This invention relates to high production rock ripping tools, and more particularly to bucket type excavation and ripping tools for excavators and backhoes.
Excavation tools of the types described herein are typically mounted to conventional excavators or backhoes having a dipper stick, with the tool mounted on the dipper stick. The tools are employed for excavation of difficult-to-excavate intermediate substrate, e.g. substrate between the category of loose soil or loose gravel and the category of solid rock. Attempts have been made to develop tools that are effective and efficient in excavating intermediate substrate. For example, an excavation tool for the removal of substrate is described in Horton U.S. Pat. No. 7,739,815, and a multi-tooth bucket approach where several teeth are mounted on the back side of a bucket is described in Arnold U.S. Pat. Nos. 4,279,085 and 4,457,085. The complete disclosures of all of these references are incorporated here by reference. Each of these approaches has been found to have drawbacks, and none is seen to be particularly efficient or effective for excavation of intermediate substrate with high production, wide width, high capacity buckets.
According to one aspect of the disclosure, a rock ripping tool mountable to an arm of an excavation machine for ripping engagement with a substrate comprises a tool body mounted for rotation from the arm, a pair of side plates and a curved back plate mounted to the tool body, a bottom plate having an angled front leading edge and mounted to span a space between the side edge plates, and a plurality of teeth comprising a first set of two or more teeth mounted to the angled front leading edge such that the tips of each tooth of the first set of two or more teeth lies on an arc having a first radius, a second set of one or more teeth mounted to at least one of the bottom plate and/or the back plate, such that the tips of each tooth of the second set of one or more teeth lies on an arc having a second radius greater than the first radius.
Implementations of this aspect of the disclosure may include one or more of the following additional features. The first radius and the second radius intersect at a common axis of the ripping tool. The rock ripping tool comprises at least a third set of one or more teeth mounted to the bottom plate and/or the back plate, such that the tips of each tooth of the third set of one or more teeth lies on an arc having a third radius greater than the first radius and greater than the second radius. Each tooth of the plurality of teeth is angled such that an angle between a line bisecting the tooth and a line perpendicularly bisecting the respective arc where the tip of the tooth lies on the arc is at an optimum angle. Each tooth in the plurality of teeth is at the optimum angle. The optimum angle is in the range of about 35° to about 70°, e.g. the optimum angle is approximately 50°. The second set of teeth rips the substrate in a path between the paths of the teeth of the first set of two or more teeth. The side plates can have leading edges that define cutting profile edges. A lower portion of the back plate defines an outer surface lying on a radius having a center coaxial with at least one of the first radius and the second radius. Each tooth of the plurality of teeth is configured to engage the substrate sequentially and individually from each other tooth.
According to another aspect of the disclosure, a rock ripping tool having a tool body and mountable to an arm of an excavation machine for ripping engagement with a substrate comprises a first set of teeth comprising at least two teeth mounted to the tool body such that the tips of each of the at least two teeth of the first set of teeth lies on an first arc having a first radius, and a second set of teeth comprising at least one tooth mounted to the tool body such that the tip of each tooth of the at least one tooth of the second set of teeth lies on an second arc having a second radius greater than the first radius, wherein each tooth of the plurality of teeth is configured to engage the substrate independently from each tooth in the first set of teeth and each tooth in the second set of teeth.
Implementations of this aspect of the disclosure may comprise at least a third set of one or more teeth mounted to the bottom plate and/or the back plate, such that the tips of each tooth in the third set of one or more teeth lies on an arc having a third radius greater than the first radius and greater than the second radius.
Advantages of the new rock ripping tool include that the tool can have a relatively wider bucket, e.g. to increase production without increasing the number of teeth on the front leading edge. Rather, by providing teeth at the back of the bucket, i.e. behind the leading edge, deeper cuts can be made with each pass, thus reducing or eliminating grooves in the substrate material, while keeping a relatively large side view engagement angle between the teeth, assuring one tooth at-a-time engagement. The back teeth are arranged to cut relatively deeper, i.e. as compared to the teeth at the leading edge, with increased radii, also resulting in increased production. Since the number of teeth is relatively increased, the wear on each tooth is proportionately reduced. The rock ripping tool of the disclosure is designed in particular for use in ripping medium hard rock.
The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and in the description below. Other features, objects and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring first to
Referring also to
Referring, e.g., to
The side edge plates 38, 40 can be beveled at their front aspect, e.g. to provide side cutting edges, and are shaped, thus providing a rearward side leading edge 39 and tooth 62C and a forward side leading edge 41 and tooth 62A that are spaced apart and approximately parallel to each other along the axis, A, e.g. as shown in
The plate leading edges 50, 52 of front leading edge 54 are also beveled to provide forward bottom cutting edges for cutting the packed substrate S. Additionally, the plate leading edges 50, 52 of front leading edge 54 can be scalloped, e.g. to help slice through the hard packed substrate, as shown, e.g., in
Referring further to
Referring to
Each set of teeth 60, 70, 80 is angled such that an angle Z1, Z2, Z3 for each set of teeth, being the angle between the bisection of each tooth and the radii R1, R2, R3 of the respective arcs 66, 76, 86, is optimized to provide maximum penetration in the substrate. That is, all of the teeth are angled such that angles Z1, Z2, Z3 are equalized to an optimum ripping angle, Z. The optimum angle, Z, depends on tooth manufacture, but typically lies in the range of about 35° to about 70°, or approximately 50°.
