This disclosure relates to high quality coke products having unique properties made in ovens including horizontal ovens such as heat recovery, non-recovery or Thompson ovens.
Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. Foundry coke is coke of very large size, usually at least 4 inches in diameter, and of exceptional quality such as very low content of impurities, and very high carbon content, strength, and stability. Foundry coke is used in foundry cupolas to melt iron and produce cast iron and ductile iron products. However, the production cost including the manufacturing cost, transportation cost, and environmental cost, for foundry coke is high. Therefore, there is a need in the art to improve the production process thereby to obtain high quality foundry coke at a higher yield and/or a lower cost. This application satisfies the need by providing a high-quality foundry coke with many unique and improved properties.
This application contains at least one drawing executed in color. Copies of this application with color drawing(s) will be provided by the Office upon request and payment of the necessary fees.
Disclosed herein are high quality HD+™ coke products, in particular, HD+™ foundry coke having unique properties. The coking process produces coke products of various sizes in different fractions. Conventionally, the coke products have a substantially round shape and are classified based on size: foundry coke having a size of larger than 4 inches in diameter, egg (industrial coke) having a size of 2-4 inches, stove having a size of 1-2 inches or 1-1.5 inches, nut having a size of ⅜-1 inch, and breeze having a size of less than ⅜ inch. According to aspects of this disclosure, the HD+™ coke products disclosed herein are produced by a proprietary coking process using a predetermined coal blend including certain percentage of inerts or breeze in a horizontal oven such as a heat recovery oven, a non-recovery oven, or a Thompson oven. The HD+™ coke products can be classified differently. In one example, the HD+™ coke products include HD+™ foundry coke having a hydraulic diameter of over 3.5 inches, HD+™ egg coke having a hydraulic diameter of 1.5-3.5 inches, HD+™ breeze having a hydraulic diameter of 0.5-1.5 inches, and HD+™ waste fines having a size of less than 0.5 inch. All HD+™ breeze can be crushed to less than ⅜ inch and recycled to coal blend for the coking process, while waste fines may impose an issue with heat recovery due to potential burn loss and high ash content. Therefore, some or all waste fines are recycled depending on the coking process. HD+™ eggs are only recycled if additional breeze loading is required but mostly, HD+™ eggs can be sold and used in sugar beet and mineral wool or rock wool production.
In certain embodiments, disclosed herein is HD+™ coke having a shape distinguishable from commercially available foundry coke, which has a substantially round shape and a diameter of at least 4 inches. Unlike the conventional round-shaped, black foundry coke, the HD+™ foundry coke disclosed herein has an oblong “finger-shape”, as shown in
In certain embodiments, the HD+™ foundry coke has a high aspect ratio of length to width. For example, the HD+™ foundry coke has a length between 2 and 36 inches, between 3 and 15 inches, between 4 and 12 inches, or between 4 and 10 inches and a width between 1.5 and 12 inches, between 2 and 8 inches, between 3 and 7 inches, between 2 and 4 inches, or between 4 and 6 inches. In some embodiments, the HD+™ foundry coke has a length of at least 2 inches, at least 3 inches, at least 4 inches, at least 5 inches, at least 6 inches, at least 7 inches, at least 8 inches, at least 9 inches, at least 10 inches, at least 11 inches, at least 12 inches, at least 13 inches, at least 14 inches, at least 15 inches, at least 16 inches, at least 17 inches, at least 18 inches, at least 19 inches, at 20 inches, at least 21 inches, at least 22 inches, at least 23 inches, at least 24 inches, at least 25 inches, at least 26 inches, at least 27 inches, at least 28 inches, at least 29 inches, at least 30 inches, at least 31 inches, at least 32 inches, at least 33 inches, at least 34 inches, at least 35 inches, or at least 36 inches. In some embodiments, the HD+™ foundry coke has a width of at least 1.5 inches, at least 2 inches, at least 3 inches, at least 4 inches, at least 5 inches, at least 6 inches, at least 7 inches, at least 8 inches, at least 9 inches, at least 10 inches, at least 11 inches, at least 12 inches, at least 13 inches, at least 14 inches, at least 15 inches, at least 16 inches, at least 17 inches, at least 18 inches. In certain embodiments, the HD+™ foundry coke has a length:width ratio of at least 1.1, at least 1.5, at least 2.0, at least 2.5, at least 3.0, at least 3.5, at least 4.0, at least 4.5, at least 5.0, at least 5.5, at least 6.0, at least 6.5, at least 7.0, at least 7.5, at least 8.0, at least 8.5, at least 9.0, at least 9.5, or at least 10.0. In some embodiments, the HD+™ foundry coke has a length:width ratio of at least 2.0, at least 3.0, or at least 4.0.
