High pressure tube cleaning apparatus

Information

  • Patent Grant
  • 6626195
  • Patent Number
    6,626,195
  • Date Filed
    Friday, March 16, 2001
    23 years ago
  • Date Issued
    Tuesday, September 30, 2003
    21 years ago
Abstract
An assembly for rotating and axially directing a high pressure spray hose and spray head to clean residue from the bores of thermal transfer tubes. The assembly includes a number of subassemblies that are concentrically aligned and mounted to rotate in synchrony and direct a high-pressure hose and spray head. A hose cleaning subassembly washes and/or brushes the hose exterior with a low-pressure spray. A hose drive assembly controls axial hose movement via driven gears and chains and four polyurethane pinch wheels that abut the hose. Spring tensioners control the wheel-to-hose pressure. A layering arm extends from a driven reel axle and stacks the hose in uniform layer onto an adjustable hub at a driven reel. The diameter of the reel hub can adjusted relative to an outer cage. The hose reel, axial hose drive and hose cleaner assemblies can be operated at speeds rotational speeds of 60 rpm to 650 rpm and whereby tubes from ½ to 6-inch diameters can be cleaned at rates of 1 to 80 feet per minute.
Description




BACKGROUND OF THE INVENTION




The present invention relates to cleaning equipment for tubes and piping and, in particular, to high-pressure water spray systems for cleaning the bores of tubes mounted in a variety of equipment, such as heat exchangers, falling pressure evaporators and the like.




Industrial piping systems of all types frequently require cleaning. A problem especially common to heat exchangers and evaporators is that over time the bore and exterior walls of the heat exchange tubes develop corrosion, scale and other undesired residue. The buildup of residue decreases and/or generally adversely effects the heat transfer efficiencies. Operating costs for fuel, in turn, increase.




Periodic maintenance is thus required to clean the tubes. Frequently the equipment must be taken off-line during maintenance. Such maintenance can be performed by plant personnel or outside contractors who are specially trained and use special purpose equipment to perform such tasks. It is desirable that any down time be minimized. The task is typically performed manually and is therefore costly and time consuming, especially for large heating and cooling plants.




A variety of techniques and types of equipment have been developed to clean the interior and exterior surfaces of pipes and particularly heat transfer tubes. Soot blowing and chemical shocking are two techniques. Another technique is to individually direct equipment into each tube to mechanically dislodge the residue from the tube walls. Some of the latter equipment uses rigid lances that either rotate and/or have rotating blades. U.S. Pat. No. 5,579,726 discloses a lance-based assembly that directs streams of high-pressure water to effect the cleaning. The latter system supports a rotating and axially directed lance from a frame that can be aligned to each tube.




High-pressure spray systems are also known that direct streams of water from a spray hose into each tube. Jetting Systems & Accessories, Inc. sells one such system under the brand name “FLEX LANCER”. Another system is sold by Gardner Denver Water Jetting Systems, Inc., Houston, Tex. under the name “V” Drum Rotary Line Cleaner. The latter system provides a high-pressure hose and spray nozzle that are rotated and axially directed under power. Hose movement is directed with a hand-operated air controller and a pinch roller assembly that controls axial hose movement. Rotational movement is controlled via a separate motor. The hose is collected and dispensed from a rotating V-shaped spool or drum. Although offering advantages, the efficiency of the latter system is severely restricted by vibrations that occur due to unbalanced conditions that can occur at the equipment during typical use. Extreme vibrations have particularly been experienced at speeds approaching 60 rpm, which severely limits the utility of the equipment.




The present invention was developed to provide a more efficient high-pressure spray system. The assembly provides a hose mounted spray head that can be operated at rotational speeds in the range of 60 rpm to 850 rpm. Axial speeds in the ranges of 1 foot per minute to 80 feet per minute are also possible. At a nominal rotary speed of 300 rpm and an axial speed of 60 feet per minute the assembly is able to clean a typical 36-foot tube in one-fourth the time as the foregoing equipment.




The assembly is constructed to provide optimal balance along the entire drive train. The assembly also cleans the exterior surface of the spray hose as it is dispensed and collected from a driven spool or reel assembly. The reel assembly stacks the hosing in a tapered coil that is balanced to the longitudinal drive axis of the hose drive train. The hub of the reel assembly can be adjusted to accommodate different lengths and diameters of hose.




SUMMARY OF THE INVENTION




It is accordingly a primary object of the invention to provide a high-pressure tube cleaning assembly wherein a spray hose and spray nozzle can be directed at high rotational and axial rates by the assembly as the nozzle is directed through each tube being cleaned.




