1. Field of the Invention
The present invention relates generally to a method and apparatus for configuring and controlling a two-cylinder, reciprocating pump such that it pumps a constant volumetric flow rate at any discharge pressure. Such a pump is useful for applications such as chromatography, which requires accurate, constant flow rates from pumps at high and variable discharge pressure. More particularly the present invention utilizes a constant rotational speed for most of a given cycle, but utilizes pressure control (and slightly varying rotational speed) for a portion of the cycle in which the flow would normally increase if rotational speed is maintained a constant. As a consequence, the pressure control acts to control the rotational speed to an amount very close to the previous speed. Another advantage is a largely constant volumetric input flow rate which improves accuracy of low pressure gradient forming. A logic system is incorporated to provide accurate low pressure gradient former switching, corrected for the depressurization of each of the pump cylinders before their refill.
2. Background Art
Pumps used for liquid chromatography have stringent requirements to deliver constant and accurate flow rates over a range of discharge pressures. Reciprocating (or piston) pumps are usually employed for this purpose for reasons including their relatively fixed displacement.
Present-day piston pumps for chromatography are often two-cylinder pumps where the pistons are actuated by cams—usually one cam per piston. The cam profiles are designed so that the sum of the positive (pumping) speeds of the pistons is a constant if the rotational speed is constant. As one piston decelerates near the end of its delivery stroke, the other cylinder has finished filling and the piston accelerates as it begins its stroke toward the cylinder head. The result of the constant sum of piston velocities in this interval is, if both discharge check valves are open, the total flow rate is constant.
When the pump discharge pressure is low (less than about 10 atmospheres, absolute), the flow rate remains constant with constant rotational speed. Liquids are, in fact, not truly incompressible. A measure of a fluid's “compressibility” is the bulk modulus of elasticity, Ev, defined as
where p is pressure and is volume. The bulk modulus of elasticity is larger for a liquid than a gas, but is not infinite. According to the above equation, when pressure changes, so does the volume of a liquid. Because of this volume change, and because the components of the pump are non-rigid, the actual travel distance from bottom dead center until the discharge check valve opens becomes non-negligible. The result is, during this portion of the cycle, fluid is being pumped from a single cylinder only, while the shape of the cam profile is increasing or keeping a piston's speed constant.
Thus, at a constant rotational speed, the flow rate is less than the constant value required. Early pumps used an accumulator to smooth the pressure and flow rate in time. In present-day pumps, the instantaneous flow deficiency is made up by increasing the rotational speed of the pump by the control system in this region.
To maintain a constant flow rate, the pump discharge pressure should remain constant. Present-day pumps use either a flow measurement or pressure measurement as a process variable within a high-speed control system to maintain constant flow rate. The manipulated variable is the pump's rotational speed. So, during the period in which a piston is traveling toward its head while its discharge check valve is closed, the pump rotational speed must increase.
Control of the speed of the pump is based on pump discharge pressure most of the time, despite the fact that constant speed is required through the majority of the pump's cycle. Control based on pressure is subject to the noise and response time of the sensor. In addition, the flow rate into the pump during the inflow parts of the pump cycle is not well controlled, making it difficult to produce accurate chromatography eluant composition gradients by repetitively and synchronously switching eluant compositions at the pump inlet. This is referenced in the art as “low pressure gradient forming” and has the advantage that it requires only a single high-pressure pump, rather than the usual dual pump.
There is, therefore, a need for a pump to accurately deliver a constant flow rate fluid of controlled (gradient) composition regardless of the discharge pressure.
A purpose of this invention is to provide a method and device capable of producing constant flow rates at a high discharge pressure. It has particular application to chromatography. To accomplish this purpose, a two-cylinder pump is used, each piston being driven by a separate cam. Both cylinders provide constant flow at high pressure, but are placed less than the usual 180° apart over most of the rotation. For the preferred embodiment, the delivery stroke of each piston is 240° and the refill stroke is 120°. The maximum of a refill stroke of one piston leads the maximum of the delivery stroke of the other piston, and conversely so, by 60°. However, the fluid delivery strokes are 180° apart.