In certain embodiments, the HD+™ foundry coke is produced in a horizontal oven such as a heat recovery, non-recovery or Thompson oven by a proprietary process. In certain embodiments, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% of the total coke from a single production process or a single oven falls within the ranges of the length, width, and the ratio of length:width disclosed above. In certain embodiments, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% of the total foundry coke from a single production process falls or a single oven within the ranges of the length, width, and the ratio of length:width disclosed above.
In certain embodiments, the HD+™ foundry coke has a hydraulic diameter (Dh) larger than its actual or effective diameter; whereas the conventional round-shaped foundry coke has a Dh substantially the same as the actual diameter. Dh is a function of hydraulic radius (Rh), which is defined as follows:
εb is the interparticle porosity of the coke bed, calculated as follows:
where ρb is the bulk density and pa is the apparent density of coke.
Dp is the harmonic mean particle diameter. Dp represents the size of a uniform coke that has the same surface-to-volume ratio as a nonuniform coke, calculated as follows:
where fi is the weight fraction of the coke charge having a diameter Di. For uniform size coke, Dp=Di.
In certain embodiments, the HD+™ foundry coke has a hydraulic diameter of at least 2 inches, at least 2.5 inches, at least 3 inches, at least 3.5 inches, at least 4 inches, at least 4.5 inches, at least 5 inches, at least 5.5 inches, at least 6 inches, at least 6.5 inches, at least 7 inches, at least 7.5 inches, at least 8 inches, at least 8.5 inches, at least 9 inches, at least 9.5 inches, at least 10 inches, at least 10.5 inches, at least 11 inches, at least 11.5 inches, at least 12 inches, at least 12.5 inches, at least 13 inches, at least 13.5 inches, at least 14 inches, at least 14.5 inches, at least 15 inches, at least 15.5 inches, at least 16 inches, at least 16.5 inches, at least 17 inches, at least 17.5 inches, or at least 18 inches. In certain embodiments, the HD+™ egg has a hydraulic diameter of between 1.5 and 3.5 inches or between 1.5 and 2 inches.
Coke Reactivity Index (CRI) represents the percentage of weight loss after Boudouard reaction: CO2+C(coke)=2CO in heated kiln for 2 hours. Coke Strength after Reaction (CSR) is based on a tumble strength test of coke remaining after the CRI kiln reaction. Boudouard reaction occurring at the surface of foundry coke in a cupola is undesirable because the reaction steals heat from iron melting and makes the process less efficient. Thus, a lower CRI is desirable such that the coke is inert enough to resist the Boudouard reaction. On the other hand, the CRI cannot be too low such that the coke is inert to resist combustion. As shown in
Unless specified otherwise, all percentages disclosed in this document refer to weight percentage. In certain embodiments, the HD+™ foundry coke disclosed herein has a CSR between 5% and 60%, between 5% and 50%, between 15% and 50%, or between 15% and 40%. In certain embodiments, the HD+™ coke has a CRI less than 40%, between 20% and 45%, between 25% and 40%, or between 31% and 37%. The percentage of breeze loading during the coking process affects the CSR of the HD+™ coke, where a higher breeze loading results in a decrease in CSR, shown in
In certain embodiments, the HD+™ egg has the same or substantially the same CSR as the HD+™ foundry coke disclosed above. In certain embodiments, the HD+™ egg has the same or substantially the same CRI as the HD+™ foundry coke disclosed above.
