The invention relates generally to a solenoid pump with a conical, variable rate spring to enable maximum displacement of a plunger in the pump and to increase back pressure values under which the pump can operate. The invention also generally relates to a control scheme for a solenoid pump that varies a duty cycle according an input voltage used to power the pump.
Known solenoid pumps use linear springs to bias a plunger against displacement by a solenoid coil in a pumping cycle. When the springs are fully compressed, the springs occupy an undesirably large space since the coils for the springs stack upon each other. Known control schemes for solenoid pumps use a fixed duty cycle, typically 50, regardless of the magnitude of the input voltage to be used to energize the solenoid coils for the pumps. As a result, too little power is delivered to the coils for low values of the input voltage and the coils remain energized even after plungers for the pumps have fully displaced to fully compress the springs for the pumps. As a result, the pumps consume unnecessarily high amounts of energy and undesirable amounts of heat are generated, which degrades operation of the pumps.
Typically, back pressure is present at the outlet port of a solenoid pump and limits operation of the pump, that is, the pump can operate only up to a certain back pressure level. In general, the back pressure works against the spring used to bias the plunger. For example, when the back pressure is greater than the biasing force of the spring, the pumping cycle is terminated (the plunger cannot return to a “rest” position when the coil is de-energized). The known use of linear springs limits the back pressure under which known solenoid pumps can operate. The spring biasing force must be relatively lower to enable the initiation of the plunger displacement when the coil is energized. Since the spring is linear, only the same relatively lower biasing force is available to counteract the back pressure. Known solenoid pumps cannot operate with a backpressure over about 10 psi.
Common rail systems use a relatively low pressure pump to pump fuel from a fuel source to a high pressure pump. The high pressure pump supplies fuel from the low pressure pump to a distribution line, for example, a distribution pipe feeding fuel injectors for an engine. The high pressure pump in a common rail system can operate at pressures of over 29,000 psi. A pressure regulating valve placed between the low and high pressure pumps typically creates a back pressure on the outlet port of the low pressure pump greater than the 10 psi maximum backpressure under which known solenoid pumps can operate. Thus, known common rail systems teach the use of pumps other than solenoid pumps.
According to aspects illustrated herein, there is provided a control unit for a solenoid pump including: an inlet port, an outlet port, and a first through-bore connecting the inlet and outlet ports; a plunger disposed within the first through-bore and including a second through-bore; a spring arranged to urge the plunger toward the outlet port; a solenoid coil disposed about a portion of the plunger and arranged to displace the plunger toward the inlet port in response to coil power applied to the solenoid coil, the control unit including: an input for accepting an input voltage; and a power circuit for: generating the coil power during an interval equal to a time period; supplying the coil power to the solenoid coil; and selecting a duration of the time period such that the duration of the time period varies according to the input voltage.
According to aspects illustrated herein, there is provided a solenoid pump, including: an inlet port, an outlet port, and a first through-bore connecting the inlet and outlet ports; a plunger disposed within the first through-bore and including a second through-bore; a spring arranged to urge the plunger toward the outlet port; a solenoid coil disposed about a portion of the plunger and arranged to displace the plunger toward the inlet port in response to coil power applied to the solenoid coil; and a control unit for: accepting an input voltage; generating the coil power during an interval equal to a first time period; supplying the coil power to the solenoid coil; and selecting a duration of the first time period such that the duration of the first time period varies according to the input voltage.
According to aspects illustrated herein, there is provided a solenoid pump, including: a housing with an inlet port and an outlet port; a first through-bore connecting the inlet and outlet ports; a plunger disposed within the first through-bore and including a second through-bore; a spring arranged to urge the plunger toward the outlet port; a solenoid coil arranged to displace the plunger toward the inlet port in response to a coil power applied to the solenoid coil; and a control unit for controlling operation of the solenoid coil such that when the solenoid coil is energized by the coil power to displace the plunger and the spring is fully compressed by the plunger, coils forming the spring are aligned in a direction orthogonal to a longitudinal axis passing through the inlet and outlet ports.
According to aspects illustrated herein, there is provided a solenoid pump, including: a housing with an inlet port and an outlet port; a first through-bore connecting the inlet and outlet ports; a sleeve disposed within the first through-bore and displaceable parallel to a longitudinal axis passing through the inlet and outlet ports; a plunger disposed within the first through-bore, displaceable parallel to the longitudinal axis, and including a second through-bore; a spring arranged to urge the plunger toward the outlet port; a solenoid coil arranged to displace the plunger toward the inlet port in response to a coil power applied to the solenoid coil; and a control unit for controlling operation of the solenoid coil such that fluid is transferred from the inlet port to the outlet port through the second through bore.
According to aspects illustrated herein, there is provided a method of operating a control unit for a solenoid pump including: an inlet port, an outlet port, and a first through-bore connecting the inlet and outlet ports; a plunger disposed within the first through-bore and including a second through-bore; a spring arranged to urge the plunger toward the outlet port; a solenoid coil disposed about a portion of the plunger and arranged to displace the plunger toward the inlet port in response to coil power applied to the solenoid coil, the method including: using an input to accept an input voltage; and using a power circuit to: generate the coil power during an interval equal to a time period; supply the coil power to the solenoid coil; and select a duration of the time period such that the duration of the time period varies according to the input voltage.
