This application generally relates to the field of drilling. In particular, this application discusses a drilling system for drilling core samples that can increase drilling productivity by reducing the amount of time needed to place and retrieve a core sample tube (or sample tube) in a drill string.
Drilling core samples (or core sampling) allows observation of subterranean formations within the earth at various depths for many different purposes. For example, by drilling a core sample and testing the retrieved core, scientists can determine what materials, such as petroleum, precious metals, and other desirable materials, are present or are likely to be present at a desired depth. In some cases, core sampling can be used to give a geological timeline of materials and events. As such, core sampling may be used to determine the desirability of further exploration in a particular area.
In order to properly explore an area or even a single site, many core samples may be needed at varying depths. In some cases, core samples may be retrieved from thousands of feet below ground level. In such cases, retrieving a core sample may require the time consuming and costly process of removing the entire drill string (or tripping the drill string out) from the borehole. In other cases, a faster wireline core drilling system may include a core retrieval assembly that travels (or trips in and out of) the drill string by using a wireline cable and hoist.
While wireline systems may be more efficient than retracting and extending the entire drill string, the time to trip the core sample tube in and out of the drill string still often remains a time-consuming portion of the drilling process. The slow rate of the core retrieval assembly of some conventional wireline tripping systems may be cause by several factors. For example, the core retrieval assembly of some wireline systems may include a spring-loaded latching mechanism. Often the latches of such a mechanism may drag against the interior surface of the drill string and, thereby, slow the tripping of the core sample tube in the drill string. Additionally, because drilling fluid and/or ground fluid may be present inside the drill string, the movement of many conventional core retrieval assemblies within the drill string may create a hydraulic pressure that limits the rate at which the core sample tube may be tripped in and out of the borehole.
This application describes a high productivity core drilling system. The system includes a drill string, an inner core barrel assembly, an outer core barrel assembly, and a retrieval tool that connects the inner core barrel assembly to a wireline cable and hoist. The drill string comprises multiple variable geometry drill rods. The inner core barrel assembly comprises a latching mechanism that can be configured to not drag against the interior surface of the drill string during tripping. In some instances, the latching mechanism may be fluid-driven and contain a detent mechanism that retains the latches in either an engaged or a retracted position. The inner core barrel assembly also comprises high efficiency fluid porting. Accordingly, the drilling system significantly increases productivity and efficiency in core drilling operations by reducing the time required for the inner core barrel assembly to travel through the drill string.
To further clarify the advantages and features of the drilling systems described herein, a particular description of the systems will be rendered by reference to specific embodiments illustrated in the drawings. These drawings depict only some illustrative embodiments of the drilling systems and are, therefore, not to be considered as limiting in scope. The same reference numerals in different drawings represent the same element, and thus their descriptions will be omitted. The systems will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The following description supplies specific details in order to provide a thorough understanding. Nevertheless, the skilled artisan would understand that the drilling systems and drilling systems and associated methods can be implemented and used without employing these specific details. Indeed, the systems and associated methods can be placed into practice by modifying the systems and associated components and methods and can be used in conjunction with any existing apparatus, system, component, and/or technique conventionally used in the industry. For instance, while the drilling systems are described as being used in a downhole drilling operation, they can be modified to be used in an uphole drilling operation. Additionally, while the description below focuses on a drilling system used to trip a core barrel assembly into and out of a drill string, portions of the described system can be used with any suitable downhole or uphole tool, such as a core sample orientation measuring device, a hole direction measuring device, a drill hole deviation device, or any other suitable downhole or uphole object.
