The present disclosure relates generally to superchargers and more particularly to superchargers incorporating a high pressure rotor seal configuration.
Energy efficient engines of reduced size are desirable for fuel economy and cost reduction. However, smaller engines provide less torque than larger engines. To increase the torque capacity available from smaller engines, boosting systems are incorporated to boost the air pressure at the engine intake to increase the torque available from the engine. Some conventional boosting systems include both a mechanically driven supercharger and an exhaust gas-driven turbocharger.
A turbocharger typically includes a turbine exposed to engine exhaust flow and a compressor positioned in the air intake of the engine. Exhaust flow from the engine turns the turbine which transfers torque to the compressor causing the compressor to boost the intake air pressure. Turbochargers can be efficient but have the disadvantage of lag, which refers to a delay in providing boost pressure. Because the turbocharger depends on energy from the exhaust to provide the boost pressure, high levels of boost are not immediately provided when the engine is operating at lower speeds. Instead, full levels of boost are not provided until the engine reaches a high enough speed where the exhaust has sufficient energy to adequately drive the turbocharger.
A supercharger is driven by torque drawn directly from the engine, which enables the supercharger to provide a rapid boost in pressure without the type of delays associated with turbochargers. However, superchargers are typically designed with a fixed gear ratio that under normal driving conditions generates excess air flow that is typically routed through a bypass and recirculated through the supercharger, which results in energy loss.
To overcome the above issues, compound boost systems have been introduced that include both turbochargers and superchargers. In this type of system, the turbocharger is typically used as the primary boost producer, and the supercharger is designed to supplement the turbocharger to compensate for lag. However, in systems where the turbocharger is located upstream of the supercharger, the turbocharger will provide an elevated inlet pressure condition to the supercharger, which elevates the pressure applied to seals in the supercharger. As such, the primary lip of the seal may be crushed or rendered ineffective, which may result in oil leakage.
Accordingly, it is desirable to provide an improved seal configuration for boosting systems that may be used in compound boosting systems.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
In one aspect, a high pressure rotor seal for a supercharger that receives and/or generates high pressure boost air and contains gear lubrication, is provided. The rotor seal includes a primary lip configured to contact a rotor shaft of the supercharger and be in contact with the gear lubrication, and at least one blocking lip configured to contact the rotor shaft of the supercharger. The at least one blocking lip is configured to maintain a seal against the rotor shaft when the high pressure boost air acts thereon.
In addition to the foregoing, the described high pressure rotor seal may include one or more of the following features: wherein the at least one blocking lip includes two blocking lips; wherein the at least one blocking lip includes three blocking lips; a backing plate disposed adjacent the primary lip, the backing plate configured to provide structural support to the primary lip and prevent the primary lip from being crushed under excessive boost pressure; wherein the backing plate is curved; wherein the curved backing plate generally follows a curvature of the primary lip; a cage, wherein the primary lip and the at least one blocking lip are at least partially secured within the cage; wherein the cage includes a first flange and a second flange, at least a portion of the primary lip and the at least one blocking lip disposed between the first and second flanges; wherein the primary lip includes a proximal portion disposed between the first and second flanges, and a distal portion extending toward the rotor shaft and a bearing cavity of the supercharger; wherein each blocking lip includes a proximal portion disposed between the first and second flanges, and a distal portion extending toward the rotor shaft and a rotor cavity of the supercharger; and a spacer disposed between the proximal portion of the primary lip and the proximal portion the at least one blocking lip, and hydrodynamic grooves formed on a first side of the primary lip, the hydrodynamic grooves configured to pump oil across the rotor seal.
In another aspect, a supercharger that receives and/or generates high pressure boost air and contains gear lubrication, is provided. The supercharger includes a housing, a rotor coupled to a rotor shaft rotatably supported in the housing, and a high pressure rotor seal disposed about the rotor shaft. The high pressure rotor seal includes a primary lip configured to contact the rotor shaft and be exposed to the gear lubrication, and at least one boost pressure blocking lip configured to contact the rotor shaft and maintain a seal against the rotor shaft when the high pressure boost air acts thereon.
