This disclosure relates generally to a pressure switch and, more particularly, to a pressure switch that can be actuated by high pressure and in which the contacts are isolated from the pressure media.
A pressure switch is a type of switch in which the switching action is triggered by pressure in the surrounding environment. Pressure switches have been proposed for use in various kinds of electro-mechanical devices. The pressure detection mechanism in a typical pressure switch is a diaphragm configured in the pressure switch to be impinged upon by the pressure media (such as air or gas under pressure), and upon reaching a particular pressure the diaphragm is translated to cause the switch contacts of the pressure switch to be actuated.
However, conventional pressure switches tend to operate only at relatively low pressure levels (50-150 PSIG).
Another problem of conventional pressure switches is that they are not sufficiently miniaturized and they frequently occupy too much space in the electro-mechanical device.
The present disclosure provides a pressure switch that can effectively avoid the above-noted disadvantages of conventional pressure switches.
In one example of this disclosure, a pressure switch with contacts that are isolated from the pressure media is provided.
In another example of the present disclosure, a pressure switch is provided in which the switch contacts are isolated from the pressure media and a snap actuation blade mechanism is provided to be actuated in response to the pressure.
By constructing the snap actuation blade mechanism in an exemplary configuration described and shown herein, it is possible to provide a hysteresis response in which the deactuation pressure level is different from the actuation pressure level.
The features of the present disclosure can be more readily understood from the detailed description below with reference to the accompanying drawings wherein:
In describing examples and preferred embodiments in connection with the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner.
An example of a pressure switch which avoids the disadvantages of convention pressure switches includes a pressure detection mechanism coupled to a contact driving mechanism, a first terminal, and a second terminal coupled to a snap action blade. The first terminal has a first contact attached thereto, and the snap action blade of the second terminal has a second contact coupled thereto. The second contact is normally (that is, when no force is being applied to the snap action blade) in electrical contact with the first contact. When the pressure detection mechanism detects a pressure media at or above an actuation pressure level, the pressure detection mechanism causes the contact driving mechanism to drive the snap action blade into a deflected position whereby the second contact becomes no longer in electrical contact with the first contact. An output of the switch through the terminals switches when the electrical contact between the first contact and the second contact is discontinued by the deflection of the snap action blade. The combination of the pressure detection mechanism and the contact driving mechanism isolates the pressure media from the remainder portions of the pressure switch, including in particular the snap action blade.
The pressure detection mechanism may be any of the known pressure detection devices. One example of a pressure detection mechanism is a diaphragm configured to detect pressure media through a pressure channel. The diaphragm may be mechanically coupled to a plunger assembly which actuates the snap action blade in response to force applied to the diaphragm.
Such an example of a pressure switch 10 will be discussed with reference to
A first terminal 26 carries a fixed contact 28. A common terminal 30 has a snap action blade 32 attached thereto with a movable contact 34 attached thereto. The terminals 26 and 30 are securely held between upper plunger portion 18 and lower plunger portion 14. The moveable contact 34 is normally (that is, when little or no force is applied to the diaphragm) in a closed position such that it is in contact with the fixed contact 28.
As seen in
A spring 20 is preferably included to abut an upper surface of the upper plunger portion 18. The spring 20 provides a spring force against the plunger that is controlled by a threaded screw 22. The threaded screw 22 may be adjusted by use of a nut 24 threaded onto the screw 22 such that the spring force is increased or decreased depending on the desired pressure at which the pressure switch 10 is to respond.
The screw 22 in the example of
When an optional spring assembly is provided, the pressure level at which the switch actuates can be controlled by adjusting the screw 22 to change the bias force of the compressive spring 20. The bias force is translated through the upper (or top) plunger portion 18 to preload the snap action blade 32, thereby establishing the threshold pressure at which the switch actuates.
The diaphragm 12 expands in response to applied force from the external pressure and acts in response to such pressure to drive the lower plunger portion 44 towards the snap action blade 32. The diaphragm, after being installed in the housing formed by the base 42 and the stem 44, is retained within the housing such that the diaphragm 12 is positively captured.
A high pressure switch according to this disclosure has many uses. For example, it can be used in an air compressor to shut-off the compressor motor when a maximum tank pressure is achieved and to start the compressor motor once the tank pressure falls below a predetermined level. In that regard, a high pressure switch having a construction similar to that described herein can be configured for switching action in the range of 50 PSIG to 200 PSIG. By suitably arranging the snap action blade, the differential between the actuation point and the deactuation point can be set to be approximately 25 to 30 PSIG. Furthermore, by providing a switch in which the contacts can be quite robust (such as provided in the present disclosure), the switch can switch between 15 and 20 amperes. The switch can be configured in a preferred embodiment as a miniature (or micro) high pressure switch, for example, dimensioned at approximately 1.5″ OAL and 1.5″ diameter.
The above specific examples and embodiments are illustrative, and many variations can be introduced on these embodiments without departing from the spirit of the disclosure or from the scope of the appended claims. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure and appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3617665 | Berson et al. | Nov 1971 | A |
3984649 | Bauer et al. | Oct 1976 | A |
4004272 | Claxton et al. | Jan 1977 | A |
4521683 | Miller | Jun 1985 | A |
4581941 | Obermann et al. | Apr 1986 | A |
4757165 | Marcoux et al. | Jul 1988 | A |
4820890 | Tamura et al. | Apr 1989 | A |
4891479 | Davis | Jan 1990 | A |
5132500 | Clew | Jul 1992 | A |
5461208 | McKenna | Oct 1995 | A |
5889247 | Homol | Mar 1999 | A |
6089098 | Tylisz et al. | Jul 2000 | A |
6154586 | MacDonald et al. | Nov 2000 | A |
6346681 | Joyce et al. | Feb 2002 | B1 |
6495777 | Chou | Dec 2002 | B1 |
7071430 | Farano et al. | Jul 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20070235302 A1 | Oct 2007 | US |