The drill string may include several sections of tubular drill rod that are connected together to create an elongated, tubular drill string. The drill string may have any suitable characteristic known in the art. For example,
The drill rod sections may also have any suitable cross-sectional wall thickness. In some embodiments, at least one section of the drill rod in the drill string may have a varying cross-sectional wall thickness. For example,
The cross-sectional wall thickness of the drill rod may vary any suitable amount. For instance, the cross-sectional wall thickness of the drill rod may be varied to the extent that the drill rod maintains sufficient structural integrity and remains compatible with standard drill rods, wirelines, and/or drilling tools. By way of example, a drill rod with an outer diameter (OD) of about 2.75 inches may have a cross-sectional wall thickness that varies about 15% from its thickest to its thinnest section. In another example, a drill rod with an OD of about 3.5 inches may have a cross-sectional wall thickness that varies about 22% from its thickest to its thinnest section. In yet another example, a drill rod with an OD of about 4.5 inches may have a cross-sectional wall thickness that varies about 30% from its thickest to its thinnest section. Nevertheless, the cross-sectional wall thickness of the drill rods may vary to a greater or lesser extent than in these examples.
The varying cross-sectional wall thickness of the drill rod may serve many purposes. One purpose is that the varying wall thickness may allow the inner core barrel to move through the drill string with less resistance. Often, the drilling fluid and/or ground fluid within the drill string may cause fluid drag and hydraulic resistance to the movement of the inner core barrel. However, the varying inner diameter of drill string 110 may allow drilling fluid or other materials (e.g., drilling gases, drilling muds, debris, air, etc.) contained in the drill string 110 to flow past the inner core barrel in greater volume, and therefore to flow more quickly. For example, fluid may flow past the inner core barrel 200 as the inner barrel passes through the wider sections (e.g., near the middle 124 of a section 120) of the drill string 110 during tripping.
In some embodiments, the drilling system comprises a mechanism for retaining the inner core barrel at a desired distance from the drilling end of the outer core barrel. Although any mechanism suitable for achieving the intended purpose may be used,
The landing ring and landing shoulder may have any feature that allows the inner core barrel to “seat” at a desired distance from the drilling end of drill string 110. For example, the landing shoulder may be slightly larger than the outer diameter of the inner core barrel and the core sample tube. In another example, the landing ring may have a smaller inner diameter than the smallest inner diameter of any section of drill rod. Thus, the reduced diameter of the landing ring may be wide enough to allow passage of the sample tube, while being narrow enough to stop and seat the landing shoulder of the inner core barrel in a desired drilling position.
The annular space between the outer perimeter of the landing shoulder and the interior surface of the drill string may be any suitable width. In some instances, the annular space may be thin because a thin annular space may allow the sample tube to have a larger diameter. In other instances, though, because a thin annular space may prevent substantial passage of fluid as the inner core barrel trips through the drill string, the landing shoulder may comprise any suitable feature that allows for increased fluid flow past the landing shoulder. In these other instances,
The drill string 110 may be oriented at any angle, including between about 30 and about 90 degrees from a horizontal surface, whether for an up-hole or a down-hole drilling process. Indeed, when the system 100 used with a drilling fluid in a downhole drilling process, a downward angle may help retain some of the drilling fluid at the bottom of a borehole. Additionally, the downward angle may allow the use of a retrieval tool and cable to trip the inner core barrel from the drill string.
The inner core barrel may have any characteristic or component that allows it to connect a downhole object (e.g., a sample tube) with retrieval tool so that the downhole object can be tripped in or out of the drill string. For example,
The retrieval point 280 of the inner core barrel 200 may have any characteristic that allows it to be selectively attached to any retrieval tool, such as an overshot assembly and a wireline hoist. For example,
The upper core barrel 210 may have any suitable component or characteristic that allows the core sample tube to be positioned for core sample collection and to be tripped out of the drill string. For example,
The inner sub-assembly 230 and the outer sub-assembly 270 may have any component or characteristic suitable for use in an inner core barrel. For instance,
In some embodiments, the upper core barrel comprises a fluid control valve. Such a valve may serve many functions, including providing control over the amount of drilling fluid that passes through the inner core barrel during tripping and/or drilling. Another function can include partially controlling the latching mechanism, as described herein.
