High pressure seal

Information

  • Patent Grant
  • 6517087
  • Patent Number
    6,517,087
  • Date Filed
    Wednesday, July 11, 2001
    23 years ago
  • Date Issued
    Tuesday, February 11, 2003
    21 years ago
Abstract
A seal is formed between two parts of a high pressured chamber by means of a rigid ring, which is formed with curved surfaces, that engage with an anvil and an enclosure part, the anvil having a similar curved projection. At least one of the engaging surfaces is coated with a soft metal e.g. silver.
Description




BACKGROUND OF THE INVENTION




This invention relates to high pressure seals and in particular, but not exclusively, when such seals are being formed between two rigid elements.




FIELD OF THE INVENTION




There are a number of occasions in which it is necessary to form seals between two engaging metal faces which are being pressed together, but which are subject to significant fluid pressure which is acting in a sense to urge them apart. It is often desirable that these seals are made and remade over a large number of cycles. Previous seals have used a grease such as a silicone based vacuum grease to lubricate the wear surfaces. Such grease is also used when O-rings are provided. In certain instances this grease is undesirable, because cleaning and regreasing can be needed on a regular basis causing down time of apparatus.




One example of such a sealing arrangement is described in WC-A-9308591 wherein a high pressure chamber is being used to process semiconductor wafers. A particular requirement of such an arrangements is that the levels of particulate material must be kept to a minimum.




JP-A-57167568 (Abstract) discloses a metal gasket which does not cause creep at its sealing edge. A relatively thick copper coating is used.




SUMMARY OF THE INVENTION




From one aspect the present invention consists in a vacuum or high pressure reusable seal formed between two engaging parts of rigid elements comprising, a coating of a soft metal over at least one of the engaging parts and means for using the parts together. The rigid elements may be formed of steel or aluminum.




The seal may include an underlayer, which may, for example, be nickel. That underlayer may be approximately 2 μm thick. The coating may be between 15 μm and 20 μm thick.




The coating may be gold, silver, platinum, palladium copper, lead or indium, or a combination of these. However, materials such as gold and copper diffuse quite readily into semiconductor materials such as silicon or gallium arsenide and so if the seal is being used in association with a machine for processing such materials, those metals may not be appropriate.




A particularly preferred coating is silver and this coating is suitable for use with semiconductor materials.




The invention also includes a high pressure chamber formed by two closable portions and a seal as defined above.




Although the invention has been defined above, it is to be understood it includes any inventive combination of the features set out above or in the following description.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention may be performed in various ways and specific embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:





FIG. 1

is a vertical cross-section through a machine of the type described in European Patent Application No. 9292023.4;





FIG. 2

is a detail at A of the seal of that apparatus; and





FIG. 3

is a corresponding view of a seal utilizing seal of the invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The apparatus will not be described in detail, but instead the disclosure of European Patent Application No. 9292023.4 is incorporated for that purpose. However, essentially, two enclosure parts


10


, and


11


, are forced together to form a chamber


12


between them in which semiconductor wafers are processed. As can be seen in

FIG. 2

five sealing interfaces occur between the enclosure part


10


and the enclosure part


11


. The first seal is formed between a gasket


16


and the upper enclosure part


10


. A rigid ring


13


forms seals with the gasket


16


and, at


15


, with an anvil


14


. The anvil


14


is secured to the lower enclosure part


11


and uses an O-ring to provide a seal between the anvil and the enclosure part


11


.




Turning to

FIG. 3

, it will be seen that the rigid ring


13


is now formed with curved surfaces


17


and


19


that engage with the anvil


14


and the enclosure part


10


and the anvil


14


has similar curved projection


18


in place of the O-ring. It has been found that such engagement shapes are possible if at least one of the engaging surfaces is coated with a soft (e.g. noble) metal, because such metals serve to lubricate the wear surface and remove the need for the use of grease. As has been pointed out already for semiconductor wafer use, silver is particularly preferred and attention may be given to the diffusion rates of the coating metal into the material which is being processed.




If the metal coating is deposited by electro-plating, it is desirable to provide a nickel underlayer, but other methods of forming the coating may be used.