The pumped fluid has a finite bulk modulus of elasticity and the components of the pump are incompletely rigid. Therefore, during a portion of the cycle of each piston, the piston is traveling toward its head, but no fluid is being delivered. This is because the pressure inside the cylinder has not yet reached the value of the pressure in the discharge of the pump, so the discharge check valve is closed. This portion of the cycle of the first piston is called recompression. During recompression for one piston, the cam profile for the other piston is shaped such that the other piston is able to deliver the required flow rate. When the pressure inside the cylinder of the first piston reaches the discharge pressure, the discharge check valve for the first piston opens. Because the second piston is still able to supply the full flow rate, if the rotational speed remains constant, the flow rate and discharge pressure will increase. To avoid this unwanted increase in flow rate, the pump's rotational speed must decrease.
Shortly thereafter, the second piston starts to withdraw (retract away from its head), decompressing the high-pressure liquid in the chamber. When this decompression portion of the cycle is complete, the second piston's inlet check valve opens and inlets liquid of programmed concentration or composition from a source at (approximately) atmospheric pressure.
Because of the varying flow rate at constant rotational speed, a control system manipulating rotational speed is incorporated into the pump system. During the majority of the pump's cycle, a constant rotational speed will result in a constant flow rate. It is only during the brief period, already described, when the first discharge check valve has just opened, and before a second discharge check valve closes, that the rotational speed must be altered. Therefore, during most of the pump's cycle, the rotational speed is fixed. When the first piston's discharge check valve opens, the control system switches to pressure control to decrease the rotational speed, appropriately. Discharge pressure control remains in effect until the discharge check valve of the second piston closes, at which time the pump is returned to fixed speed control.
To effect the required speed decrease, a high-speed control system monitors the pump discharge pressure. This discharge pressure is measured during the portions of the cycle in which the rotational speed is fixed and this pressure is used as a set point for the pressure control system. During the portion of the cycle in which the pressure control system is manipulating the rotational speed, the pressure will be controlled to the pressure set point.
To determine what portion of the cycle in which to apply pressure control, the pressure and the angular position of the cam and motor shaft are monitored continuously. The opening of a discharge check valve during fixed-speed operation indicates the completion of recompression and can be sensed by a pressure increase. This sudden increase in pressure is correlated to the angular position of the pump shaft, and this opening angular-related volume displacement is stored in memory. One such opening volume displacement is stored for each of the two cylinders, comprising a first storage mode. In the same manner, when a discharge check valve closes, due to a piston having come near the end of its stroke, the discharge pressure will experience a decrease as the cam crosses over top high center. This decrease in pressure is correlated to the angular position of the camshaft, and this closing angular position may be stored in memory. The pressure disturbances are detected through a high gain factor and are not usually noticeable at the high pressure liquid outlet. One such set of opening and closing angular values are stored for each of the two cylinders. A second sensing uses a cam or photocell detector to sense when a piston goes over bottom dead center (fully retracted).
Since each of the recompression and decompression liquid cycles are very nearly thermodynamically reversible, the decompression volume is very nearly equal to the recompression volume. As indicated above, the two respective recompression volumes are stored in memory. These stored amounts are used respectively as decompression points to detect the end of decompression of a respective cylinder. This is necessary for accurate synchronization of an incorporated low pressure gradient former. By continuing to monitor the pressure, anticipatory, automatic adjustments to these stored displacements are made during operation. An unusual cam design provides for constant fluid inlet velocity as well as constant fluid outlet velocity with respect to constant speed of the camshaft. Constant inlet velocity is not strictly necessary but it decreases the cost and increases the reliability of providing high gradient accuracy.
A schematic depiction of a two-cylinder pump 100 is shown in
The velocities of the pistons 115 and 120 are dictated by cams 145 and 150 that are both driven by a single shaft 155 and followers 146 and 151. A variable speed electric motor 160 provides the motive power to the slower-rotating camshaft 155 through gear box 165.