The fluid control valve may have any characteristic or component consistent with these functions. For example,
In some embodiments, the upper core barrel 210 can contain an inner channel 242 that allows a portion of the drilling fluid to pass through the upper core barrel 210. While fluid ports may be provided along the length of the inner core barrel 200 as desired,
In some embodiments, the upper core barrel also comprises a latching mechanism that can retain the core sample tube in a desired position with respect to the outer core barrel while the core sample tube is filled. In order to not hinder the movement of the inner core barrel within the drill string, the latching mechanism can be configured so that the latches do not drag against the drill string's interior surface. Accordingly, this non-dragging latching mechanism can be any latching mechanism that allows it to perform this retaining function without dragging against the interior surface of the drill string during tripping. For instance, the latching mechanism can comprise a fluid-driven latching mechanism, a gravity-actuated latching mechanism, a pressure-activated latching mechanism, a contact-actuated mechanism, or a magnetic-actuated latching mechanism. Consequently, in some embodiments, the latching mechanism can be actuated by electronic or magnetic sub-systems, by valve works driven by hydraulic differences above and/or below the latching mechanism, or by another suitable actuating mechanism.
The latching mechanism may also comprise any component or characteristic that allows it to perform its intended purposes. For example, the latching mechanism may comprise any number of latch arms, latch rollers, latch balls, multi-component linkages, or any mechanism configured to move the latching mechanism into the engaged position when the landing shoulder of the inner core barrel is seated against the landing ring.
By way of non-limiting example,
In some embodiments, the latching mechanism may also comprise a detent mechanism that helps maintain the latching mechanism in an engaged or retracted position. The detent mechanism may help hold the latch arms in contact with the interior surface of the drill string during drilling. The detent mechanism may also help the latch arms to stay retracted so as to not contact and drag against the interior surface of the drill string during any tripping action.
The detent mechanism may contain any feature that allows the mechanism to have a plurality of detent positions.
In some preferred embodiments, the latching mechanism may cooperate with the fluid control valve so as to be a fluid-driven latching mechanism. Accordingly, the fluid control valve 212 can operate in conjunction with the latching mechanism 220 so as to allow the inner core barrel 200 to be quickly and efficiently tripped in and out of the drill string 110. The latching mechanism and the fluid control valve may be operatively connected in any suitable manner that allows the fluid control valve to move the latching mechanism to the engaged position as shown in
According to some embodiments, the lower core barrel comprises a check valve 256 that allows fluid to flow from the core sample tube to the inner channel, but does not allow fluid to flow from the inner channel to the core sample tube. Accordingly, the check valve may allow fluid to pass into the inner channel and then through the inner core barrel when the inner core barrel is being tripped into the drill string and when core sample tube is empty. In this manner, fluid resistance can be lessened so the inner core barrel can be tripped into the drill string faster and more easily. On the other hand, when the inner core barrel is tripped out of the drill string, the check valve can prevent fluid from pressing down on a core sample contained in core sample tube. Accordingly, the check valve may prevent the sample from being dislodged or lost. And when the check valve prevents fluid from passing through the lower core barrel and into the core sample tube, the fluid may be forced to flow around the outside of the core sample tube and the lower core barrel. Although any unidirectional valve may serve as the check valve,
In some embodiments, the lower core barrel 240 may comprise a bearing assembly that allows the core sample tube to remain stationary while the upper core barrel and drill string rotate. The lower core barrel may comprise any bearing assembly that operates in this manner. In the embodiments shown in
The lower core barrel may be connected to the core sample tube in any suitable manner.
In some embodiments, the lower core barrel may also comprise one or more compression washers that restrict the flow of drilling fluid once the core sample tube is full, or once a core sample is jammed in the core sample tube. The compression washers (254 shown in
As described above, the inner sub-assembly 230 can move axially with respect to the outer sub-assembly 270. In some embodiments, this movement can cause the latching mechanism to move between the retracted and the engaged positions as illustrated in
When the landing shoulder of the inner core barrel reaches the landing ring in the drill string, the inner core barrel can be prevented from moving closer to the drilling end of the outer core barrel. Because the landing shoulder can be in close tolerance with the interior surface of the drill string, drilling fluid may be substantially prevented from flowing around the landing shoulder 140. Instead, the drilling fluid can travel through the inner core barrel 200 (e.g., via fluid ports 217B and the inner channel 242). Thus, the fluid can flow and press against the valve member 215. The slot 214 may then allow the valve member 215 to move axially so as to press into and past the fluid ring 211 until the slot 214 engages pin 216.