It is a further object of the invention to provide an assembly that includes a rotationally driven hose reel that arranges the spray hose in a fashion that avoids unbalancing the equipment relative to a longitudinal, rotational drive axis.




It is a further object of the invention to provide a hose reel having a conically tapered, hose collection hub mounted adjacent to a concentric outer cage and on which hub the hose is stacked in coils concentrically aligned to the longitudinal drive axis.




It is a further object of the invention to provide a hose cleaning assembly that cleans the hose as it is dispensed and collected.




It is a further object of the invention to provide a rotary mounted, air-controlled hose drive assembly having four polyurethane pinch-type drive wheels that axially direct the hose along the assembly's longitudinal drive axis and that is rotationally balanced relative to a hose reel.




It is a further object of the invention to provide a drive axle at the hose reel that is coupled to the hose drive assembly and from which axle a layering arm extends that aligns the hose relative to an adjustable hub at the hose reel.




It is a further object of the invention to provide a hose collection hub wherein the diameter and taper of the hose collection hub can be adjusted relative to the outer cage and center drive axle.




The foregoing objects, advantages and distinctions of the invention, among others, are obtained in the following disclosed tube cleaning assembly that has been particularly adapted for use in cleaning heat exchangers and falling tube evaporators. The invention can be adapted to other applications wherein the tool head is coupled to a high-speed, rotationally and axially directed supply conduit.




The subject tube cleaning assembly provides a mobile framework that attaches to on-site air and water supplies. The assembly includes a number of subassemblies that are concentrically aligned along a longitudinal drive axis to direct a high-pressure hose and spray head. The subassemblies are mounted to rotate in controlled synchrony at a number of pillow block bearings.




At a fore end, the hose and orifice containing spray head are directed through a hose cleaning subassembly that washes the hose with a low-pressure spray. The hose is axially directed to and fro with an air-controlled hose drive assembly. A hand-operated valve directs air to an air swivel and a pair of drive motors. Drive power is applied to a pair of driven gears and chains to follower gears attached to four polyurethane pinch wheels that abut the hose. Spring tensioners control the wheel-to-hose pressure and are able to axially direct the hose at speeds of 1 to 80 feet per minute.




The hose drive is coupled to a hose collection reel via a motor driven reel axle. A layering arm extends from the axle and directs the hose onto an adjustable hub at the reel. The hose is preferably stacked in a single layer. A swivel at the opposite end of the reel axle supplies high-pressure water in the range of 3,000 psi to 50,000 psi to the hose.




The diameter of the hub at the hose reel can adjusted relative to an outer cage. The layering arm and hub cooperate to stack the hose in concentric layers relative to the longitudinal drive axis of the assembly to assure a balanced loading. The reel, axial hose drive and hose cleaner assemblies can be operated at rotational speeds in the range of 60 rpm to 650 rpm. The assembly is thereby able to clean tubes from ½ to 6-inch diameters at rates of 1 to 80 feet per minute.




Still other objects, advantages, distinctions and constructions of the invention will become more apparent from the following description with respect to the appended drawings. Similar components and assemblies are referred to in the various drawings with similar alphanumeric reference characters. Various features of the invention may also be configured with other features in different combinations. The description should therefore not be literally construed in limitation of the invention. Rather, the invention should be interpreted within the broad scope of the further appended claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective drawing shown in partial cutaway and exposing the various subassemblies of the high-pressure spray cleaning equipment of the invention.





FIG. 2

is a detailed perspective view to the hose cleaner and air-driven hose drive and wherein the spray head is also shown in cutaway in a typical heat exchanger tube.





FIG. 3

is an enlarged plan view of the hose drive assembly





FIG. 4

is a perspective view to the hose collection reel with a length of spray hose arranged on the hub and also showing length adjustable link arms and end hoops of the hub.





FIG. 5

is a perspective view to the aft end of the hose reel showing the adjustable link arms and end hoops of the outer cage.





FIG. 6

is a perspective view shown in partial section to an alternative hose collection reel having an outer cage and to which a number of removable upright strut plates are attached to accommodate differing hose lengths and diameters.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring to

FIG. 1

a perspective drawing is shown to the portable, high-pressure spray cleaning assembly


10


of the invention. The assembly


10


finds particular application for on-site cleaning of heat transfer tubes in commercial and industrial heat exchangers. A spray head


12


having a desired number of orifices


14


, reference

FIG. 2

, directs a number of high-pressure (e.g. 200 to 50,000 psi) streams of water against the bore walls of a heat transfer tube or pipe


16


to dislodge and wash scale and residue from the tube walls


16


. The spray head


12


is rotated and axially extended and retracted from the tube


16


to most advantageously direct the spray streams from the orifices


14


.




