The present disclosure relates to fuel pumps in vehicles, and more specifically, to high pressure fuel pumps in vehicles.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Vehicles may utilize a fuel pump to provide fuel to be combusted during operation of an engine. A fuel pump used to provide fuel to an engine may be a piston pump. The piston pump may be driven by a crankshaft output through a chain gear and cam.
In some vehicle operating conditions a requested fuel supply may exceed the capacity of a fuel pump configuration. For example, at vehicle cold start it may be desired to provide additional fuel to the combustion chamber. Increased fuel at cold start may be used with fuels such as ethanol blends, an example of which is an 85% blend of ethanol (E85). Another example of an operating condition requiring an increased fuel supply may be a heavy load where more fuel is required to power the engine.
In some vehicle operating conditions, the piston pump operation may not be optimal. For example, at high engine speeds the piston and cam may fail to engage properly. In such a “no-follow” condition the piston of the fuel pump may not stroke properly.
A drive system comprises a shaft in rotational engagement with a crankshaft of an engine, the shaft including a first cam having a first quantity of lobes; and a second cam having a second quantity of lobes greater than the first quantity of lobes; and a selection mechanism to selectively engage a follower to one of the first cam or the second cam.
A method comprises rotating a shaft having a first cam and a second cam; monitoring operating parameters of a vehicle; operating a fuel pump of the vehicle at a desired capacity based on the monitoring, including selectively engaging the fuel pump to one of the first cam and the second cam.
A control module comprises an operating mode determination module monitoring operating parameters of a vehicle and determining a capacity of a fuel pump; and a fuel pump mode selection module in communication with the operating mode determination module to selectively engage the fuel pump to one of a first cam and a second cam.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. The present teachings will be become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description is merely exemplary in nature and is in no way intended to limit the present teachings, applications, or uses. For purposes of clarity, the same reference numbers may be used in the drawings to identify similar elements. As used herein, the term module refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated or group) and memory that execute one or more software or firmware programs, a combination of logic circuits, or other suitable components that provide the described functionality.
Referring now to
Engine 12 may have access points through which fuel may be injected into a combustion chamber of engine 12. Fuel may be provided by fuel system 14 and intake system 30 may provide air to engine 12. The location of the fuel injection points may allow engine 12 to operate with a lean fuel-to-air mixture in comparison to conventional engines without direct fuel injection. Ignition system 34 may provide a spark to ignite the fuel and air mixture in engine 12. When operated in this manner, engine 12 may produce an output power equivalent to conventional engine while using less fuel.
Coupling 28 may engage two-step cam mechanism 22 to the crankshaft (not pictured) of engine 12. Alternatively, the two-step cam mechanism 22 may be directly driven by the engine camshaft (not pictured) or by placing the pump cam actuation cams on an engine camshaft (not pictured). Coupling 28 may be any system that transfers rotational energy to two-step cam mechanism 22 from the crankshaft or camshaft of engine 12. Two-step cam mechanism 22 may be a shaft having two or more cams with two or more lobe profiles, as will be described in more detail below. Two-step cam mechanism 22 or fuel pump 16 may include a cam follower that may selectively engage a cam of two-step cam mechanism 22 to provide power to fuel pump 16, which may be a piston pump. Fuel pump 16 may provide high pressure fuel to fuel rail 18 through fuel line 36. Fuel rail 18 may deliver the high pressure fuel to injection system 20 at the direct injection inputs of engine 12. Injection system 20 may provide fuel directly to the engine combustion chamber such as in an atomized spray.
Intake system 30 may provide air to engine 12 and ignition system 34 may provide a spark for ignition of the air-fuel mixture in a combustion chamber of engine 12. Combustion of the air-fuel mixture in engine 12 may produce exhaust which may exit engine 12 through exhaust system 32. Combustion of the air-fuel mixture in engine 12 may also provide power that is transferred to transmission 26.
Control module 24 may monitor, control and communicate with components of vehicle 10 including engine 12, fuel system 14, intake system 30 and ignition system 34. Control module 24 may receive measurements and status indicators, and may provide commands that control the operation of components of vehicle 10.
Referring now to
Follower 48 may be selectively engaged with one or more of cams 40, 42 and 44. Although follower 48 is depicted, it should be recognized that numerous follower mechanisms may be operable to select one or more of cams 40, 42, and 44. The other end of follower 48 may be engaged with a piston of fuel pump 16. Selection mechanism 50 may be a conventional hydraulic mechanism that may selectively lock inner follower 52 within outer follower 54, as depicted in
Referring now to
Referring now to
Referring now to
Fuel pump mode selection module 64 may receive an operating mode status from operating mode determination module 62 and may be in communication with selection mechanism 50 and fuel pump 16 to select a mode for fuel pump 16. Engine control module 60 may be in communication with engine 12, ignition system control module 70 may be in communication with ignition system 34, intake system control module 72 may be in communication with intake system 30, and fuel system control module 74 may be in communication with fuel system 14 and components thereof such as fuel pump 16, fuel rail 18 and injection system 20. Engine control module 60, ignition system control module 70, intake system control module 72, and fuel system control module 74 may provide fuel, air, and ignition to engine 12 based on driver inputs, monitored and received parameters from components of vehicle 10, and an operating mode as determined by operating mode determination module 62.