To improve the integrity of the coating, it may be desirable to coat the complete ring


13


or anvil


14


and it may, in some instances, be appropriate to coat both engaging surfaces, although current test show that a single coated surface is extremely effective.




The use of different shapes of engagement surfaces rather than line contacts may have broad applicability.



Claims
  • 1. A high pressure chamber comprising upper and lower enclosures and a high pressure seal, wherein the high pressure seal is formed between two vertically aligned engaging parts of rigid elements which are secured to the upper and lower enclosures, and wherein the high pressure seal includes a coating of a noble metal over a contact surface of at least one of the engaging parts, and means for urging the vertically aligned engaging parts into direct contact with each other in a vertical direction only, wherein the high pressure seal is devoid of a separate gasket between the engaging parts when the engaging parts are in direct contact with each other wherein the upper and lower enclosures define a semiconductor materials processing chamber, and wherein at least one of the engaging parts has a curved contact surface.
  • 2. A chamber as claimed in claim 1, wherein the rigid elements are made of steel or aluminium.
  • 3. A chamber as claimed in claim 2, wherein a first of the two engaging parts is a rigid ring member sealingly secured to the upper enclosure, and wherein a second of the two engaging parts is an anvil sealingly secured to the lower enclosure.
  • 4. A chamber as claimed in claim 2, wherein the coating is between 15 and 20 μm thick.
  • 5. A chamber as claimed in claim 2, wherein the coating is gold, platinum, pallidium or copper or a combination of these.
  • 6. A chamber as claimed in claim 2, wherein the high pressure seal further includes an underlayer beneath the coating of the noble metal.
  • 7. A chamber as claimed in claim 6, wherein the underlayer is approximately 2 μm thick.
  • 8. A chamber as claimed in claim 6, wherein the underlayer is nickel.
  • 9. A chamber as claimed in claim 8, wherein the underlayer is approximately 2 μm thick.
  • 10. A chamber as claimed in claim 9, wherein the coating is between 15 and 20 μm thick.
  • 11. A chamber as claimed in claim 1, wherein the high pressure seal further includes an underlayer beneath the coating of the noble metal.
  • 12. A chamber as claimed in claim 11, wherein the underlayer is nickel.
  • 13. A chamber as claimed in claim 12, wherein the underlayer is approximately 2 μm thick.
  • 14. A chamber as claimed in claim 11, wherein the underlayer is approximately 2 μm thick.
  • 15. A chamber as claimed in claim 14, wherein the coating is between 15 and 20 μm thick.
  • 16. A chamber as claimed in claim 1, wherein the coating is between 15 and 20 μm thick.
  • 17. A chamber as claimed in claim 1, wherein the coating is gold, platinum, pallidium or copper or a combination of these.
  • 18. A chamber as claimed in claim 1, wherein a first of the two engaging parts is a rigid ring member sealingly secured to the upper enclosure, and wherein a second of the two engaging parts, is an anvil sealingly secured to the lower enclosure.
  • 19. The high pressure chamber of claim 1, wherein the upper and lower enclosures form a semiconductor wafer processing chamber.
Priority Claims (1)
Number Date Country Kind
9616214 Aug 1996 GB
CROSS-REFERENCE TO RELATED APPLICATION(S)

This is a Continuation of U.S. patent application Ser. No. 09/214,492, filed Jul. 30, 1999, now U.S. Pat. No. 6,279,917 granted Aug. 28, 2001, which is the U.S. national stage of International Application No. PCT/GB97/01963, filed Jul. 18, 1997. The entire contents of said U.S. application are incorporated herein by reference.

US Referenced Citations (8)
Number Name Date Kind
3163431 Tanner Dec 1964 A
4261584 Browne et al. Apr 1981 A
4477087 Sutter, Jr. et al. Oct 1984 A
5247800 Mruzek et al. Sep 1993 A
5376213 Ueda et al. Dec 1994 A
5380019 Hillery et al. Jan 1995 A
5459609 Schrag Oct 1995 A
6027145 Tsuru et al. Feb 2000 A
Foreign Referenced Citations (2)
Number Date Country
57-167568 Oct 1982 JP
WO 9308591 Apr 1993 WO
Continuations (1)
Number Date Country
Parent 09/214492 US
Child 09/901615 US