A suitable length of hose


18


is secured to the spray head


12


and is deployed and stored at a hose spool or collection reel assembly


20


. The hose


18


is constructed to withstand the normal anticipated working conditions and pressures. The hose


18


is typically constructed of several layers of water impermeable material in numerous wound wrappings and may contain wraps or bands of wire, KEVLAR and the like. The diameter of the hose


18


can be adjusted as desired (e.g. ⅛ to 1 inch) depending upon the application, diameter of tube


18


and desired working pressures.




The hose


18


is contained in a length of a flexible, tubular cover piece


22


that is secured to a hose washing assembly


24


. The hose


18


is free to slide and rotate within the cover piece


22


. The cover piece


22


particularly protects the hose


18


as an operator directs the assembly and hose


18


about the work site and as the hose


18


is manipulated by the operator and fitted to each tube


16


being cleaned.




A support frame


26


provides a number of wheels


28


and handles


30


that make the assembly


10


portable. Several stanchions


32


,


34


and


36


rise from the frame


26


to support a number of pillow block bearings


38


. A forward, hollow stub axle


40


and a partially hollow drive axle


42


are contained by the bearings


38


and permit rotation of a coupled axial hose drive assembly


44


and the hose reel


20


. The horizontal spacing between and vertical offset of the stanchions


32


-


36


can be adjusted depending upon the size and length of hose


18


that is being deployed.




With attention to

FIG. 2

, the hose cleaning assembly


24


extends forward of the stanchion


32


from the stub axle


40


. The hose cleaning assembly


24


essentially comprises a manifold


45


having bolted cylindrical sections head and backing pieces


46


and


48


that directs several low-pressure streams of water onto the outer walls of the hose


18


. A number of flow channels (not shown) are formed into head and backing pieces


46


and


48


that are secured with several fasteners


49


. A fitting


50


couples a water supply line


52


to the manifold


45


. The water is directed from a central bore


54


through which the hose


18


passes. One or more brushes


55


can be secured and concentrically aligned to the headpiece


46


and the hose


18


to scrub debris during hose cleaning.




The hose


18


is directed axially through the cleaning assembly


24


by the hose transport or drive assembly


44


. The hose drive assembly


44


is mounted to rotate between the stanchions


32


and


34


and is covered by a safety cage


45


. The hose reel


20


is mounted to rotate between the stanchions


34


and


36


. Each of the assemblies


20


,


24


and


44


are concentrically aligned to the center longitudinal drive axis of the assembly


10


and relative to which the hose


18


is particularly coaxially and concentrically aligned. Hose movement is thus balanced to the drive axis and the enhanced operating speeds are possible.




With attention to

FIGS. 2 and 3

, an air swivel


60


is secured to the forward end of a two-section, split drive frame


62


of the drive assembly


44


. The frame assembly


62


supports four polyurethane pinch-wheels


64


that grip the hose


18


. Adjusting bolts


66


and springs


68


control the tension or pinch pressure of the wheels


64


against the hose


18


. Two pairs of the pinch-wheels


64


(only two of which are shown) are arranged


1800


opposite each other to overly each other. The wheels


64


can also be positioned in other arrangements. The wheel material can also be varied as desired relative to the hose


18


to provide optimal friction and wear tolerance between the wheels


64


and hose


18


.




A hand-operated valve


70


controls airflow from an air supply


69


through the swivel


60


and to a pair of air driven motors


72


secured to the frame


62


. A drive axle


74


of each motor


72


is coupled to a drive gear


76


. Power is directed via a chain


78


to a pair of follower gears


80


that are coupled to axles


82


that are secured to each drive wheel


64


. The valve


70


is controlled to bi-directionally direct the hose


18


with a reciprocating motion at a desired axial speed to achieve proper tube cleaning, hose deployment and collection. A coupler


84


at the aft end of the frame


62


secures the frame


62


to the drive axle


42


. Although an air powered transport drive is presently used, hydraulic, electric or other types of power drives can be adapted to the assembly


44


.




