This relates to a high pressure sand trap having a screen that is removable from the sand trap.
Production fluids from oil and gas wells typically have a sand content, along with other contaminants and particulate matter. As the solids content of the production flow is abrasive and causes wear on equipment, as well as not being desired in the final product, sand trap devices are employed to filter sand from the production stream. U.S. Pat. No. 2,125,532 teaches a strainer for separation of contaminants from a continuous flow.
When formation conditions are appropriate, hydrocarbon producing wells are stimulated by fracturing the formation with sand, a technique known as “fracing”. For this fracing procedure, very fine abrasive sand is used. Problems are being experienced with some of this fine abrasive sand appearing, without warning, in well production. The problem is not apparent until it manifests itself and sand starts appearing in the equipment. When it occurs, it can be difficult to determine whether the formation is merely “burping” small amounts of sand periodically or whether there is a more serious sand problem requiring a sand separator. The problem cannot be ignored. Even when present in small quantities, sand can damage equipment. When present in larger quantities, abrasive sand can wear through pipes and cause serious problems resulting in leakage into the environment and the threatening the lives of oil field workers.
According to an aspect, there is provided a method of desanding a production flow in a flow line, the production flow comprising at least a liquid phase and a solid phase, the method comprising the steps of connecting the flow line to an inlet of a sand trap body, the sand trap body comprising a first filter housing defining a first bore that is in axial alignment with the flow line and a plurality of second filter housings connected to the first filter housing at spaced intervals along the first bore, each of the second filter housings defining a second bore that is transverse to and in fluid communication with the first bore, the first filter housing and the plurality of second filter housings defining a flow path between the inlet and an outlet, inserting a primary filter into each of the second bores, inserting a secondary filter into the first bore, wherein a mesh size of the primary filters is finer than or equal to a mesh size of the secondary filter, and after inserting the primary filter and prior to inserting the secondary filter, flowing the production flow through the sand trap body such that the production flow is filtered by the primary filters.
According to another aspect, the method may further comprise the step of, after inserting the secondary filter, flowing the production flow through the sand trap body such that the production flow is filtered by the secondary filter and the primary filters.
According to another aspect, the first bore may be horizontal and the second bores may be vertical.
According to another aspect, the second filter housings may connect to a common outlet header.
According to another aspect, the secondary filter may be inserted after a predetermined time has elapsed.
According to another aspect, the secondary filter may be inserted after a proportion of the solid phase in the production flow is less than a predetermined threshold.
According to another aspect, the method may further comprise the step of flushing the sand trap body using a blowdown connection.
According to another aspect, the first filter housing may comprise a retaining ring sealably anchored within the first bore and adjacent to the inlet, the retaining ring having a first part of a two part connector, the secondary filter may comprise a first end and a second end, the first end comprising a second part of the two part connector, and inserting the secondary filter may comprise attaching the second part to the first part such that the filter is sealably attached to the retaining ring and interposed between the inlet and the second bores.
According to an aspect, there is provided a sand trap body for filtering a production flow, the sand trap body comprising a filter housing defining a bore, the filter housing having an inlet, an outlet and a flow path between the inlet and the outlet through the bore, a retaining ring sealably anchored to the filter housing within the bore and adjacent to the inlet, the retaining ring having a first part of a two part connector, a filter having a first end and a second end, the first end comprising a second part of the two part connector, the second part connecting to the first part such that the filter is sealably attached to the retaining ring and interposed between the inlet and the outlet, and a wedge plate carried by the retaining ring, the wedge plate being positioned in the flow path upstream of the filter.
According to another aspect, the filter housing may comprise a removable end in axial alignment with the retaining ring.
According to another aspect, the two part connector may comprise a threaded coupling.
According to another aspect, the sand trap may further comprise a plurality of second filter housings connected to the filter housing at spaced intervals along the bore, each of the second filter housings defining a secondary bore that is transverse to and in fluid communication with the bore and a transverse filter within each secondary bore.
According to another aspect, the bore may be horizontal and the secondary bores may be vertical.