Once the core sample tube is filled as desired, the drilling process may be stopped and the core sample can be tripped out of the drill string. To retrieve the core sample, the retrieval point 280 is pulled towards earth's surface by a retrieval tool 300 connected to a wireline cable 310 and hoist (not shown). The pulling force on the retrieval point 280 (and hence the pulling force on the outer sub-assembly 270) may be resisted by the engaged latching mechanism (e.g., mechanism 220) and the weight of the core sample in the core sample tube. These resisting forces may cause the inner sub-assembly 230 to move with respect to the outer sub-assembly 270 so that the detent mechanism 234 moves from the engaged detent position 235 (as shown in
As mentioned above, the movement of the inner sub-assembly 230 may force the latching mechanism 220 into a retracted position, as shown in
In some variations of the described system, one or more of the various components of the inner core barrel may be incorporated with a variety of other downhole or uphole tools and/or objects. For instance, some form of the non-dragging latching mechanism, such as the fluid-driven latching mechanism with the detent mechanism, may be incorporated with a ground or hole measuring instrument or a hole conditioning mechanism. By way of example, any in-hole measuring instrument assembly may comprise a fluid-driven latching mechanism, such as that previously described. In this example, the assembly may be tripped into the drill string and stopped at a desired position (e.g., at the landing ring). Then, as fluid applies pressure to the fluid control valve in the assembly, the latching mechanism can be moved to the engaged position in a manner similar to that described above.
The embodiments described in connection with this disclosure are intended to be illustrative only and non-limiting. The skilled artisan will recognize many diverse and varied embodiments and implementations consistent with this disclosure. Accordingly, the appended claims are not to be limited by particular details set forth in the above description, as many apparent variations thereof are possible without departing from the spirit or scope thereof.
This patent application is a continuation application of U.S. patent application Ser. No. 12/528,949, filed Aug. 27, 2009, which was filed as a 35 U.S.C. §371 national phase application of International Application No. PCT/US2008/055656, filed Mar. 3, 2008, which claims benefit of U.S. Provisional Patent Application No. 60/892,848, filed Mar. 3, 2007. The contents of each of the above-referenced applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1643730 | Wild | Sep 1927 | A |
2510865 | Cooper | Jun 1950 | A |
2521886 | Walker | Sep 1950 | A |
2829868 | Pickard | Apr 1958 | A |
3092191 | Austin | Jun 1963 | A |
3103981 | Harper | Sep 1963 | A |
3115188 | Cochran | Dec 1963 | A |
3126064 | Miller | Mar 1964 | A |
3225845 | Koontz | Dec 1965 | A |
3333647 | Karich et al. | Aug 1967 | A |
3004614 | De Witt | Oct 1967 | A |
3346059 | Svendsen | Oct 1967 | A |
3363705 | Jensen | Jan 1968 | A |
3461981 | Casper | Aug 1969 | A |
3494418 | Young | Feb 1970 | A |
3543870 | Martinsen | Dec 1970 | A |
3667558 | Lambot | Jun 1972 | A |
3977482 | Reed et al. | Aug 1976 | A |
4418770 | Lambot | Dec 1983 | A |
4466497 | Soinski et al. | Aug 1984 | A |
4664204 | Nenkov et al. | May 1987 | A |
4800969 | Thompson | Jan 1989 | A |
4823872 | Hopmann | Apr 1989 | A |
4832138 | Hallez | May 1989 | A |
4834198 | Thompson | May 1989 | A |