After production from the oven, the HD+™ foundry coke is subject to quality control and screening before shipping and delivering to a customer. As used herein, the term “pre-processed” coke products means that the coke products are freshly produced from the oven and before screening, shipping and delivering to a customer; while the term “processed” coke products means that the coke products have been subjected to the process of screening, shipping, and delivering to a customer. In certain embodiments, the pre-processed HD+™ foundry coke has a 4-inch drop shatter of at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90% when using starting materials having a size of at least 4 inches for the industry standard drop shatter test. In certain embodiments, the pre-processed HD+™ foundry coke has a 2-inch drop shatter of at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% when using starting materials having a size of at least 4 inches for the industry standard drop shatter test. In certain embodiments, the processed HD+™ foundry coke has a 4-inch drop shatter of at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90% when using starting materials having a size of at least 4 inches for the industry standard drop shatter test. In certain embodiments, the processed HD+™ foundry coke has a 2-inch drop shatter of at least 80%, at least 85%, at least 90%, or at least 95% when using starting materials having a size of at least 4 inches for the industry standard drop shatter test.
In certain embodiments, the HD+™ foundry coke has one or more customized references, such as an ash content of between 5% and 12%, less than 10%, less than 9.5%, less than 9%, less than 8.5%, less than 8%, less than 7.5%, or less than 7%; a sulfur content of less than 1%, less than 0.9%, less than 0.8%, less than 0.7%, less than 0.6%, or less than 0.5%; a volatile matter (VM) content of less than 2%, less than 1%, between 0.4% and 1%, about 0.5%, or about 0.3%; a moisture content of less than 15%, less than 10%, less than 9%, less than 8%, less than 7%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, or between 1% and 10%; and a fixed carbon content of at least 80%, at least 85%, at least 90%, or at least 95%.
In certain embodiments, the total coke produced by the proprietary process has a size distribution as follows: the HD+™ foundry coke is at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, or at least 80%, the mid-size coke including the HD+™ egg and HD+™ breeze is between 5% and 35%, between 10% and 30%, or between 15% and 20%, the waste fines is less than 10%, less than 8%, or less than 5%. Preferably, the fraction of HD+™ foundry coke is at a highest possible percentage in the total coke produced.
Due to its unique size and shape, the HD+™ coke disclosed herein has an advantage of achieving a desirable packing density as demonstrated in the working example below.
This example demonstrates a cupola packing simulation by a simplistic 2D random packing model. Comparing to the uniformly sized coke, coke having a wide size distribution is expected to have a higher bulk density, greater surface area, and lower bed porosity when loaded in an oven.
The gross assumptions for this model include: (1) the next layer of pieces lays on top of this one; (2) the parts of the coke pieces that extend outside of the circle are ignored as a trivial error; (3) this cross-section is essentially equivalent to any other cross section in the cupola; (4) the relative density of the coke loading is proportional to the ratio of the sum of the areas of the squares to the area of the total circle; and (5) although not exactly accurate, the relative surface area is roughly proportional to the sum of perimeters of the coke pieces.
In a side-by-side comparison of fitting 10 inches×10 inches pieces (illustrated in
The next improvement in the simulation was to: (1) Allow variation in the length and width of the coke pieces between a user defined maximum and minimum. Each piece is assumed have a square small end (i.e. L×W×W); and (2) Allow for the piece to tilt so smaller “corners” of the piece can fit in the allowed spaces. When full range of tilt was allowed, the simulation favored standing the pieces on small end. Therefore, the maximum tilt was limited to 30 degrees arbitrarily.
