The invention is based on a high-pressure pump for a fuel injection system of an internal combustion engine as generically defined by the preamble to claim 1.
One such high-pressure pump is known from German Patent Disclosure DE 198 44 326 A1. This high-pressure pump has a rotationally driven drive shaft and at least one pump element, with a pump piston driven at least indirectly in a reciprocating motion by the drive shaft. The pump piston is guided in a cylinder bore, and with its end remote from the drive shaft it defines a pump work chamber. The pump piston is braced at least indirectly on the drive shaft. The drive shaft has a portion which is eccentric to its pivot axis, supported on which is a ring on which the pump piston is braced directly with its piston base or via a tappet. The ring does not rotate with the drive shaft, but in operation of the high-pressure pump, a sliding motion occurs between the piston base or tappet and the ring. Lubrication of the contact region between the piston base or tappet and the ring is effected only by the fuel present in the interior of the high-pressure pump, so that under some circumstances severe wear to the pump piston and/or the tappet and/or the ring occurs, which can finally lead to failure of the high-pressure pump. The tappet may be guided displaceably in a bore in the housing of the high-pressure pump, in order to braced against transverse forces so that they do not act on the pump piston. Lubrication between the tappet and the bore is likewise accomplished only by the fuel located in the interior of the high-pressure pump, and hence major wear to the tappet and/or the housing can also occur. From German Patent Disclosure DE 199 07 311 A, a high-pressure pump for a fuel injection system is also known in which the drive shaft has at least one cam, on which the pump piston is braced via a tappet and a roller rotatably supported in the tappet. The bearing of the roller is again lubricated only by the fuel present in the interior of the high-pressure pump, so that wear can occur here as well.
The high-pressure pump of the invention, having the characteristics of claim 1, has the advantage over the prior art that the lubrication in a region where the pump piston is braced with respect to the drive shaft is improved, and as a result wear is reduced. Via the at least one line through the pump piston, as a consequence of leakage that necessarily occurs because of the play between the pump piston and the cylinder bore, fuel at elevated pressure that passes through in the supply stroke of the pump piston leads to lubrication of the region where the pump piston is braced.
In the dependent claims, advantageous features and refinements of the high-pressure pump of the invention are disclosed. The embodiment according to claim 2 enables lubrication of where the piston base is braced relative to the drive shaft. The embodiment of claim 3 enables lubrication of where the support element is braced relative to the drive shaft. The embodiment of claim 4 enables a change in the angular position between the pump piston and the support element, so that the support element can be oriented in its angular position with the drive shaft independently of the pump piston. The embodiment of claims 6 and 7 makes the disposition of a large-area fuel cushion possible between the piston base or support element and the ring, and thus enables further improvement in the lubrication. The embodiment of claim 9 makes lubrication of the bearing of the roller possible. The embodiment of claim 12 makes further-improved lubrication of the bearing of the roller possible. The embodiment according to claim 13 or 14 makes it possible to improve lubrication where the piston base or support element is guided. The embodiment according to claim 15 makes simple manufacture of the at least one line possible.
Several exemplary embodiments of the invention are shown in the drawing and described in further detail in the ensuing description.
In
In a region located between the two bearing points, the drive shaft 12 has at least one cam or portion 26 that is eccentric to its pivot axis 13; the cam 26 may also be embodied as a multiple cam. The high-pressure pump has at least one or more pump elements 32, located in the housing 10, each with a respective pump piston 34 that is driven by the cam or eccentric portion 26 of the drive shaft 12 in a reciprocating motion in an at least approximately radial direction to the pivot axis 13 of the drive shaft 12. The pump piston 34 is guided tightly displaceably in a cylinder bore 36 in the housing 10, or in an insert in the housing 10, and with its face end remote from the drive shaft 12, it defines a pump work chamber 38 in the cylinder bore 36. The pump work chamber 38 has a communication with a fuel inlet, such as a feed pump, via a fuel inlet conduit 40 extending in the housing 10. An inlet valve 42 that opens into the pump work chamber is located where the fuel inlet conduit 40 discharges into the pump work chamber 38. Via a fuel outlet conduit 44 extending in the housing 10, the pump work chamber 38 furthermore has a communication with an outlet, which communicates for instance with a high-pressure reservoir 110. One or preferably more injectors 120 located at the cylinders of the engine communicate with the high-pressure reservoir 110, and through them fuel is injected into the cylinders of the engine. Where the fuel outlet conduit 44 discharges into the pump work chamber 38, there is an outlet valve 46 that opens out from the pump work chamber 38.