4930587 | Young et al. | Jun 1990 | A |
5020612 | Williams | Jun 1991 | A |
5253720 | Radford et al. | Oct 1993 | A |
5267620 | Lee | Dec 1993 | A |
5311950 | Spektor | May 1994 | A |
5325930 | Harrison | Jul 1994 | A |
5662182 | McLeod et al. | Sep 1997 | A |
5785134 | McLeod et al. | Jul 1998 | A |
5799742 | Soinski et al. | Sep 1998 | A |
5934393 | Marshall | Aug 1999 | A |
5992543 | Soinski et al. | Nov 1999 | A |
D420013 | Warren et al. | Feb 2000 | S |
6019181 | Soinski et al. | Feb 2000 | A |
6029758 | Novacovicci et al. | Feb 2000 | A |
6039129 | McLeod | Mar 2000 | A |
6059053 | McLeod | May 2000 | A |
6089335 | Able | Jul 2000 | A |
6371205 | Langan et al. | Apr 2002 | B1 |
6425449 | Marshall | Jul 2002 | B1 |
6564885 | Attwater | May 2003 | B2 |
6708784 | Borg | Mar 2004 | B1 |
7296638 | Beach et al. | Nov 2007 | B2 |
7314101 | Beach | Jan 2008 | B2 |
7363967 | Burris, II et al. | Apr 2008 | B2 |
7730965 | Jordan et al. | Jun 2010 | B2 |
D622293 | Drenth et al. | Aug 2010 | S |
D622294 | Drenth et al. | Aug 2010 | S |
D622741 | Drenth et al. | Aug 2010 | S |
D624564 | Drenth et al. | Sep 2010 | S |
7841400 | Wells et al. | Nov 2010 | B2 |
D632309 | Coyle, Jr. | Feb 2011 | S |
7900716 | Ibrahim et al. | Mar 2011 | B2 |
7967085 | Drenth | Jun 2011 | B2 |
8261857 | Able et al. | Sep 2012 | B2 |
8333255 | Drenth | Dec 2012 | B2 |
8485280 | Drenth et al. | Jul 2013 | B2 |
20040216927 | Beach | Nov 2004 | A1 |
20050034894 | Beach et al. | Feb 2005 | A1 |
20050241825 | Burris et al. | Nov 2005 | A1 |
20090032256 | Sun et al. | Feb 2009 | A1 |
20090173542 | Ibrahim et al. | Jul 2009 | A1 |
20090260882 | Drenth | Oct 2009 | A1 |
20090283328 | Drivdahl et al. | Nov 2009 | A1 |
20110079435 | Drenth et al. | Apr 2011 | A1 |
20110079436 | Drenth et al. | Apr 2011 | A1 |
20130105227 | Drenth | May 2013 | A1 |
20130192901 | Londov | Aug 2013 | A1 |
20130313024 | Drenth et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2008222974 | Mar 2008 | AU |
2008222974 | Sep 2008 | AU |
2010303446 | Oct 2010 | AU |
2010339878 | Dec 2010 | AU |
2010303446 | May 2012 | AU |
2010339878 | Jul 2012 | AU |
11 2012 008034 2 | Oct 2010 | BR |
11 2012 014787 0 | Dec 2010 | BR |
11 2012 008034 2 | Apr 2011 | BR |
11 2012 0147870 | Jul 2011 | BR |
2679933 | Mar 2008 | CA |
2679933 | Sep 2008 | CA |
2776923 | Oct 2010 | CA |
2784532 | Dec 2010 | CA |
2776923 | Apr 2011 | CA |
2784532 | Jul 2011 | CA |
2012-00884 | Oct 2010 | CL |
2012-01618 | Dec 2010 | CL |
88412 | Apr 2011 | CL |
2012-01618 | Jul 2011 | CL |
200880007004.5 | Mar 2008 | CN |
101675205 | Mar 2010 | CN |
201080055434.1 | Oct 2010 | CN |
201080057031.0 | Dec 2010 | CN |
10278224 | Apr 2011 | CN |
102791954 | Nov 2012 | CN |
1757770 | Feb 2007 | EP |
08731246.8 | Mar 2008 | EP |
2132395 | Dec 2009 | EP |
10822658 | Oct 2010 | EP |
10842597.6 | Dec 2010 | EP |
2486223 | Aug 2012 | EP |
2513413 | Oct 2012 | EP |
992246 | May 1965 | GB |
599635 | Oct 2010 | NZ |
600697 | Dec 2010 | NZ |
600697 | Jul 2011 | NZ |
599635 | Sep 2013 | NZ |
446.2012 | Oct 2010 | PE |
823.2012 | Dec 2010 | PE |
446.2012 | Apr 2011 | PE |
823.2012 | Jul 2011 | PE |
WO-9503475 | Feb 1995 | WO |
WO-03038232 | May 2003 | WO |
PCTUS2008055656 | Mar 2008 | WO |
WO-2008109522 | Sep 2008 | WO |
WO-2009108113 | Sep 2009 | WO |
WO-2010096860 | Sep 2010 | WO |
PCTUS2010051747 | Oct 2010 | WO |
PCTUS2010060744 | Dec 2010 | WO |
WO-2011044314 | Apr 2011 | WO |
WO-2011084589 | Jul 2011 | WO |
PCTUS2014023405 | Mar 2014 | WO |
200905921 | Mar 2008 | ZA |
200905921 | Sep 2008 | ZA |