The rate of movement of the hose


18


through the hose drive assembly


44


is regulated in relation to the rotational speed of the reel


20


to assure that the hose


18


is synchronously extracted and stacked to avoid kinking, strain or slack at the reel


20


. The relative speeds also take into account the operating rigidity of the hose


18


, which is relatively stiff when placed under the pressures discussed herein. Any of the latter conditions can unbalance the assembly


10


. During a cleaning stroke, when the hose


18


is extended into a tube


16


, the assembly


44


and reel


20


rotate at a slower speed. During hose retraction from the cleaned tube


16


, when there is relatively little resistance to motion, the assembly


44


and reel


20


are rotated faster. The operator via the valve


70


manually controls the relative rates of rotation.




The relative rates are established empirically as required to meet the working conditions by regulating the air pressure at the valve


70


in relation to the constant drive power provided to the reel


20


. An electric motor and V-belt/pulley transmission determine the rotational speed of the reel


20


which are discussed in more detail below. A variety of automatic control assemblies can also be adapted to the assembly


10


to obtain automatic speed regulation, such as by monitoring the condition of the hose


18


at the reel


20


via appropriate sensors. Sensor feedback can be directed to the speed regulators at the assembly


44


and reel


20


.




For jobs requiring multiple assemblies


10


, cleaning time can be reduced and equipment operation improved by coupling the several assemblies


10


to the single air supply


69


and operating the assemblies


10


in complementary fashion. That is, as the hose


18


of one assembly


10


is directed in a cleaning stroke, the hose


18


of another assembly


10


is collected. The demand on the air supply is therefore substantially continuous.




With attention to

FIG. 4

, the hose


18


passes through a bore


86


at the forward end of the drive axle


42


and a bore


88


of a layering arm


90


that extends from the side of the axle


42


. The layering arm


90


directs the hose


18


onto a center hub


92


of the reel


20


. The hub


92


is concentrically positioned relative to an outer cage


94


such that the hose


18


is deposited in a single, layered coil that is concentric to the drive axis of the assembly


10


. The changing weight of the hose


18


and contained liquid is thus dynamically balanced to the assembly


10


. The reel assembly


20


can also be constructed to provide for multiple side-by-side coil wraps. For example, the diameter of the hub


92


may be constructed to expand and contract dynamically via centrifugal force and/or automatically with a controlled linkage. The arm


90


can also be mounted to pivot relative to the hub


92


to control layering. In the latter regard, the arm


90


can be hinged to pivot at the axle


42


and the linkage arm


93


can be constructed in two telescoping sections


89


,


91


.





FIG. 4

also depicts adjustment features of the reel assembly


20


. That is, the fore and aft diameters of the hub


92


can be adjusted at the interconnected, telescoping hoop pieces


96


,


97


and length adjustable spoke pieces


98


,


99


. Proper adjustment of the hub


92


can be arranged to be cylindrical or provide a taper. The hub


92


is presently constructed to taper inward as it extends forward and accommodates a single, stacked coil of hose


18


.




The hoops


96


,


97


and spoke pieces


98


,


99


are adjusted in concert with a number of fasteners


100


. Slots


102


in the spoke pieces


98


,


99


overlap the fasteners


100


. The outer cage


94


can also be constructed with adjustable hoops


101


,


103


and spoke pieces


104


,


105


relative to slots


102


and fasteners


100


as shown by representative example at

FIGS. 4 and 5

. Still other adjustable arrangements at the layering arm


90


and hub


92


can be provided to balance multiple coils, yet maintain a concentric assembly.





FIG. 5

depicts a drive pulley


110


that is secured to the aft end of drive axle


42


. Rotational drive power is supplied to the axle


42


from another pulley attached to via a drive motor


114


and belt


116


. The rotational speed can be varied as desired by adjusting the relative diameters of the motor pulley to the drive pulley


110


. The assembly


10


has been operated at speeds in excess of 400 rpm and approaching 650 rpm without experiencing vibration. This is in contrast to maximum operating speeds of 60 rpm for competitive assemblies.




A bore


118


at the aft end of the drive axle


42


is coupled to a swivel


120


and a high-pressure water source


121


. Water is directed through the swivel


120


, axle


42


, a stub pipe


122


and coupler


124


to the hose


18


. The working spray pressures can be varied as desired. Presently, pressures in the range of 4,000 psi to 36,000 psi are preferred when cleaning tubes found in boilers and evaporators.