According to aspects illustrated herein, there is provided a method of pumping fluid using a solenoid pump including: an inlet port, an outlet port, and a first through-bore connecting the inlet and outlet ports; a plunger disposed within the first through-bore and including a second through-bore; a spring; a solenoid coil disposed about a portion of the valve assembly; and a control unit. The method includes: urging, using the spring, the plunger toward the outlet port; and using the control unit to: accept an input voltage; determine a magnitude of the input voltage; select a duration of a first time period such that the duration of the first time period varies according to the input voltage; generating, using the input voltage, a coil power during an interval equal to the first time period; supplying the coil power to the solenoid coil such that the plunger displaces toward the inlet port; remove the coil power such that the spring displaces the plunger toward the outlet port.
According to aspects illustrated herein, there is provided a method of pumping fluid using a solenoid pump including: a housing with an inlet port and an outlet port; a first through-bore connecting the inlet and outlet ports; a plunger disposed within the first through-bore and including a second through-bore; a spring; a solenoid coil; and a control unit. The method including: urging the plunger toward the outlet port with the spring; and using the control unit to apply a coil power to the solenoid coil to displace the plunger toward the inlet port such that the spring is fully compressed by the plunger, and coils forming the spring are aligned in a direction orthogonal to a longitudinal axis passing through the inlet and outlet ports.
The nature and mode of operation of the present invention will now be more fully described in the following detailed description of the invention taken with the accompanying drawing figures, in which:
At the outset, it should be appreciated that like drawing numbers on different drawing views identify identical, or functionally similar, structural elements of the invention. It is to be understood that the invention as claimed is not limited to the disclosed aspects.
Furthermore, it is understood that this invention is not limited to the particular methodology, materials and modifications described and as such may, of course, vary. It is also understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to limit the scope of the present invention, which is limited only by the appended claims.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices or materials similar or equivalent to those described herein can be used in the practice or testing of the invention, exemplary methods, devices, and materials are now described.
Spring 114 is a variable rate spring. By “variable rate spring” we mean that resistance of the spring to compression of the spring in direction A1 toward the inlet port increases as the spring is compressed in direction A1, for example, by the plunger. Stated otherwise, referring to Hooke's Law: F=−kx, the constant k for the spring increases as the spring is compressed. Thus, the further the spring is compressed, the more force is needed to continuing compressing the spring. For example, when the plunger begins displacing in direction A1 from the position shown in
Spring 114 has a conical shape, for example, diameter D1 at end 120 of the spring closest to the inlet port in
In an example embodiment, the pump includes sleeve 128 disposed within through-bore 108 and displaceable parallel to axis 126. The plunger is disposed within the sleeve and in an example embodiment is displaceable within the sleeve parallel to the longitudinal axis. Seals 130, for example, O-rings, provide a seal between housing 102 and the sleeve, while enabling movement of the sleeve within bore 108. Length L1 of the sleeve is less than length L2 of through bore 108, thus, the sleeve “floats” within bore 108. Advantageously, having sleeve 128 “float” within bore 108 increases the ease of fabrication of pump 100, since fabrication steps that would be needed to fix the sleeve within the pump are eliminated. Further, having the sleeve float enables greater flexibility since sleeves with different lengths L1 can be easily installed. Also, since L1 is less than L2, tolerances for L1 can be relaxed, reducing manufacturing cost and complexity. In an example embodiment, sleeve 128 is made from a non-magnetic material.
The following provides further example detail regarding pump 100 and an example operation of pump 100. The plunger is arranged to pass fluid through through-bore 112 and longitudinally traverses the pump between the inlet and outlet ports. In an example embodiment, bumper spring 132 is disposed in end 134 of the plunger. The bumper spring contacts shoulder 136 in the housing to cushion the impact of the plunger as the plunger moves from the position of
Pump 100 includes one-way check valve 150. The check valve enables fluid flow through the inlet port toward the outlet port in direction A2 and blocks fluid flow in the opposite direction, A1. In an example embodiment, the check valve includes sealing element 152 within valve housing 154. The sealing element seals against the housing, for example, inlet housing 102B to block flow out of the pump through the inlet port. For example, the one-way check valve is used as part of drawing fuel from a fuel source such as a fuel tank.