In
At least one line 60 extends through the pump piston 34, on one end, this line discharges at the circumference of the pump piston 34 inside the cylinder bore 36, spaced apart from the face end of the pump piston 34 that defines the pump work chamber 38, and on its other end, it discharges at the face end, toward the support element 54, of the pump piston 34. The line 60 is formed for instance by a longitudinal bore 160 and a transverse bore 260 through the pump piston 34. The line 60 continues through the support element 54 in the form of a bore 360, which is in communication with the longitudinal bore 160 in the pump piston 34 and which discharges on the side of the support element 54 facing toward the flattened face 52 of the ring 50. Since the pump piston 34 must be displaceable in the cylinder bore 36, there is a small annular gap between it and the cylinder bore 36. In the pumping stroke of the pump piston 34, in which the pump piston is moved outward by the eccentric portion 26 of the drive shaft 12, fuel at high pressure is compressed in the pump work chamber 38. Because of the annular gap between the pump piston 34 and the cylinder bore 36, a small leakage amount of fuel flows out of the pump work chamber 38 into the transverse bore 260 of the pump piston 34 and from there into the longitudinal bore 260 and emerges from that into the bore 360 in the support element 54 and escapes from that bore. Thus the region where the pump piston 34 is braced on the drive shaft 12, this bracing being formed by the support element 54 and the ring 50, is supplied with fuel at elevated pressure, as a result of which the lubrication is substantially improved and hence wear is reduced. By means of the disposition of the transverse bore 260 and the dimensioning of the line 60 overall, the delivered fuel quantity and the pressure of the delivered fuel can be varied. The closer the transverse bore 260 is disposed to the face end of the pump piston 34 that defines the pump work chamber 38, the greater the quantity of fuel delivered for lubrication purposes and therefore the higher the pressure of the delivered fuel. Between the support element 54 and the ring 50, given a high enough pressure and a large enough fuel quantity, hydrodynamic lubrication can be achieved, so that no wear occurs.
The connection between the pump piston 34 and the support element 54 is embodied such that changes in the angular position between the pump piston 34 and the support element 54 are possible. For instance, the end of the pump piston 34 toward the support element 54 may be convex, for instance being curved at least approximately in spherical fashion. An indentation 55 may be embodied in the support element 54, into which indentation the end of the pump piston 34 is inserted, and the indentation 55 can narrow toward the ring 50, for instance at least approximately frustoconically. This embodiment of the pump piston 34 and of the support element 54 creates an articulated, or in other words pivotable, connection that makes changes in the angular position possible, so that the support element 54 can always rest flatly on the flattened face 52 of the ring 50.
In
In
In
In
The longitudinal bore 160 through the pump piston 34 and the bore 360 through the support element 72, in the version shown in
In
In
Upon the rotary motion of the drive shaft 12, the pump piston 34 is driven in a reciprocating motion. In the intake stroke of the pump piston 34, in which this piston moves radially inward, the pump work chamber 38 is filled with fuel through the fuel inlet conduit 40 with the iv 42 open, the outlet valve 46 being closed. In the pumping stroke of the pump piston 34, in which this piston moves radially outward, fuel is pumped by the pump piston 34 at high pressure through the fuel outlet conduit 44, with the outlet valve 46 open, to the high-pressure reservoir 110, the inlet valve 42 being closed. In the pumping stroke of the pump piston 34, the greatest load occurs between the ring 50 and the support element 54 or the piston base 70, or between the roller 74 and the support element 72 or the piston base 78; in that case, adequate lubrication is assured by the fuel in this region that is supplied from the pump work chamber 38 via the line 60.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 023 541.4 | May 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/50864 | 3/1/2005 | WO | 11/1/2006 |