In addition to the foregoing, the described supercharger may include one or more of the following features: an inlet port formed in a forward end of the housing, the inlet port configured to receive at least one of air, an air-fuel mixture, and the high pressure boost air; wherein the at least one blocking lip includes two blocking lips; wherein the at least one blocking lip includes three blocking lips; wherein the high pressure rotor seal further comprising a backing plate disposed adjacent the primary lip, the backing plate configured to provide structural support to the primary lip and prevent the primary lip from being crushed under excessive boost pressure; wherein the backing plate is curved and generally follows a curvature of the primary lip; wherein the high pressure rotor seal further comprising a cage, wherein the primary lip and the at least one blocking lip are at least partially secured within the cage; wherein the cage includes a first flange and a second flange, at least a portion of the primary lip and the at least one blocking lip disposed between the first and second flanges; and wherein the primary lip includes a proximal portion disposed between the first and second flanges, and a distal portion extending toward the rotor shaft and a bearing cavity of the supercharger, wherein each blocking lip includes a proximal portion disposed between the first and second flanges, and a distal portion extending toward the rotor shaft and a rotor cavity of the supercharger, and a spacer is disposed between the proximal portion of the primary lip and the proximal portion the at least one blocking lip.
In yet another aspect, a high pressure rotor seal for a supercharger that receives and/or generates high pressure boost air and contains gear lubrication, is provided. The rotor seal includes a seal body defining an outer surface and an inner surface, a primary lip extending from the seal body and configured to contact a rotor shaft of the supercharger and be in contact with the gear lubrication, and a rigid guide plate disposed at least partially within the seal body against the seal body inner surface. The rigid guide plate is configured to prevent the high pressure rotor seal from being crushed under the high pressure boost air.
In addition to the foregoing, the described high pressure rotor seal may include one or more of the following features: wherein the primary lip extends toward an air side of the supercharger; wherein the primary lip is curved and extend towards a bearing cavity of the supercharger; wherein the rigid guide plate comprises a generally annular rim, a first flange, and a second flange; wherein the first flange extends radially outward from the rim, and the second flange extends radially inward from the rim; wherein the second flange is curved and generally follows a curvature of the primary lip; wherein a gap is defined between an end of the second flange and the rotor shaft, the gap configured to allow the lubrication to flow to the primary lip; a rigid cage disposed at least partially within the body; wherein the primary lip includes hydrodynamic grooves formed on a first side of the primary lip, the hydrodynamic grooves configured to pump oil across the rotor seal; and wherein the rigid guide plate is pressed into an inner diameter of the body.
In yet another aspect, a supercharger that receives and/or generates high pressure boost air and contains gear lubrication, is provided. The supercharger include a housing, a rotor coupled to a rotor shaft rotatably supported in the housing, and a high pressure rotor seal disposed about the rotor shaft. The high pressure rotor seal includes a seal body defining an outer surface and an inner surface, a primary lip extending from the seal body and configured to contact the rotor shaft and be in contact with the gear lubrication, and a rigid guide plate disposed at least partially within the seal body against the seal body inner surface. The rigid guide plate is configured to prevent the high pressure rotor seal from being crushed under the high pressure boost air.
In addition to the foregoing, the described supercharger may include one or more of the following features: an inlet port formed in a forward end of the housing, the inlet port configured to receive at least one of air, an air-fuel mixture, and the high pressure boost air; wherein the housing defines a seal receiving bore defined between a rotor cavity and a bearing cavity, the high pressure rotor seal disposed in the seal receiving bore; wherein the primary lip extends toward an air side of the supercharger; wherein the primary lip is curved and extend towards a bearing cavity of the supercharger; wherein the rigid guide plate comprises a generally annular rim, a first flange, and a second flange; wherein the first flange extends radially outward from the rim, and the second flange extends radially inward from the rim; wherein the second flange is curved and generally follows a curvature of the primary lip; wherein a gap is defined between an end of the second flange and the rotor shaft, the gap configured to allow the lubrication to flow to the primary lip; and a rigid cage disposed at least partially within the body, wherein the primary lip includes hydrodynamic grooves formed on a first side of the primary lip, the hydrodynamic grooves configured to pump oil across the rotor seal, and wherein the rigid guide plate is pressed into an inner diameter of the body.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
With initial reference to
In the illustrated example, the engine 12 can include a plurality of cylinders 18, and an intake manifold assembly 20 and exhaust manifold assembly 22 for respectively directing combustion air to and from an engine combustion chamber (not shown).