Referring now to
The operation described above regarding
As noted above, some amount of back pressure, that is, pressure exerted through the outlet port into through-bore 108 in direction A1, is typically present during operation of pump 100. The back pressure biases the plunger in direction A1, against the biasing of spring 114. When the force of the back pressure is greater than the force exerted by spring 114, for example, spring 114 no longer can urge the plunger in direction A2 from the position in
Advantageously, pump 100 is able to operate (pump fluid) up to about 15 psi of back pressure. The ability of pump 100 to operate at greater back pressures is at least partly due to the variable rate of spring 114. Due to the characteristics associated with operation of the solenoid coil, it is desirable to minimize the amount of resistance the plunger must overcome at the onset of a cycle. As noted above, the variable rate results in spring 114 advantageously generating relatively less biasing force resisting movement of the plunger in direction A1 at the onset of a pump cycle, for example, starting in the position of
Pump 100 can be used in common rail systems. As noted above, in a common rail system a relatively low pressure pump is used to pump fuel from a fuel source to a high pressure pump. For a common rail system, the back pressure on the outlet port of the low pressure pump is greater than the 10 psi maximum backpressure under which known solenoid pumps can operate. Advantageously, the approximately 15 psi maximum backpressure under which pump 100 can operate is sufficient to enable operation of pump 100 in a common rail system.
The control unit makes a determination regarding a magnitude of IV and generates CP during an interval equal to a time period Toff. That is, the interval is the time period used by the control unit to generate CP. The control unit supplies the coil power to the solenoid coil. The control unit selects a duration of Toff such that the duration of Toff varies according to the determination of the magnitude of the input voltage. That is, the duration of Toff is proportional to the magnitude of IV. The combination of the magnitude of IV and the duration of Toff determine the magnitude of CP as further described infra.
The following should be viewed in light of
Advantageously, the control unit is for decreasing the duration of Toff as the magnitude of the input voltage increases; and increasing the duration of Toff as the magnitude of the input voltage decreases. In an example embodiment, the control unit compares IV to a pre-determined value. If IV is greater than the value, the control unit decreases Toff in proportion to the difference between IV and the value, with Toff decreasing as the difference increases. If IV is less than the value, the control unit increases Toff in proportion to the difference between IV and the value, with Toff increasing as the difference increases.
As noted above, the control unit is for supplying the coil power to the solenoid coil during time period Toff. For an input voltage greater than a pre-determined value, the control unit is for selecting the duration of Toff to be less than the duration of T. For an input voltage less than the pre-determined value, the control unit is for selecting the duration of Toff to be greater than the duration of Ton. In an example embodiment, Ton is constant regardless of Toff.
As noted above, a duty cycle for a pump is defined as the percentage of the cycle during which the coil power is generated using the input voltage. For example, for a control scheme charging a capacitor with the input voltage to generate the coil power, the duty cycle is the percentage of the cycle during which the capacitor is charged. For the control scheme depicted in
In an example embodiment, IV is a direct current voltage and CP is an alternating current voltage. The control unit is for: supplying the coil power at a specific frequency; and selecting a magnitude of the frequency such that the magnitude of the frequency varies according to the magnitude of the input voltage. Thus, the control unit decreases the magnitude of the frequency as the magnitude of the input voltage decreases, and increases the magnitude of the frequency as the magnitude of the input voltage increases as shown in
As shown in
In an example embodiment, control unit 118 includes power input line 222, power circuit 220 includes voltage storage element C2, and the control unit is for charging the voltage storage element with the input voltage to generate the coil power during the interval noted above for Toff, and discharging the voltage storage element to supply the coil power to the solenoid coil. In an example embodiment, element C2 is a capacitor.
In an example embodiment, circuit 220 includes transistor Q1, for example, a metal oxide semiconductor field effect transistor (MOSFET), and timer Ul. Timer Ul can be any timer known in the art, for example, a 555 timer. In an example embodiment, pin 5 on the timer is clamped to establish a predetermined value against which the input voltage is compared. Pin 5 is the control voltage for a comparator circuit in the timer. In an example embodiment, a Zener diode, for example, diode D6 is used to clamp pin 5. To produce the values shown in
The control scheme described above, for example, selecting the duration of Toff according to a magnitude of IV, has at least the following advantages. In many applications, the magnitude of IV varies according to operating conditions affecting the source of IV. For example, when the pump is used in a vehicular application and a battery for a vehicle is used to supply IV, the magnitude of IV may be relatively lower due to the age or condition of the battery, cold weather impacting the battery, or a start-up condition for the vehicle. As a result, the magnitude of IV may be undesirably low at the onset of operation of the pump and may increase as the vehicle continues to operate, for example, as the battery warms up or is charged.
Thus, during typical operation, it is expected that IV will vary, for example, as shown in
Advantageously, the control scheme described supra for
Thus, it is seen that the objects of the invention are efficiently obtained, although changes and modifications to the invention should be readily apparent to those having ordinary skill in the art, without departing from the spirit or scope of the invention as claimed. Although the invention is described by reference to a specific preferred embodiment, it is clear that variations can be made without departing from the scope or spirit of the invention as claimed.
Number | Name | Date | Kind |
---|---|---|---|
4219863 | Takeshima | Aug 1980 | A |
6016791 | Thomas | Jan 2000 | A |
7821159 | Day | Oct 2010 | B2 |
20060221534 | Oide | Oct 2006 | A1 |
20100037644 | Ward | Feb 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20130028753 A1 | Jan 2013 | US |