Referring now to
At block 106, engine control module 60 may determine from monitored or measured engine parameters whether a vehicle cold start condition exists and communicate that information to operating mode determination module 62. A cold start condition may include when engine 12 has not been started for an extended period of time. If a cold start condition exists, control logic 100 may continue to block 112. If a cold start condition does not exist, control logic 100 may continue to block 108.
At block 112, engine control module 60 may determine a coolant temperature based on monitored or received perimeters. Control logic 100 may then continue to block 114. At block 114, operating mode determination module 62 may receive a coolant temperature from engine control module 60 and determine whether the temperature measured at block 112 exceeds a 4-lobe limit. A 4-lobe limit may be based on a coolant temperature that indicates that the engine 12 is not in a cold-start condition. If operating mode determination module 62 determines that the coolant temperature does not exceed the 4-lobe limit, the control logic 100 may continue to block 116. If operating mode determination module 62 determines that the coolant temperature does exceed the 4-lobe limit, control logic 100 may continue to block 118.
If at block 106 engine control module 60 has determined that a cold start condition does not exist, control logic 100 may continue to block 108 where engine control module 60 and/or fuel system control module 74 may determine a requested fuel flow from monitored or received perimeters. Control logic 100 may continue to block 110 where operating mode control module 62 may determine whether the amount of fuel requested for operation of engine 12 exceeds the capacity of 2-lobe inner cam 42. If operating mode determination module 62 determines that the fuel requested exceeds the 2-lobe capacity, control logic 100 may continue to block 116. If operating mode determination module 62 determines that the requested fuel does not exceed the 2-lobe capacity, control logic 100 may continue to block 118.
Based on the operation of control logic 100, block 118 may be reached if the engine speed exceeds the 4-lobe limit at block 104, if a cold start condition exists at block 106 but the coolant temperature exceeds a 4-lobe limit at block 114, or if a cold start condition does not exist at block 106 and the requested fuel does not exceed a 2-lobe capacity at block 110.
At block 118 operating mode determination module 62 may communicate that 2-lobe operation is enabled to fuel pump mode selection module 64 and engine control module 60. Fuel pump mode selection module 64 may communicate with fuel pump 16 such that selection mechanism 50 may allow inner follower 52 of follower 48 to engage 2-lobe inner cam 42. Follower 48 may be displaced to fully stroke the piston of fuel pump 16 twice per revolution of shaft 46 and 2-lobe inner cam 42.
Engine control module 60, ignition system control module 70, intake system control module 72, and fuel system control module 74 may control engine 12, ignition system 34, intake system 30 and fuel system 14 to operate based on a fuel pump capacity for 2-lobe operation. Once 2-lobe operation is enabled at block 118, control logic 100 may end.
Control logic 100 may reach block 116 if the measured engine speed does not exceed the four-lobe limit at block 104, and a requested fuel flow exceeds the 2-lobe capacity at block 110 in a non-cold start condition from block 106, or if a cold start condition exists at block 106 and the coolant temperature does not exceed a 4-lobe limit at block 114.
At block 116 operating mode determination module 62 may communicate that four-lobe operation is enabled to engine control module 60 and fuel pump mode selection module 64. Fuel pump mode selection module 64 may communicate with fuel pump 16 such that selection mechanism 50 may allow outer follower 54 of follower 48 to engage 4-lobe outer cams 40 and 44. Follower 48 may be displaced to fully stroke the piston of fuel pump 16 four times per revolution of the 4-lobe outer cams 40 and 44.
Engine control module 60, ignition system control module 70, intake system control module 72, and fuel system control module 74 may control engine 12, ignition system 34, intake system 30 and fuel system 14 to operate based on a fuel pump capacity for 4-lobe operation. Once 4-lobe operation is enabled at block 116, control logic 100 may end.
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present disclosure can be implemented in a variety of forms. Therefore, while this disclosure has been described in connection with particular examples thereof, the true scope of this disclosure should not be so limited since other modification will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2419542 | Dreisin et al. | Apr 1947 | A |
4762096 | Kamm et al. | Aug 1988 | A |
5287830 | Dopson et al. | Feb 1994 | A |
5343833 | Shirai | Sep 1994 | A |
5361733 | Spath et al. | Nov 1994 | A |
5603294 | Kawai | Feb 1997 | A |
5709180 | Spath | Jan 1998 | A |
6113361 | Djordjevic | Sep 2000 | A |
20040101418 | Roth et al. | May 2004 | A1 |
20050132989 | Hendriksma et al. | Jun 2005 | A1 |
20080115770 | Merchant | May 2008 | A1 |
20090107434 | Berger | Apr 2009 | A1 |
20090164093 | Sczomak et al. | Jun 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090164093 A1 | Jun 2009 | US |