201203285 | Oct 2010 | ZA |
201205268 | Dec 2010 | ZA |
201203285 | Apr 2011 | ZA |
201205268 | Jul 2011 | ZA |
Entry |
---|
U.S. Appl. No. 60/892,848, filed Mar. 3, 2007, Drenth (Longyear TM, Inc.). |
U.S. Appl. No. 61/249,544, filed Oct. 7, 2009, Drenth (Longyear TM, Inc.). |
U.S. Appl. No. 61/287,106, filed Dec. 16, 2009, Drenth (Longyear TM, Inc.). |
U.S. Appl. No. 14/193,136, filed Feb. 28, 2014, Muntz (Longyear TM, Inc.). |
Non-Final Office Action issued by the U.S. Patent & Trademark Office on Jun. 5, 2015 for U.S. Appl. No. 13/943,460, filed Jul. 16, 2013 and published as US-2013-0313024-A1 on Nov. 28, 2013 (Inventor—Drenth, et al. // Applicant—Boart Longyear) (7 pages). |
Extended European Search Report issued by the European Patent Office on Jun. 26, 2015 for application EP 08731246.8, filed on Mar. 3, 2008 (Applicant—Boart Longyear // Inventor—Drenth) (5 pages). |
U.S. Appl. No. 14/193,136, Muntz et al. |
International Preliminary Report on Patentability issued Sep. 8, 2009 for International Patent Application PCT/US2008/055656, which was filed on Mar. 3, 2008 and published as WO 2008/109522 on Sep. 12, 2008 (Inventor—Drenth; Applicant—Boart Longyear) (pp. 1-4). |
International Search Report and Written Opinion issued Aug. 8, 2008 for International Patent Application PCT/US2008/055656, which was filed on Mar. 3, 2008 and published as WO 2008/109522 on Sep. 12, 2008 (Inventor—Drenth; Applicant—Boart Longyear) (pp. 1-5). |
Non-Final Office Action issued Aug. 1, 2011 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-8). |
Amendment “A” and Response to Office Action filed Oct. 27, 2011 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-28). |
Applicant Initiated Interview Summary issued Nov. 1, 2011 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-3). |
Final Office Action issued Apr. 5, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-9). |
Amendment and Response to Final Office Action filed Jun. 14, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-21). |
Applicant Initiated Interview Summary issued Jun. 20, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-3). |
Notice of Allowance issued Oct. 3, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-5). |
Notice of Allowance issued Nov. 6, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-2). |
Issue Notification issued Nov. 28, 2012 for U.S. Appl. No. 12/528,949, filed Aug. 27, 2009 and issued as U.S. Pat. No. 8,333,255 on Dec. 18, 2012 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-1). |
International Preliminary Report on Patentability issued Apr. 11, 2012 for International Patent Application PCT/US2010/051747, which was filed Oct. 7, 2010 and published as WO 2011/044314 on Apr. 14, 2014 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-5). |
International Search Report and Written Opinion issued Jun. 10, 2011 for International Patent Application PCT/US2010/051747, which was filed Oct. 7, 2010 and published as WO 2011/044314 on Apr. 14, 2014 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Preliminary Amendment filed Sep. 27, 2011 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-10). |
Restriction Requirement issued Dec. 21, 2012 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-6). |
Response to Restriction Requirement filed Jan. 22, 2013 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-10). |
Non-Final Office Action issued Apr. 26, 2013 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Amendment and Response to Non-Final Office Action filed Jul. 26, 2013 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-17). |
