The present disclosure is directed to heating, ventilation and air conditioning (HVAC) systems, and more particularly to HVAC systems with micro-channel condensers and reheat coils.
Typical HVAC systems, such as system 10 is shown in
The gas then flows to the condenser 12 where the gas condenses to a liquid and gives off its heat to the outside air. The liquid then moves to the expansion valve 14 under high pressure. The expansion valve 14 restricts the flow of the fluid, and lowers its pressure as it leaves the expansion valve 14. The low-pressure two phase fluid then moves to the evaporator 13, where heat from the inside air is absorbed and changes it to a gas. As a hot low-pressure gas, the refrigerant moves to the compressor 11 where the entire cycle is repeated.
In certain instances, dehumidification may be desirable without additional cooling, such as when the indoor air temperature is at or near its desired set point but there is excess humidity. In such instances, a reheat coil 15 can be used to control the temperature of the conditioned air. The warm high pressure gas from compressor 11 is directed to reheat coil 15 by reheat valve 16. Cooled, dehumidified air from the evaporator 13 is passed across the reheat coil 15 where it is warmed by the gas from compressor 11. The refrigerant from the reheat coil is then directed to the condenser 12 and the normal cycle is resumed. Check valve 17 prevents back flow of refrigerant into the reheat coil.
Typically the coils in the system 10 have been standard tube and fin designs, with all of the coils having similar properties throughout the system. However, there has been a move to use micro-channel coils in condensers. Typical micro-channel coils are constructed of parallel flow aluminum tubes that are mechanically brazed to enhanced aluminum fins, resulting in better heat transfer and a smaller, lighter, corrosion resistant coil. Micro-channel coils are smaller, more efficient and use less refrigerant than standard tube and fin coils.
Due to refrigerant capacity constraints with micro-channel coils, they have not been used in systems that include reheat coils. Further, in HVAC systems that include micro-channel condensers, the buildup of refrigerant pressure in HVAC systems is a common problem. The problem can be particularly acute in systems with micro-channel condensers because micro-channel condensers may be sensitive to certain operating conditions. For example, when ambient temperatures (e.g., temperatures proximate a condenser or temperature proximate a condenser fan) are high, the pressure in the micro-channel condenser may become elevated due to the refrigerant capacity size difference between the micro-channel condenser and the evaporator. The high pressures (e.g., pressures greater than approximately 615 psi, in some embodiments) may cause mechanical failure, including pre-failure events, such as excessive wear on parts. High pressures may also trip safety systems designed to prevent overpressure.
A particular problem can occur upon startup of an HVAC system. Refrigerant may not be evenly/properly distributed within the system, leading to refrigerant and/or pressure imbalances, particularly high pressures at the input of the micro-channel condenser, commonly known as slugging.
In a preferred embodiment, a system for alleviating high pressure conditions associated with micro-channel condensers is described. The system includes a compressor operable to compress a refrigerant, a micro-channel condenser operable to remove heat from the refrigerant, and an expansion valve fluidly connected to the micro-channel condenser. An evaporator is fluidly connected to the expansion valve and to an input of the compressor. The system further includes a reheat coil with an output of the reheat coil fluidly connected to the condenser. A valve is connected to the compressor, the micro-channel condenser and the reheat coil, the valve directing the refrigerant from the compressor to the micro-channel condenser in a normal mode, and the valve directing the refrigerant from the compressor to the reheat coil in a reheat mode. In normal mode refrigerant is returned from the reheat coil into a refrigerant line between the evaporator and the compressor through a restrictor.
In another preferred embodiment a method of alleviating high pressure conditions associated with micro-channel condensers is described. The method senses a high pressure condition in refrigerant from a compressor at an input to a micro-channel condenser, and uses a valve to redirect refrigerant from the compressor into a reheat coil. The system operates in a reheat mode until a desired amount of refrigerant is held by the reheat coil. Then the valve is used to return the refrigerant from the compressor back to the input to the micro-channel condenser. The system then provides a path from the reheat coil to a low pressure refrigerant line flowing to the compressor.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
As described, one issue that can occur in HVAC systems using a reheat coil and micro-channel condenser is “slugging”, or overpressure at the condenser input, during start up, particularly during high ambient and overcharge conditions. This is caused by the inability of the micro-channel condenser to accept all of the high pressure refrigerant from compressor as the system progresses toward steady state operation. The small tubing and low volume of the micro-channel condenser cannot accept the refrigerant fast enough and a high pressure spike appears at the input. This can be seen by referring now to
According to the concepts described herein and embodiments of an HVAC system as described herein, such as the system shown in
Referring now to
In reheat mode, system 30 has reversing valve 39 positioned to direct refrigerant through the right most branch into reheat coil 35. From reheat coil 35 the refrigerant passes through check valve 37 and into condenser coil 32. Check valve 38 prevents the refrigerant from passing into reversing valve 39. The refrigerant then passes through expansion valve 34 and evaporator 33 before returning to compressor 31. Further operation of reversing valve 39 will be described with respect to
Referring now to
Returning to
Referring now to
With reference to
Referring now to
Referring now to
While the present invention has been described with reference to a system with a single compressor and single condenser, the concepts described herein are applicable to systems with any number of compressors and condensers operating in parallel.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application is a divisional of U.S. patent application Ser. No. 15/362,316 filed Nov. 28, 2016, by Colin Clara et al., and entitled “HIGH-PRESSURE RE-START CONTROL ALGORITHM FOR MICROCHANNEL CONDENSER WITH REHEAT COIL,” which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7980087 | Anderson et al. | Jul 2011 | B2 |
20060086115 | Weber et al. | Apr 2006 | A1 |
20080098756 | Uselton | May 2008 | A1 |
20110030397 | Taras et al. | Feb 2011 | A1 |
20150052937 | Hung | Feb 2015 | A1 |
20180149375 | Clara et al. | May 2018 | A1 |
20210036642 | Sandoval | Feb 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
20210207823 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15362316 | Nov 2016 | US |
Child | 17208795 | US |