The turbocharger 14 and the supercharger 16 can be positioned in series along an air intake 24 of the engine 12 with the supercharger 16 positioned downstream of the turbocharger 14. The turbocharger 14 generally includes a compressor portion 26 and a turbine portion 28, which can be mechanically coupled to, and operable to drive, the compressor 26. The turbine portion 28 can be disposed in an exhaust gas conduit 30, which can receive exhaust gas from the engine 12 through the exhaust manifold assembly 22. The compressor portion 26 can receive air through an intake conduit 32 having an air filter 34. The compressor portion 26 can compress the intake air and subsequently supply the compressed intake air to an intercooler 36 before it is directed to the supercharger 16.
The supercharger 16 can include an inlet port 38 which can receive air or air-fuel mixture from an inlet duct or passage 40, and can further include a discharge or outlet port 42, directing the charged air to the intake valves (not shown) via a discharge duct 44. In other embodiments, the supercharger 16 can include a front inlet design such that the inlet port is located at a forward end of the supercharger housing (e.g., opposite illustrated inlet port 38) proximate a gear case or isolator assembly or both.
The inlet duct 40 and discharge duct 44 can be interconnected by means of a bypass passage 46. If the engine 12 is of the Otto cycle type, a throttle valve 48 can control air or air-fuel mixture flowing into the inlet duct 40 from a source, such as ambient or atmospheric air, in a well know manner. Alternatively, the throttle valve 48 may be disposed downstream of the supercharger 16.
A bypass valve 50 can be disposed within the bypass passage 46 and may be moved between an open position and a closed position by an actuator assembly (not shown) or the like. The actuator assembly can be operative to control the supercharging pressure in the discharge duct 44 as a function of engine power demand. When the bypass valve 50 is in the fully open position, air pressure in the inlet duct 40 is relatively low, but when the bypass valve 50 is fully closed, the air pressure in the inlet duct 40 is relatively high. The bypass valve 50 shown and described herein is exemplary and other configurations are contemplated. In this regard, a modular (integral) bypass, an electronically operated bypass, or no bypass may be used.
With reference to
As illustrated in
A coupling or isolator assembly 112 couples an input shaft 114 to the first rotor shaft 88. In one example, a first hub 116 couples the input shaft 114 to the isolator assembly 112 on a first end 118, and a second hub 120 couples the first rotor shaft 88 to the isolator assembly 112 on an opposite end 122. The timing gear 92 may be mounted on a forward end of the rotor shaft 88 and defines teeth (not shown) that are in meshed engagement with gear teeth (not shown) of the second timing gear 106 that may be mounted on the second rotor shaft 90. It will be appreciated in light of the disclosure that the isolator assembly 112 shown in
In one configuration, positive torque is transmitted from the internal combustion engine 12 to the input shaft 114 by any suitable drive mechanisms, such as a belt and pulley drive system (not shown). Torque can be transmitted from the input shaft 114 to the rotor shaft assembly 80 through the isolator assembly 112, which provides torsional and axial damping and may further account for minor misalignment between the input shaft 114 and the first rotor shaft 88. When the engine 12 is driving the timing gears 92, 94 and the rotors 82, 84, such is considered to be transmission of positive torque. On the other hand, whenever the momentum of the rotors 82, 84 overruns the input from the input shaft 114, such is considered to be the transmission of negative torque.
In the illustrated example, the housing 78 further includes seal receiving cavities or bores 124, which are positioned intermediate the rotor cavity 102 and the bearing cavity 104. The seal receiving bores 124 are configured to receive rotor shaft seals 200, 300, 400 to fluidly separate and isolate the rotor cavity 102 and the bearing cavity 104. The high pressure rotor shaft seals 200, 300, 400 are disposed about the rotor shafts 88, 90 and are configured to seal the gear case 98 and can be shown to prevent pressurization of the bearing cavity 104 by the high pressure boost air supplied to the rotor cavity 102 from the turbocharger 14.
