.5 length to diameter ratio. The holes may optionally open to a conical expansion opening to the engine cylinder space.
In further variations, the cylinder head surface may be conformal to the piston valve and valve holder structure, permitting only a slight clearance on the order of, for example, less than 0.009 inch, (0.25 mm) for movement of the fuel.
In one variation, an equivalent cylindrical depth (based on total volume) of the compression chamber may be less than 1/10 of the diameter, preferably less than 1/20 of the diameter, more preferably less than 1/50 of the diameter.
In one variation, the compression chamber volume may be configured for a volume such that compression of the fuel accounts for less than half of the piston movement, preferably less than 20%, more preferably less than 10%.
In a further variation, the piston has a flange extending beyond an operative fluid pressurization diameter of the piston and the piston is preloaded against said piezoelectric element by at least one spring in operative contact with the flange.
In a further variation, a compact integrated assembly is formed comprising a cylinder, cylinder head and a injection valve seat, and injection nozzle orifice fabricated in a single piece of material.
Further features of the invention relate to methods of making and methods of using the fuel injector based on the features described herein.
These and further benefits and features of the present invention are herein described in detail with reference to exemplary embodiments in accordance with the invention.
The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
The injector of the present invention eliminates the need for large, heavy high-pressure fuel pumps while maintaining the fine atomization consistent with the needs of state-of-the-art direct fuel injection systems. The high pressure necessary for the fine atomization is produced by a piezoelectric actuator driven piston. Piezoelectric actuators are found to be exceptionally well suited for very small heavy fuel (VSHF) engine injectors. Piezoelectric actuators may also be referred to as piezoelectric transducers, or PZT's. While the actuation distance of piezoelectric actuators is often small (10-100 micrometers (μm)), the injection volume of injectors designed for very small (i.e. ˜20 cubic centimeters (cc)) engines is also very small 1 to 2 cubic millimeters (1-2 mm3), typically, but not limited to less than three cubic millimeters per stroke at maximum power output. In addition, the piezoelectric actuator is adapted to produce relatively large forces in a compact package, and consequently, are able to create high pressures on the order of three thousand psi (207 bar) (1 bar=100 kPa) consistent with the needs of a Diesel engine. Exemplary piezo actuators may include P-841.20 and P-888.9 manufactured by Physik Instrumente. The present invention eliminates the need for a separate high pressure pump by the use of piezoelectric actuators as a driver for a compact high pressure impulse pump integrated with an injector nozzle assembly.
The present invention is an enabling technology for small engines burning heavy fuels. A plunger pressurization mechanism is built into the injector itself eliminating the high-pressure fuel pump typical of most diesel injection systems, while maintaining the atomization consistent with state-of-art injectors. A piezoelectric actuator is used to both provide a compact pressurization mechanism and rapid, precision control of the injection pulse to ensure that the proper amount of fuel is injected at the proper time.
In one aspect of the invention, the invention permits a very small residual volume of fuel in the injection chamber to minimize the effect of the compressibility of the fuel. Typical hydrocarbon fuel oil has a bulk elastic modulus on the order of 1.5 to 2.5×105 psi, lbf/in2 (1 to 1.7×109 Pa, N/m2). Thus, a sample of fuel might compress 0.5% for 1000 psi (69 bar) compression. For 100 microns of piston deflection, a sample of fuel 20 mm in depth would compress 100 microns, absorbing the entire piston stroke in compression, even if no fuel is delivered to the nozzle. This becomes 7 mm depth to develop 3000 psi from 100 micron piston movement, or 0.7 mm if the piston only moves 10 microns. Thus, it is desirable to minimize the volume of fuel in the compression chamber. Several features of the present invention permit a very small residual volume. In particular, the needle injection valve is housed within the piston and operated by injection pressure. This allows the piston to operate very close to the end of the cylinder. In addition, the inlet reed valve is mounted on the piston. The reed valve is a disk with narrowly etched or machined cuts such that the disk occupies substantially all (>90%) of the cylinder volume for the thickness (0.005 inch) occupied by the disk, leaving little stray fuel volume in that thickness. The cylinder head surface may be conformal to the piston valve and valve holder structure, permitting only a slight clearance on the order of, for example, less than 0.009 inch, (0.25 mm) for movement of the fuel. In one variation, an equivalent cylindrical depth (based on total volume) of the compression chamber may be less than 1/10 of the diameter, preferably less than 1/20 of the diameter, more preferably less than 1/50 of the diameter, more preferably less than 1/200 of the diameter. In one variation, the compression chamber volume may be configured for a volume such that compression of the fuel accounts for less than half of the piston movement, preferably less than 20%, more preferably less than 10%, more preferably less than 5%.
Various exemplary variations are shown in the figures. A first variation shown in
Referring to
Referring to
The piston is preferably a strong, tough, light, corrosion resistant material. Depending on pressure required, steel, stainless steel, titanium, and even aluminum alloys or other materials may be found suitable. As shown in
In one variation, the top of the piston 102 has a curved face 128 (
The piston may be spring loaded to maintain coupling to the piezo actuator. A piston spring 136 is shown. In one variation, the piston spring 136 may be a Bellville spring. The piston may have a flange 137 extending beyond an operative fluid pressurization diameter of the piston and the piston is preloaded against the piezoelectric element by at least one spring 136 in operative contact with the flange 137.
The piston includes a bore for receiving and housing a needle component 124 for the injection needle valve. The needle component 124 is spring loaded 126 against the piston 102. The spring loading forces the piston in contact against the piezo transducer and forces the needle component in contact against the needle valve seat 130 in the lower housing. The upper chamber of the bore houses the needle valve spring 126 and is vented through a vent passage 132 to the low pressure fuel input line. Alternatively, the needle bore may be vented to another low pressure location (not shown). The needle moves freely without friction in the piston bore and should fit closely to minimize leakage contributing to pressure loss during a power pulse. In an alternative variation, the needle may be sealed with an O-ring or other seal.