Several transmitters are shown in
A schematic of a representative control system is shown in
The transmitters 170, 175, and 180 measuring values of angular displacement, α, incremental angular position, Δθ, and pump discharge pressure, p, respectively, are shown once again. The pressure signal is filtered, if necessary, in filter block 205. The filtered pressure value is then passed on to storage block 210. Storage block 210 accepts one or more readings outside the regions α1≦α≦α2 340 and α5≦α≦α6 360 (as shown in
The value of the filtered pressure is also received by pressure controller 215 as its process variable. The error between the process variable, p, and the set point, psp is calculated by the controller and a rotational speed set point, ωsp, calculated using a control algorithm such as a Proportional Integral Derivative (PID) algorithm. The value of the rotational speed set point as calculated by the pressure controller is only used by the motor speed controller 230 (via the error block 225) if α1≦α≦α2 or α5≦α≦α6 as determined by the logic block 220. The rate converter 287 converts Δθ composition pulses from sensor 175 on the motor shaft 163 to a signal representing the operating speed ωop Block 225 allows the manual entry of the set point speed ωsp 250.
If logic block 220 determines that the angular displacement, α, is outside the closed regions [α1, α2] and [α5, α6], an angular speed set point, ωsp, 250 is pass the error block 225, which subtracts the actual operating speed ωop from ωsp 250. The result of error block 225 is a speed error signal ωe. The speed error signal is sent to the motor speed controller 230 as shown. The motor speed controller 230 uses the error value of the angular speed, ωe for maintaining the motor speed, ωop, at the desired value.
A simplified depiction of the pistons' distances from their respective bottom dead centers is shown in
We will focus just on the piston for which the solid line is plotted in
Fluid is being drawn into the cylinder through most of the piston's travel away from the cylinder head. This portion of travel is shown as the straight line 310. Through most of the piston's travel toward its cylinder head, fluid is being expelled to a load such as a chromatograph. This portion of travel is the straight line labeled 320. At α0 330, the piston is at bottom dead center. Its velocity is momentarily zero. Both its inlet and discharge check valves are closed. The piston begins its course away from bottom dead center toward α1 335. The process taking place when the camshaft is between the angular positions, α0 330 and α1 335, is called “recompression:” during this portion of the stroke, the pressure in the cylinder increases from the suction pressure to the outlet pressure. At α1 335, recompression is completed within the corresponding cylinder and the discharge check valve 135 opens. Also at α1 335, the motor speed controller's 230 set point switches from a fixed value, ωsp, emanating from set point block 250 to a variable value, ωspp, calculated by the constant pressure controller 215. At this time, both cylinders are delivering liquid. This mode of control (utilizing a different—approximately ωop/2—rotational speed set point, ωspp, from the constant pressure controller 215) continues through the region 340 between α1 335 and α2 345. Once past α2 345, the angular speed set point sent to the error block 225 reverts back to a fixed value 250, ωsp.
The same cycle is experienced by the other piston, having the plot of its distance from bottom dead center versus its angular displacement depicted by the dashed line in
To determine the angular displacement values α1 335 and α2 345 (and α5 355 and α6 365) at which to start and stop constant pressure control, the pressure signal is analyzed in a high-speed data analyzer that checks for a sudden change in the pressure signal 410 shown in
Valid values of α1 335 and α2 345 (and α5 355 and α6 365) can be determined, for instance, by calculating the first derivative of the signal with respect to time, or by calculating the frequency content of the signal and detecting when the amplitudes of higher frequency values change sharply.
Another aspect of this invention is associated with the induction of solvent into the pump. To permit a selection of solvents to be accurately mixed in the pump 100, a solenoid valve tree assembly 560, shown in
In practice, actuation of each of the valves 540 and 550 is carefully timed within actuation logic controller 570 during the intake strokes 310 of the pump's cycle such that each of the three solvents 510, 520, and 530 are accurately metered into pump 100. This is accomplished by a number of complementary means. First is measuring the time delay of each valve's opening, which happens at an only roughly fixed time after the valve is electrically activated. This delay time is electronically stored and used to correct the activation delay time of the same valve in the following mixing cycle. This is described more fully in U.S. Pat. No. 5,158,675 assigned to Isco, Inc. and incorporated herein by reference.