FIG. 6

discloses an alternative reel assembly


120


that can be adjusted with relative ease to accommodate hoses


16


of different diameter and length. The reel assembly


120


provides a base


122


that is defined by a number of annular bands


124


and a center collar piece


126


that mounts to the axle


42


. A number of inner and outer cage bands


127


and


128


are vertically offset from the base


122


. The base and cage bands


124


,


126


and


128


are coupled (e.g. welded) to a number of upright, planar strut plates


130


at notches


132


let into the peripheral edges of the plates


130


.




Only one strut plate


130


is shown, but it is to be appreciated that several other identical plates


130


are mounted to align with notches


134


at each of the bands


124


and mate with the bands


124


,


127


and


128


. The assembly


120


provides for eight plates


130


, but the number of plates


130


can be varied as desired.




A hose collection channel


136


is defined at each plate


130


between an outer arm


135


and inner hub


140


. A number of coils of the hose


18


are shown as they appear when layered in the channel


136


. The channels


136


project at an acute angle relative to the base


122


as they extend inward toward the collar


126


to define a tapered hose storage space.




The assembly


120


can be constructed of a variety of materials, although aluminum is presently preferred to reduce weight. Weight relief holes


142


are also provided in the plates


130


.




The channel


136


is constructed oversized to nominally accommodate hoses from ¼ to 2-inch diameters. When a smaller diameter hose


18


is being used, a frustum shaped spacer


144


is also mounted in the channel to take-up space and assure the hose is layered in uniform coils.




The strut plates


130


thus define several vertical ribs that collectively capture and contain the hose


18


in relation to the layering arm


90


. The reel assembly


120


can be adapted to accommodate hoses


16


of different diameter and length upon attaching an appropriate spacer


144


.




While the invention has been described with respect to several assemblies and considered improvements or alternatives thereto, still other constructions may be suggested to those skilled in the art. For example, the hose washing assembly


24


, axial drive assembly


40


and/or adjustable reel assembly


20


can be used in combination or can be provided in other cleaning system arrangements. The cleaning equipment can include other controls for adjusting the rotational and axial operating speeds. Sundry safety controls can also be provided. The foregoing description should therefore not be literally construed and should instead be construed to include all those embodiments within the spirit and scope of the following claims.