According to another aspect, a mesh size of the transverse filters may be finer than or equal to a mesh size of the filter.
According to another aspect, the second filter housings may connect to a common outlet header.
According to another aspect, the filter housing may comprise a blowdown connector that flows a blowdown fluid into the filter.
According to another aspect, the retaining ring may carry a wedge plate that conditions the fluid entering the filter housing.
According to another aspect, the wedge plate may comprise bars that extend transversely across the inlet upstream of the filter.
In other aspects, the features described above may be combined together in any reasonable combination as will be recognized by those skilled in the art.
These and other features will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to be in any way limiting, wherein:
A high pressure sand trap generally identified by reference numeral 10, will now be described with reference to
Referring to
Referring to
Retaining ring 24 carries a wedge plate 38 that is positioned in flow path 22 upstream of filter 30. Wedge plate 38 may take a variety of forms, and in the depicted example, has bars 50 that extend transversely across inlet 18 upstream of filter 30. Wedge plate 38 may condition the fluid entering filter housing 14. Referring to
Referring to
Operation
High pressure sand trap 10 is used to desand a production flow in a flow line. The production flow will typically be a mixture of a variety of phases, and will have at least a liquid phase and a solid phase, and may have a gas phase, depending on the characteristics of the well, and the other separation equipment that may be present at the well site.
The production flow line (not shown) is connected to inlet 18 of sand trap body 12. In some circumstances, such as when starting production from a well, or after a well treatment, there may be a high concentration of solids, or sand, in the production fluids. In that situation, it may be useful to configure sand trap 10 to more efficiently handle the amount of sand. In such a case, primary filters 46 are inserted into each of the second bores 44, as shown in
While this arrangement will typically be used at the start-up of the production flow when the solids content of the production fluid is high, it may be used at other times, and depending on the requirements of the user, different indicators may be used to determine when the filtration mode will be changed. For example, the filtration configuration may be changed when sand trap 10 requires servicing for another reason, after a predetermined time has elapsed, or after a proportion of the solid phase in the production flow is less than a predetermined threshold. Once it has been determined that the mode is to be changed, the flow through sand trap body 12 is stopped, and secondary filter 30 is inserted into first bore 16. Flow may then be resumed through sand trap body 12. Secondary filter 30 may be inserted through removable end 40, and inserted through first bore 16 in order to attach second part 36 of two part connector 28 to first part 26, connecting secondary filter 30 to retaining ring 24. As discussed above, the filter size of primary filters 46 will typically be finer than or equal to a filter size of secondary filter 30, such that the production flow will be filtered by both secondary filter 30 and primary filters 46. At any point required during the process, as will be understood by those skilled in the art, sand trap body 12 may be flushed using blowdown connection 52.
The installation of filter 30 after the initial start-up phase reduces the probability of clogging due to the potential of thick residuals such as hydrates or wax, and large proportions of sand and water settling within filter 30 and restricting gas flow through the screen openings. During start up, this may result in a high differential pressure across filter 30, and require multiple well shutdowns in order to clear out filter 30 and sand trap 10. Gravity allows for settling of filtered materials from vertical filters 46, reducing the requirement for shut down of the well, and allowing the filtered out material to collect in filter housing 14. Once the start-up phase is completed, or a particular threshold or timeframe is passed, filter 30 is installed, which introduces a two stage filtration system, allowing for different filter screen sizes to be used if required. Filter 30 reduces the load on vertical filters 46, as well as reducing the wear on filter housing 14 and other components of sand trap 10, extending the life of the device during normal operation.
The following describes one example embodiment and method of use of the high pressure sand trap 10. It will be understood that the specific values provided are given as an example only.