Another aspect of this invention is that the inlet stroke of each pump occurs at a time during a period of constant displacement rate and constant rotational speed of the associated cam 145 or 150. These displacements are those for using needle bearing style, ⅞ inch diameter roller cam followers 146 and 151 riding respectively on the cams 145 and 150 (
Calculating of completion of decompression, the time a pump cylinder starts filling, is necessary for starting the gradient former, if accurate gradients are to be made (
Values of θ may be used for the program gradient operation, but corrected values proportional to actual displacement are better as they are not inaccurate because of small departures of cams from ideality. For example, it is not possible to make a robust cam that produces a point-change in slope as shown in
Referring, now, to
The total displacement, D, corrected for decompression is calculated in summation block 717 from knowledge of the total displacement determined from α2 and α6 365, inputted to Latch 716; and the displacement associated with recompression.
These corrected volumes Y and D both have the proper zero base and spread. Dividing Y by D and multiplying by 100% in division block 720 produces a value equal to the instantaneous percentage of the volume, Q, delivered during a flow cycle.
The quotient, Q, is presented to a triple decision tree 725, 735, and 745 along with externally set and programmed gradient set point values for A %, B %, and C %. In the first decision block 725, the volume percent, Q, is compared directly with a set point, P, for the influx of solvent A. If the result of decision block 725 is true, all valves will be de-energized to permit the flow of solvent A into the pump 100.
The value of set point P is subtracted from the value, Q, in summation block 730 to calculate a value, S, which is then compared to the set point, R, for solvent B. If the output of the second decision block 735 is true, the valve 540 will be energized, allowing solvent B to flow into the pump 100.
The value of S is reduced by the value of R in the summation block 740. The result is labeled U in
Comparators 725, 735 and 745 provide control to a gradient solenoid logic driver (not shown). Obviously, the circuit can be changed for any number of solenoid values and liquids by changing the decision tree. Note that, at most, only one solvent will be flowing at any instant.
If one of the cylinders does not fill completely on the refill stroke, the pressure controller 215 will accelerate the motor. As long as the pressure controller 215 does not pass α7 367 and α6 365 respectively, the control system will compensate for the cylinders not being completely filled.
Still another aspect of the present invention is depicted in
Obviously many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
3563672 | Bergstrom | Feb 1971 | A |
3597114 | Hrdina | Aug 1971 | A |
3787882 | Fillmore | Jan 1974 | A |
3847507 | Sakiyama | Nov 1974 | A |
3855129 | Abrahams | Dec 1974 | A |
3917531 | Magnussen | Nov 1975 | A |
4045343 | Achener et al. | Aug 1977 | A |
4108574 | Bartley et al. | Aug 1978 | A |
4128476 | Rock | Dec 1978 | A |
4131393 | Magnussen | Dec 1978 | A |
4137011 | Rock | Jan 1979 | A |
4155683 | Mochizuki | May 1979 | A |
4180375 | Magnussen | Dec 1979 | A |
4225290 | Allington | Sep 1980 | A |
4233156 | Tsukada et al. | Nov 1980 | A |
4260342 | Leka et al. | Apr 1981 | A |
4326837 | Gilson | Apr 1982 | A |
4352636 | Patterson et al. | Oct 1982 | A |
4359312 | Funke | Nov 1982 | A |
4420393 | Smith | Dec 1983 | A |
RE31586 | Magnussen | May 1984 | E |
4448692 | Nakamoto | May 1984 | A |
RE31608 | Magnussen | Jun 1984 | E |
4600365 | Riggenmann | Jul 1986 | A |
4767279 | Dourdeville et al. | Aug 1988 | A |
4820129 | Magnussen, Jr. | Apr 1989 | A |
4913624 | Seki et al. | Apr 1990 | A |
4919595 | Likuski | Apr 1990 | A |
4981597 | Allington | Jan 1991 | A |
5286177 | Johann | Feb 1994 | A |
5755559 | Allington | May 1998 | A |
Number | Date | Country | |
---|---|---|---|
20040136833 A1 | Jul 2004 | US |