Based on this assumption, coke pieces of various sizes were fitted to cupola radius of 60 inches as shown in
An Excel model was used to calculate hydraulic radius of the foundry coke based on its measured size distribution, the presumed bottom screen cut and the bulk density using the formulas disclosed above.
The oblong shape of our coke has the potential to create a sparse packing density which in turn increases the effective hydraulic radius. This in turn makes the cupola performance of the foundry improve due to the reduction of latent heat loss from the reaction of CO2 and coke to form CO which occurs on the surface of the coke. Higher interstitial volume to coke surface area ratios help on this factor.
Hydraulic radius can also be improved by cutting out the small coke but the yield will be compromised. The oblong coke shape may prove to be a significant cupola performance benefit.
The bulk density of the screened coke, as well as unscreened coke, is measured and can be used in the calculation. The calculation results are shown in
From the foregoing it will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the technology. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. Thus, the disclosure is not limited except as by the appended claims.
This application claims priority to U.S. Provisional Application No. 63/019,405, filed on May 3, 2020, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
425797 | Hunt | Apr 1890 | A |
469868 | Osbourn | Mar 1892 | A |
705926 | Hemingway | Jul 1902 | A |
760372 | Beam | May 1904 | A |
845719 | Schniewind | Feb 1907 | A |
875989 | Garner | Jan 1908 | A |
976580 | Krause | Jul 1909 | A |
1140798 | Carpenter | May 1915 | A |
1424777 | Schondeling | Aug 1922 | A |
1430027 | Plantinga | Sep 1922 | A |
1486401 | Van Ackeren | Mar 1924 | A |
1530995 | Geiger | Mar 1925 | A |
1572391 | Klaiber | Feb 1926 | A |
1677973 | Marquard | Jul 1928 | A |
1705039 | Thornhill | Mar 1929 | A |
1721813 | Geipert | Jul 1929 | A |
1757682 | Palm | May 1930 | A |
1818370 | Wine | Aug 1931 | A |
1818994 | Kreisinger | Aug 1931 | A |
1830951 | Lovett | Nov 1931 | A |
1848818 | Becker | Mar 1932 | A |
1895202 | Montgomery | Jan 1933 | A |
1947499 | Schrader et al. | Feb 1934 | A |
1955962 | Jones | Apr 1934 | A |
1979507 | Underwood | Nov 1934 | A |
2075337 | Burnaugh | Mar 1937 | A |
2141035 | Daniels | Dec 1938 | A |
2195466 | Otto | Apr 1940 | A |
2235970 | Wilputte | Mar 1941 | A |
2340283 | Vladu | Jan 1944 | A |
2340981 | Otto | Feb 1944 | A |
2394173 | Harris et al. | Feb 1946 | A |
2424012 | Bangham et al. | Jul 1947 | A |
2486199 | Nier | Oct 1949 | A |
2609948 | Laveley | Sep 1952 | A |
2641575 | Otto | Jun 1953 | A |
2649978 | Smith | Aug 1953 | A |
2667185 | Beavers | Jan 1954 | A |
2723725 | Keiffer | Nov 1955 | A |
2756842 | Chamberlin et al. | Jul 1956 | A |
2813708 | Frey | Nov 1957 | A |
2827424 | Homan | Mar 1958 | A |
2873816 | Emil et al. | Feb 1959 | A |