As illustrated in
In the present example, the primary lip 204 includes a proximal portion 214, a distal portion 216, a first side 218, and an opposite second side 220. The proximal portion 214 is disposed at least partially within the cage 202 between a pair of spacers 212. The distal portion 216 can extend outwardly from the proximal portion 214, and thus the cage 202, toward the rotor shaft 88 or 90. As illustrated in
At least a portion of the distal portion first side 218 can contact and be in sealing arrangement with an outer surface 222 of the rotor shaft 88 or 90 (see
The boost pressure blocking lip 206 includes a proximal portion 230, a distal portion 232, a first side 234, and a second side 236. The proximal portion 230 can be disposed at least partially within the cage 202 between a pair of spacers 212 or between one spacer 212 and a portion of the cage 202 (e.g., flange 210). The distal portion 232 can extend outwardly from the proximal portion 230, and thus the cage 202, toward the rotor shaft 88 or 90. As illustrated in
At least a portion of the distal portion first side 234 can contact and be in sealing arrangement with the rotor shaft outer surface 222. The boost pressure blocking lip 206 can extend toward the rotor cavity 102 and can be shown to prevent turbocharger high pressure boost air from entering the bearing cavity 104. As high pressure boost air from the turbocharger 14 enters the supercharger 16, a portion of the high pressure boost air can contact the distal portion second side 236 or an end 238 of the lip 206 or both, that can force the distal portion first side 234 further against the rotor shaft 88, 90 to maintain the seal therebetween. As shown in
Described herein are systems and structures for sealing configurations for boost systems, particularly when a supercharger is disposed downstream of a turbocharger and receives high boost pressure therefrom. The system includes high pressure rotor seals that include one or more boost pressure blocking lips. The boost pressure blocking lips are in sealing contact with a rotor shaft and are further forced against rotor shaft under high boost pressure conditions to maintain a seal therebetween. The high pressure rotor seals may include a backing plate configured to provide structural support to a primary, oil-side lip. As such, the high pressure rotor seals prevent crushing of the rotor seal under excessive boost pressure from an upstream boost system.
In the present example, the primary lip 406 can include a proximal portion 414, a distal portion 416, a first side 418, and an opposite second side 420. The proximal portion 414 can be clamped into position, for example, by the cage 402 or metal rings. The distal portion 416 can extend outwardly from the proximal portion 414, and thus the cage 402, toward the rotor shaft 88 or 90. As illustrated in
At least a portion of the distal portion first side 418 can contact and be in sealing arrangement with an outer surface 222 of the rotor shaft 88 or 90 (see
The support plate 408 can be generally annular and can include an annular or generally annular rim 424, a first outwardly extending flange 426, and a second inwardly extending flange 428. The rim 424 can include a first end 430 and an opposite second end 432. The flange 426 can be coupled to the rim first end 430 and extend radially outward of the rim 424, and the flange 428 can be coupled to the rim second end 432 and extend radially inward of the rim 424. The flange 428 may be shaped to substantially follow at least a portion of the shape of the primary lip 406, and the flange 428 can be spaced apart from the rotor shaft outer surface 222 to define a gap therebetween that enables lubricating oil to flow to the primary lip 406.
In one example, the support plate 408 can be inserted or pressed into a seal inner diameter 412, and the high pressure rotor seal 400 can be subsequently inserted into the seal receiving bore 124. In another example, the high pressure rotor seal 400 can be inserted into the seal receiving bore 124 and the support plate 408 can be subsequently inserted or pressed into the seal inner diameter 412.
In the assembled position, as illustrated in
Described herein are systems and structures for sealing configurations for boost systems, particularly when a supercharger is disposed downstream of a turbocharger and receives high boost pressure therefrom. The system includes high pressure rotor seals and a rigid guide plate disposed within at least a portion of the high pressure rotor seal. The support plate is configured to provide structural support and increase radial rigidity of components of the seal such as the primary lip, which extends toward the air side of the supercharger. As such, the high pressure rotor seals prevent crushing of the rotor seal under excessive boost pressure from an upstream boost system.
The foregoing description of the examples has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular example are generally not limited to that particular example, but, where applicable, are interchangeable and can be used in a selected example, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application is a continuation of International Application No. PCT/US2016/039952 filed Jun. 29, 2016, which claims the benefit of U.S. Patent Application Nos. 62/209,417 and 62/209,431, filed Aug. 25, 2015, the contents of which are incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
62209417 | Aug 2015 | US | |
62209431 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2016/039952 | Jun 2016 | US |
Child | 15904289 | US |