The needle valve 124 operates in response to pressure from the injection pulse. Fluid pressure in the pressurization chamber 112 forces the needle component 124 into the piston 102, lifting the needle component 124 from the valve seat 130 and allowing fluid through the valve and into the engine cylinder. The needle valve tip may be conical or may be spherical. A conical angle of 45 degrees from center line should work in many applications. The needle valve seat may be conical or may be a straight hole with a sharp edge.
The lower casing 107 is alternatively referred to as the nozzle casing 107 as this casing includes the nozzle assembly. By virtue of the valve architecture, the pressurization chamber may be made extremely small in volume. A small volume is preferred to minimize compressibility of the fluid, which may contribute to reduced pressure and reduced output from a given size peizo element. Piezo element displacement is extremely small, so losses from compressibility of the fluid may be significant. The valve architecture allows shrinking the pressurization chamber thickness to one millimeter or less, greatly reducing fluid volume and resulting compression loss.
The needle valve feeds a nozzle structure 103. Since the needle valve structure is contained within the injector, a variety of nozzle structures may be coupled to the injector output. The nozzle structure may include one or more holes and may include expansion cones associated with the holes as will be described in greater detail later.
The high velocity flow through the nozzle results in very fine atomization of the fuel. The Sauter Mean Diameter (SMD) of the fuel droplets is calculated to be on the order of tens of micrometers.
While there are many competing correlations for SMD, one correlation available in literature is provided below.
where,
D is the diameter of the orifice in meters
Re is the Reynolds number
We is the Weber number
μl is the absolute viscosity of the fuel in Newton—seconds per square meter
μg is the absolute viscosity of the gas in Newton—seconds per square meter
ρl is the density of the liquid in kilograms per cubic meter
ρg is the density of the gas in kilograms per cubic meter
In operation, in accordance with one exemplary embodiment, the drive circuit for the piezo actuator is initially at zero volts with the actuator at rest. The input chamber and pressurization chamber are filled with fuel at equilibrium pressure between the input chamber and pressurization chamber and the reed valve is closed. When an injection is initiated, an electrical drive pulse is sent to the actuator causing the actuator to expand. The expansion is small, but very rapid. Typical piezo devices may expand by 1/1000 of the length at maximum drive voltage. Thus, a piezo may expand on the order of, for example, 100 microns (0.1 millimeter) in, for example, 100 microseconds. The pulse is generated as a function of the rising slope of the drive pulse together with the response of the actuator and associated mechanics. The injection may be complete in, for example, 100 microseconds. The drive pulse may continue to hold the drive voltage high as the injection completes. The pulse may be complete in, for example, 100 microseconds and the piezo driver then drops the voltage to the piezo driver according to a desired voltage drop profile. Since the piezo driver has less tensile strength than compressive strength, it is desirable to reduce the voltage at a slower rate than the expansion rate to minimize tensile stress on the actuator. The relaxation of the actuator generates a relative vacuum in the pressurization chamber which opens the input reed valve and allows the fuel to refill the pressurization chamber for a return to the initial at rest conditions. Alternative electrical drive states may include a positive and negative voltage state for compression and expansion or other drive states as appropriate for the chosen piezoelectric material and configuration.
Referring to
At the end of the 100 microsecond injection pulse phase, the injection valve closes. The drive voltage then decays, allowing the piezo actuator to return to the relaxed length. As the piston moves upward, the input reed valve opens due to partial vacuum in the compression chamber combined with any pressure available in the input chamber. Fuel then flows to fill the pressurization chamber until equilibrium is established, at which point, spring forces in the reed valve close the reed valve and the process repeats again for the next injection pulse.
In a further advantage of the position of the reed valve on the piston, the reed valve is positioned so that the inertia of the reed valve works to enhance the operation of the reed valve. As the piston accelerates downward to compress the compression volume 112, the inertia of the mass of the reed valve presses the reed valve against the piston, closing and sealing the reed valve. Thus, the inertia of the reed valve works to enhance the closing pressure provided by the back pressure of the pressurized volume 112. When the piston accelerates upward, the inertia of the reed valve acts to open the reed valve, enhancing the action provided by the pressure differential between the input chamber and pressurization chamber and increasing the fuel flow into the pressurization chamber.
The needle valve 124 may be fabricated with a soft material, for example brass, copper, delrin, or glass filled delrin. The needle valve seat 130 may be a hard metal, for example steel and may be a conical bevel or may be a sharp edge. The sharp edge needle valve seat may be treated by staking with a precision ground hard metal conical needle pressed with a light force to ensure a precise round shape free of burrs and slightly round the edge of the sharp seat. In one alternative the valve insert 302 may be press fit into the piston 102. Alternatively, the valve insert maybe threaded as indicated in a region 508 for threads.
The injection pressure is a primary sizing requirement for direct fuel injection (DFI) systems, as is injection volume. Given that the maximum actuation distance, Dxactuator, for a given actuator is fixed, the maximum injection pressure also is an inverse function of the maximum injection volume, Vmax due to the elasticity of the actuator.
The maximum injection pressure of the exemplary embodiment is 3000 psi. However, if needed, injection pressures could be increased to 4000 psi and potentially approach 10,000 psi. At such high pressure, the lower injection volume per injection may be compensated by scheduling multiple injections per engine revolution. The pressures shown in
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims the benefit of 35 USC 119(e) of provisional application 61/493,009, titled: “High Pressure Piezoelectric Fuel Injector”, filed Jun. 3, 2011 by Harwood, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61493009 | Jun 2011 | US |