Final Office Action issued Sep. 26, 2013 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Amendment and Response to Final Office Action filed Jan. 27, 2014 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-14). |
Notice of Allowance issued Mar. 31, 2014 for U.S. Appl. No. 12/898,878, filed Oct. 6, 2010 and published as U.S. 2011/0079435 on Apr. 7, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-5). |
International Preliminary Report on Patentability issued Jun. 19, 2012 for International Patent Application PCT/US2010/060744, which was filed on Dec. 16, 2010 and published as WO 2011/084589 on Jul. 14, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-4). |
International Search Report and Written Opinion issued Jul. 27, 2011 for International Patent Application PCT/US2010/060744, which was filed on Dec. 16, 2010 and published as WO 2011/084589 on Jul. 14, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-6). |
Non-Final Office Action issued Aug. 6, 2012 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-9). |
Amendment in Response to Non-Final Office Action filed Nov. 5, 2012 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-13). |
Final Office Action issued Dec. 21, 2012 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-10). |
Amendment in Response to Final Office Action filed Feb. 21, 2013 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-16). |
Supplemental Amendment filed Mar. 1, 2013 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-9). |
Notice of Allowance, Examiner Interview Summary, and Examiner's Amendment filed Mar. 15, 2013 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-8). |
Issue Notification issued Jun. 26, 2013 for U.S. Appl. No. 12/968,127, filed Dec. 14, 2010 and issued as U.S. Pat. No. 8,485,280 on Jul. 16, 2013 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-1). |
Notice of Allowance and Examiner's Amendment issued Aug. 1, 2011 for U.S. Appl. No. 29/383,554, filed Jan. 19, 2011 and issued as U.S. Pat. No. D. 649,167 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Notice of Allowance issued Sep. 20, 2011 for U.S. Appl. No. 29/383,554, filed Jan. 19, 2011 and issued as U.S. Pat. No. D. 649,167 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Notice of Allowance issued Oct. 17, 2011 for U.S. Appl. No. 29/383,554, filed Jan. 19, 2011 and issued as U.S. Pat. No. D. 649,167 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-2). |
Issue Notification issued Nov. 2, 2011 for U.S. Appl. No. 29/383,554, filed Jan. 19, 2011 and issued as U.S. Pat. No. D. 649,167 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-1). |
Notice of Allowance and Examiner's Amendment issued Aug. 25, 2011 for U.S. Appl. No. 13/094,581, filed Apr. 26, 2011 and issued as U.S. Pat. No. 8,051,925 on Nov. 8, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-8). |
Issue Notification issued Oct. 19, 2011 for U.S. Appl. No. 13/094,581, filed Apr. 26, 2011 and issued as U.S. Pat. No. 8,051,925 on Nov. 8, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-1). |
Notice of Allowance issued Aug. 19, 2011 for U.S. Appl. No. 13/094,674, filed Apr. 26, 2011 and issued as U.S. Pat. No. 8,051,924 on Nov. 8, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-4). |
Issue Notification issued Oct. 19, 2011 for U.S. Appl. No. 13/094,674, filed Apr. 26, 2011 and issued as U.S. Pat. No. 8,051,924 on Nov. 8, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-1). |