During start-up of the high pressure sand trap 10, vertical filters 46 are installed with a 250 Micron screen and a 2.75″ diameter. Retaining ring 24 is welded to the interior of filter housing 14. Flow pressures through sand trap 10 are recorded, and the differential pressure through the vertical filters 46 is measured. When the pressure differential is greater than 350 Psi, sand trap 10 is opened, vertical filters 46 are inspected, and sand trap 10 is cleaned out. When the pressure differential is below 350 Psi, monitoring continues for three months from start-up of the device. Once this time has elapsed, sand trap 10 is opened, cleaned out, and filter 30 is installed. The screen size of filter 30 will be larger than the screen size of transverse filter 46. Optionally, the vertical filters 46 may also be replaced with filters 46 having a different screen size than that used during start up. Once both filter 30 and filters 46 have been installed, sand trap 10 is operated according to normal operation procedures. The pressure differential at filter 30 is then monitored in addition to the pressure differential at vertical filters 46, and when the pressure differential exceeds 700 Psi at filter 30, or 350 Psi at vertical filters 46, sand trap 10 is opened, inspected, and cleaned out. Should the pressure remain below this level, sand trap 10 will continue to be operated until it is no longer needed.
In this patent document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the elements is present, unless the context clearly requires that there be one and only one of the elements.
The scope of the following claims should not be limited by the preferred embodiments set forth in the examples above and in the drawings, but should be given the broadest interpretation consistent with the description as a whole.
Number | Date | Country | Kind |
---|---|---|---|
2916272 | Dec 2015 | CA | national |
Number | Name | Date | Kind |
---|---|---|---|
908308 | Mueller | Dec 1908 | A |
1150086 | Willemstyn | Aug 1915 | A |
1152831 | Monteagle | Sep 1915 | A |
1431006 | Kelsey | Oct 1922 | A |
1439280 | Westmoreland | Dec 1922 | A |
1455871 | Fleming | May 1923 | A |
1508480 | Skinner | Sep 1924 | A |
1519042 | Osborne | Dec 1924 | A |
1534129 | Marden | Apr 1925 | A |
1548803 | Cotton | Aug 1925 | A |
1590128 | Staples | Jun 1926 | A |
1623015 | Lawrence | Mar 1927 | A |
1652173 | Lalor | Dec 1927 | A |
2010947 | Dunlap | Aug 1935 | A |
2041366 | Moran | May 1936 | A |
2125532 | Wells | Aug 1938 | A |
2423793 | Olivo | Jul 1947 | A |
2507591 | Cox | May 1950 | A |
2681736 | Voorheis | Jun 1954 | A |
3349547 | Hoipkemeier | Oct 1967 | A |
3362542 | Stevens | Jan 1968 | A |
3618781 | Brown | Nov 1971 | A |
3622006 | Brunner | Nov 1971 | A |
3646730 | Reid | Mar 1972 | A |
3679060 | Smith | Jul 1972 | A |
3793812 | Willis | Feb 1974 | A |
3888644 | Holland | Jun 1975 | A |
3959140 | Legras | May 1976 | A |
4106562 | Barnes | Aug 1978 | A |
4180391 | Perry, Jr. | Dec 1979 | A |
4297116 | Cusick | Oct 1981 | A |
4316802 | Howell | Feb 1982 | A |
4495072 | Fields | Jan 1985 | A |
4504391 | Weems, Sr. | Mar 1985 | A |
4579653 | Davis | Apr 1986 | A |
4609459 | Hendrix | Sep 1986 | A |
4673500 | Hoofnagle | Jun 1987 | A |
4745943 | Mortensen | May 1988 | A |