Claims
  • 1. Apparatus for cleaning residue, comprising:a) a hose having a spray tip containing a plurality of orifices; b) a water source coupled to said hose capable of delivering water to said hose at a pressure in excess of 1,000 psi; and c) a framework supporting i) transport means for extending and retracting said hose with a reciprocating motion, ii) reel means for collecting and distributing said hose along a longitudinal drive axis common to each of said transport and reel means and including means for stacking said hose into coils aligned one on top of the other and concentric to said drive axis and iii) means for simultaneously rotating said transport means and said reel means, whereby said hose and spray tip are rotated as they extend and retract along a bore of said tube to clean said residue.
  • 2. Apparatus as set forth in claim 1 wherein said reel means includes a hollow arm that extends from said longitudinal axis and though which arm said hose extends and is directed to and from a hub mounted concentric to said longitudinal drive axis.
  • 3. Apparatus as set forth in claim 2 wherein said hose is collected at a tapered surface of said hub that extends at an acute angle relative to the longitudinal drive axis.
  • 4. Apparatus as set forth in claim 2 wherein said hub exhibits a frustum shape and is concentrically mounted within a surrounding housing.
  • 5. Apparatus as set forth in claim 2 wherein said reel means includes a plurality of members mounted in length adjustable relation to each other to vary the diameter of said hub.
  • 6. Apparatus as set forth in claim 2 wherein said transport means includes a plurality of pinch rollers mounted to contact said hose and control means for directing the reciprocating axial movement of said hose in synchrony with the rotational movement of said hose.
  • 7. Apparatus as set forth in claim 6 wherein said pinch rollers are driven by air operated motors and a chain linkage and said control means comprises an air valve.
  • 8. Apparatus as set forth in claim 2 wherein said arm is mounted to pivot relative to said hub such that said hose can be directed onto said hub in a plurality of stacked adjacent coils.
  • 9. Apparatus as set forth in claim 2 wherein said reel means includes a plurality of planar members mounted to a plurality annular bands, wherein a tapered channel extends in each planar member at an acute angle relative to the longitudinal drive axis and wherein said hose is directed into and from said channel.
  • 10. Apparatus as set forth in claim 1 including cleaning means mounted concentric to said longitudinal drive axis for cleaning the external surface of said hose.
  • 11. Apparatus as set forth in claim 10 including a brush mounted concentric to said longitudinal drive axis for cleaning the external surface of said hose.
  • 12. Apparatus as set forth in claim 10 including a manifold mounted concentric to said longitudinal drive axis and coupled to a water source and having a plurality of outlets for directing spray to cleaning the external surface of said hose.
  • 13. Apparatus as set forth in claim 1 wherein a motor, drive belt and a plurality of pulleys determine the speed of rotation of said reel means.
  • 14. Apparatus for cleaning residu , comprising:a) a hose having a spray tip containing a plurality of orifices; and b) a water source coupled to said hose and delivering water thereto at a pressure in the range of 1,000 to 60,000 psi; and c) a frame work supporting a reel having a hub concentrically mounted to an outer housing, wherein said reel is mounted to rotate at said framework, arm means having a hollow bore for directing said hose onto said hub in stacked coils, and means for rotating said reel means and said hose as said hose is directed to and from said reel means, whereby said hose and spray tip are rotated as they extend and retract along a bore of said tube to clean said residue.
  • 15. Apparatus as set forth in claim 14 wherein said hub exhibits a frustum shape and including a manifold mounted concentric to said hose and coupled to a water source and having a plurality of outlets for directing spray to cleaning the external surface of said hose.
  • 16. Apparatus for cleaning residue, comprising:a) a hose having a spray tip containing a plurality of orifices; b) a water source coupled to said hose capable of delivering water to said hose at a pressure in the range of 1,000 to 60,000 psi; c) a framework supporting i) transport means for extending and retracting said hose with a reciprocating motion, ii) reel means for collecting and distributing said hose along a longitudinal drive axis common to each of said transport and reel means and including a hollow arm that extends at an acute angle relative to said longitudinal axis and though which arm said hose extends and is directed to and from a tapered surface of a hub mounted concentric to said longitudinal drive axis such that said hose is stacked in a plurality of coils aligned one on top of the other and concentric to said drive axis iii) means for simultaneously rotating said transport means and said reel means, whereby said hose and spray tip are rotated as they extend and retract along a bore of said tube to clean said residue.
  • 17. Apparatus as set forth in claim 16 including a manifold mounted to rotate concentric to said longitudinal drive axis and coupled to a water source and having a plurality of outlets for directing spray to cleaning the external surface of said hose.
  • 18. Apparatus as set forth in claim 16 wherein a motor, drive belt and a plurality of pulleys determine the speed of rotation of each of said transport and said reel means.
  • 19. Apparatus as set forth in claim 16 wherein said transport means includes a plurality of pinch rollers mounted to contact said hose, means for controlling the contact force of said rollers with said hose and air controlled means for directing the reciprocating axial movement of said hose in synchrony with the rotational movement of said hose.
  • 20. Apparatus for cleaning residue, comprising:a) a hose having a spray tip containing a plurality of orifices; b) a water source coupled to said hose capable of delivering water to said hose at a pressure in the range of 1,000 to 60,000 psi; and c) a framework supporting i) transport means for extending and retracting said hose with a reciprocating motion and including a plurality of pinch rollers mounted to contact said hose, means for controlling the contact force of said rollers with said hose and air controlled means for directing the reciprocating axial movement of said hose, ii) reel means for collecting and distributing said hose along a longitudinal drive axis common to each of said transport and reel means and including a hollow arm that extends at an acute angle relative to said longitudinal drive axis and though which arm said hose extends and is directed to and from a tapered surface of a hub mounted concentric to said longitudinal drive axis such that said hose is stacked in a plurality of coils aligned one on top of the other and concentric to said drive axis, iii) means for simultaneously rotating said transport means and said reel means in synchrony with the rotational movement of said hose, and iv) a manifold mounted to said framework to rotate concentric to said longitudinal drive axis and coupled to a water source and having a plurality of outlets for directing spray to clean the external surface of said hose, whereby said hose and spray tip are rotated as they extend and retract along a bore of said tube to clean said residue.
US Referenced Citations (7)
Number Name Date Kind
3077314 Caperton Feb 1963 A
3370599 Ciaccio Feb 1968 A
3399415 Hammond et al. Sep 1968 A
5031263 Babb et al. Jul 1991 A
5193242 Irwin Mar 1993 A
5579726 Finucane Dec 1996 A
5996159 Irwin Dec 1999 A
Non-Patent Literature Citations (3)
Entry
Gardner Denver Operator's Manual—100,000 PSI “V” Drum (Rotary Line Cleaner), 16 Pages.
Jetting Systems, Inc. —Flex Lancer, Advertisement, 1Page.
Jetting Systems, Inc.—Rotary Flex Lancer, Advertisement, 1Page.