Notice of Allowance issued Apr. 6, 2011 for U.S. Appl. No. 29/383,340, filed Jan. 14, 2011 and issued as U.S. Pat. No. D. 644,668 on Sep. 6, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Supplemental Notice of Allowance issued Jul. 11, 2011 for U.S. Appl. No. 29/383,340, filed Jan. 14, 2011 and issued as U.S. Pat. No. D. 644,668 on Sep. 6, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-2). |
Issue Notification issued Aug. 17, 2011 for U.S. Appl. No. 29/383,340, filed Jan. 14, 2011 and issued as U.S. Pat. No. D. 644,668 on Sep. 6, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-1). |
Notice of Allowance and Examiner's Amendment issued May 26, 2011 for U.S. Appl. No. 29/383,623, filed Jan. 20, 2011 and issued as U.S. Pat. No. D. 647,540 on Oct. 25, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Notice of Allowance issued Aug. 4, 2011 for U.S. Appl. No. 29/383,623, filed Jan. 20, 2011 and issued as U.S. Pat. No. D. 647,540 on Oct. 25, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Issue Notification issued Oct. 5, 2011 for U.S. Appl. No. 29/383,623, filed Jan. 20, 2011 and issued as U.S. Pat. No. D. 647,540 on Oct. 25, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-1). |
Notice of Allowance issued Apr. 6, 2011 for U.S. Appl. No. 29/383,561, filed Jan. 19, 2011 and issued as U.S. Pat. No. D. 643,859 on Aug. 23, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Supplemental Notice of Allowance issued Jul. 11, 2011 for U.S. Appl. No. 29/383,561, filed Jan. 19, 2011 and issued as U.S. Pat. No. D. 643,859 on Aug. 23, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-2). |
Issue Notification issued Aug. 3, 2011 for U.S. Appl. No. 29/383,561, filed Jan. 19, 2011 and issued as U.S. Pat. No. D. 643,859 on Aug. 23, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-1). |
Notice of Allowance issued Apr. 8, 2011 for U.S. Appl. No. 29/383,572, filed Jan. 19, 2011 and issued as U.S. Pat. No. D. 643,443 on Aug. 16, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Issue Notification issued Jul. 27, 2011 for U.S. Appl. No. 29/383,572, filed Jan. 19, 2011 and issued as U.S. Pat. No. D. 643,443 on Aug. 16, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-1). |
Non-Final Office Action issued Jan. 6, 2011 for U.S. Appl. No. 12/427,586, filed Apr. 21, 2009 and issued as U.S. Pat. No. 7,967,085 on Jun. 28, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-13). |
Notice of Allowance issued Feb. 25, 2011 for U.S. Appl. No. 12/427,586, filed Apr. 21, 2009 and issued as U.S. Pat. No. 7,967,085 on Jun. 28, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-7). |
Issue Notification issued Jun. 28, 2011 for U.S. Appl. No. 12/427,586, filed Apr. 21, 2009 and issued as U.S. Pat. No. 7,967,085 on Jun. 28, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-1). |
International Search Report and Written Opinion issued Oct. 28, 2009 for International Patent Application PCT/US2009/041435, which was filed on Apr. 22, 2009 and published as WO 2009/132125 on Oct. 29, 2009 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-6). |
International Search Report and Written Opinion issued Jul. 27, 2011 for International Patent Application PCT/US2010/060742, which was filed on Dec. 16, 2010 and published as WO 2011/084587 on Jul. 14, 2011 (Inventor—Drenth; Applicant—Longyear TM, Inc.) (pp. 1-6). |
Number | Date | Country | |
---|---|---|---|
20130105227 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
60892848 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12528949 | US | |
Child | 13717421 | US |