5113941 | Donovan | May 1992 | A |
5132013 | Thompson | Jul 1992 | A |
5223136 | Gilbert | Jun 1993 | A |
5401397 | Moorehead | Mar 1995 | A |
5443722 | Desai | Aug 1995 | A |
5595656 | Yun | Jan 1997 | A |
5772879 | Jaikaran | Jun 1998 | A |
5775442 | Speed | Jul 1998 | A |
5795473 | Marks | Aug 1998 | A |
5863443 | Mainwaring | Jan 1999 | A |
5919284 | Perry, Jr. | Jul 1999 | A |
6056797 | Richard | May 2000 | A |
6719900 | Hawkins | Apr 2004 | B2 |
6766856 | McGee | Jul 2004 | B1 |
6841007 | Howard | Jan 2005 | B1 |
6983852 | Hemstock | Jan 2006 | B2 |
7014685 | Burns | Mar 2006 | B2 |
7048865 | McGee | May 2006 | B1 |
7155967 | Rylander et al. | Jan 2007 | B2 |
7223298 | Platt | May 2007 | B2 |
7383958 | Hemstock | Jun 2008 | B2 |
7473359 | Barrett, II | Jan 2009 | B1 |
7540902 | Esparza | Jun 2009 | B2 |
7731037 | Frazier | Jun 2010 | B2 |
RE41556 | McGee | Aug 2010 | E |
7896959 | Schopf, Jr. | Mar 2011 | B1 |
8002983 | Wanni | Aug 2011 | B2 |
RE42772 | McGee | Oct 2011 | E |
8454843 | Brown | Jun 2013 | B2 |
8623221 | Boyd et al. | Jan 2014 | B1 |
8794263 | Scott | Aug 2014 | B2 |
8881803 | Frost | Nov 2014 | B1 |
8936661 | Burns | Jan 2015 | B2 |
8945256 | Hemstock | Feb 2015 | B2 |
8945395 | Tweit | Feb 2015 | B2 |
8951333 | Cabourdin | Feb 2015 | B2 |
8961792 | Desai | Feb 2015 | B2 |
8986431 | Cabourdin | Mar 2015 | B2 |
9095799 | Packard | Aug 2015 | B1 |
9327219 | Brunswick | May 2016 | B2 |
9345994 | Morris | May 2016 | B2 |
9421484 | Ford | Aug 2016 | B2 |
9573141 | Abraham | Feb 2017 | B2 |
9631641 | Choi | Apr 2017 | B2 |
9649584 | Burns | May 2017 | B2 |
9816338 | Hanson | Nov 2017 | B1 |
9909405 | Hemstock | Mar 2018 | B2 |
9937442 | Hendrix | Apr 2018 | B2 |
9938812 | Hemstock | Apr 2018 | B2 |
20030183587 | Hawkins | Oct 2003 | A1 |
20040074838 | Hemstock | Apr 2004 | A1 |
20040168958 | Eggleston | Sep 2004 | A1 |
20050023196 | Ku | Feb 2005 | A1 |
20050150842 | Puik | Jul 2005 | A1 |
20060207426 | Platt | Sep 2006 | A1 |
20070175815 | Thomas | Aug 2007 | A1 |
20070251878 | Saveliev et al. | Nov 2007 | A1 |
20080251467 | Wanni | Oct 2008 | A1 |
20100116732 | Jung | May 2010 | A1 |
20100155336 | Simonson | Jun 2010 | A1 |
20100294317 | Dufrene | Nov 2010 | A1 |
20110266228 | Brown | Nov 2011 | A1 |
20120000835 | Desai | Jan 2012 | A1 |
20130105416 | Whitehead | May 2013 | A1 |
20130134109 | Tweit | May 2013 | A1 |
20130140247 | Ford | Jun 2013 | A1 |
20140001117 | Abraham | Jan 2014 | A1 |
20140027357 | Morris | Jan 2014 | A1 |
20140332473 | Haberman | Nov 2014 | A1 |
20150034185 | Winborn | Feb 2015 | A1 |
20150090122 | Hemstock | Apr 2015 | A1 |
20160038953 | Abraham | Feb 2016 | A1 |
20160074781 | Winborn | Mar 2016 | A1 |
20160082377 | Hemstock | Mar 2016 | A1 |
20160377094 | Choi | Dec 2016 | A1 |
20170182435 | Morris | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2916272 | Jun 2017 | CA |
2207444 | Sep 1995 | CN |
201308800 | Sep 2009 | CN |
201371003 | Dec 2009 | CN |
WO-2017059664 | Apr 2017 | WO |
Entry |
---|
Euroslot Kdss (renamed Andritz Euroslot), Industrial Water Products, retrieved Oct. 15, 2015, online: <http://www.euroslotkdss.com/filtration/industrial-water/>. [*requires review}. |
Number | Date | Country | |
---|---|---|---|
20170182435 A1 | Jun 2017 | US |