Referring to
The next two teeth 72A, 72B, i.e. of second tooth set 70, are positioned to be laterally spaced apart from each other generally along the axis, A, creating intervening gap 78 between the two teeth. In this implementation, the teeth 72A, 72B are equally spaced apart and span the width of the tool 12. The two teeth 72A, 72B are also laterally positioned between the front three teeth 62A, 62B, 62C, i.e. in the intervening gaps 68 between the teeth of the first tooth set 60.
The rear tooth 82A, i.e. of the third tooth set 80, is positioned near the lateral center of the tool, i.e., within intervening gap 78 between teeth 72A, 72B.
Referring in particular to
The edge plates 38, 40 with the bottom plate 43, consisting of rear bottom plate segment 44, mid-bottom plate segment 46, and front bottom plate segment 48, provide a bucket volume, V (
The high production rock ripping tool of
During operation, the high production rock ripping tool 12 is pivoted all the way back at the end of the dipper stick 24, and extended out as far forward of the chassis 14 as possible. The tool 12 is then lowered until the first tooth 62A of the first tooth set 60 engages the substrate, S. The rock ripping tool 12 is then drawn downward, and in ripping motion, the second tooth, i.e. the tooth 62B next adjacent to tooth 62A, engages the substrate. Looking at the first tooth and the second tooth together, the first tooth engages with the hard packed substrate with full breakout force. When the second tooth engages the substrate, some of the load is shared with the first tooth. As the tool is rolled forward, the third tooth 62C of first tooth set 60 then engages the substrate, S, and the load is shared between the several teeth that have engaged with the substrate. Throughout a good portion of the digging of the medium hard rock substrate, the tool 12 will have only one or two teeth engaged at any one instant due to the rolling operation of the bucket, thus always providing high forces for simplifying the excavation of the hard material.
Referring to
The next two lower profiles 79A, 79B represent the next two teeth 72A, 72B of the second tooth set 70 passing through, ripping out the grooves with a deeper cut of relatively larger radius, removing the sections of material 79A, 79B to a depth 77. The two teeth 72A, 72B also remove the raised grooves of material 104 in gaps 68 while leaving a new raised portion 106 between the sections of material 79A, 79B, in the gap 78. The bottom shape or profile 89A represents the final, deepest cut, performed by rear tooth 82A of the third tooth set 80, with the relatively largest radius R3, which removes material to the lowest depth, 87, while also removing the raised groove of material 106. Once all the teeth have engaged and cut through the substrate, S, a staggered form of a “V” shape or profile has been cut into the substrate material (e.g., rather than a flat bottom).
The rear tooth can also be used as a pick when the tool is in the rolled forward position.
A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. For example, six teeth are described in one implementation of a high production rock ripping tool of this disclosure. In other implementations, more than or less than six teeth may be employed, positioned upon the surface of the tool. For example, four teeth may be positioned in the first tooth set 60 on the front leading edge 54. In this implementation, the number of teeth in the second group 70 could still be two, and the third tooth set 90 could still include a single tooth in the center, for a total of seven teeth.
Also, other arrangements of the teeth in the sets of teeth may be employed. For example, although in the implementation of the disclosure shown in the drawings the right outboard tooth 62A is forward, left outboard tooth 62C is rearward, and intermediate or central tooth 62B is in the middle, other arrangements may be employed according to the disclosure. For example, the center tooth 62B could be the first engaging tooth, with the right tooth 62A engaging next, followed by the left tooth 62C.
Referring to
Also, in the implementation of the disclosure shown in the drawings, the high production rock ripping tool 12 is represented as being a bucket; however, other implementations are also possible. For example, rather than a closed bucket with side and bottom plates supporting attached teeth, a set of shanks could instead be attached to the tool body upper portion 34 in an arrangement to rip the substrate, S. For example, the teeth in a first set of staggered teeth 60 positioned relative to the axes of rotation and to the other teeth as described above may each be mounted to the end region of a shank. A second set of staggered teeth 70 that rip between, and deeper than, the first set 60 may also be mounted on shanks, and then a final tooth or set 80 positioned to rip between, and deeper than, the second set 70 would be mounted on still another shank. Each set of subsequent ripping teeth would rip on a relatively larger radius between the previous teeth, e.g. as described above.
Accordingly, other embodiments are within the scope of the following claims.
This application claims priority from U.S. Provisional Application No. 61/946,203, filed Feb. 28, 2014.
Number | Name | Date | Kind |
---|---|---|---|
3724899 | Clark | Apr 1973 | A |
4037337 | Hemphill | Jul 1977 | A |
4077529 | Leyrat | Mar 1978 | A |
4133121 | Hemphill | Jan 1979 | A |
4279085 | Arnold | Jul 1981 | A |
4457085 | Arnold | Jul 1984 | A |
7086184 | Archuleta, Jr. | Aug 2006 | B2 |
7322133 | Horton | Jan 2008 | B2 |
7739815 | Horton | Jun 2010 | B2 |
8966791 | Horton | Mar 2015 | B2 |
20070180743 | Horton | Aug 2007 | A1 |
20080010870 | Horton | Jan 2008 | A1 |
20110126434 | Horton | Jun 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20150247302 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61946203 | Feb 2014 | US |