2902991 | Whitman | Sep 1959 | A |
2907698 | Schulz | Oct 1959 | A |
2968083 | Lentz et al. | Jan 1961 | A |
3015893 | McCreary | Jan 1962 | A |
3026715 | Briggs | Mar 1962 | A |
3033764 | Hannes | May 1962 | A |
3175961 | Samson | Mar 1965 | A |
3199135 | Trucker | Aug 1965 | A |
3224805 | Clyatt | Dec 1965 | A |
3259551 | Thompson, Jr. | Jul 1966 | A |
3265044 | Juchtern | Aug 1966 | A |
3267913 | Jakob | Aug 1966 | A |
3327521 | Briggs | Jun 1967 | A |
3342990 | Barrington et al. | Sep 1967 | A |
3444046 | Harlow | May 1969 | A |
3444047 | Wilde | May 1969 | A |
3448012 | Allred | Jun 1969 | A |
3453839 | Sabin | Jul 1969 | A |
3462345 | Kernan | Aug 1969 | A |
3511030 | Brown et al. | May 1970 | A |
3542650 | Kulakov | Nov 1970 | A |
3545470 | Paton | Dec 1970 | A |
3587198 | Hensel | Jun 1971 | A |
3591827 | Hall | Jul 1971 | A |
3592742 | Thompson | Jul 1971 | A |
3616408 | Hickam | Oct 1971 | A |
3623511 | Levin | Nov 1971 | A |
3630852 | Nashan et al. | Dec 1971 | A |
3652403 | Knappstein et al. | Mar 1972 | A |
3676305 | Cremer | Jul 1972 | A |
3709794 | Kinzler et al. | Jan 1973 | A |
3710551 | Sved | Jan 1973 | A |
3746626 | Morrison, Jr. | Jul 1973 | A |
3748235 | Pries | Jul 1973 | A |
3784034 | Thompson | Jan 1974 | A |
3806032 | Pries | Apr 1974 | A |
3811572 | Tatterson | May 1974 | A |
3836161 | Pries | Oct 1974 | A |
3839156 | Jakobi et al. | Oct 1974 | A |
3844900 | Schulte | Oct 1974 | A |
3857758 | Mole | Dec 1974 | A |
3875016 | Schmidt-Balve | Apr 1975 | A |
3876143 | Rossow et al. | Apr 1975 | A |
3876506 | Dix et al. | Apr 1975 | A |
3878053 | Hyde | Apr 1975 | A |
3894302 | Lasater | Jul 1975 | A |
3897312 | Armour et al. | Jul 1975 | A |
3906992 | Leach | Sep 1975 | A |
3912091 | Thompson | Oct 1975 | A |
3912597 | MacDonald | Oct 1975 | A |
3917458 | Polak | Nov 1975 | A |
3928144 | Jakimowicz | Dec 1975 | A |
3930961 | Sustarsic et al. | Jan 1976 | A |
3933443 | Lohrmann | Jan 1976 | A |
3957591 | Riecker | May 1976 | A |
3959084 | Price | May 1976 | A |
3963582 | Helm et al. | Jun 1976 | A |
3969191 | Bollenbach | Jul 1976 | A |
3975148 | Fukuda et al. | Aug 1976 | A |
3979870 | Moore | Sep 1976 | A |
3984289 | Sustarsic et al. | Oct 1976 | A |
3990948 | Lindgren | Nov 1976 | A |
4004702 | Szendroi | Jan 1977 | A |
4004983 | Pries | Jan 1977 | A |
4025395 | Ekholm et al. | May 1977 | A |
4040910 | Knappstein et al. | Aug 1977 | A |
4045056 | Kandakov et al. | Aug 1977 | A |
4045299 | McDonald | Aug 1977 | A |
4059885 | Oldengott | Nov 1977 | A |
4065059 | Jablin | Dec 1977 | A |
4067462 | Thompson | Jan 1978 | A |
4077848 | Grainer et al. | Mar 1978 | A |
4083753 | Rogers et al. | Apr 1978 | A |
4086231 | Ikio | Apr 1978 | A |
4093245 | Connor | Jun 1978 | A |
4100033 | Holter | Jul 1978 | A |
4100491 | Newman, Jr. et al. | Jul 1978 | A |
4100889 | Chayes | Jul 1978 | A |
4111757 | Carimboli | Sep 1978 | A |
4124450 | MacDonald | Nov 1978 | A |
4133720 | Franzer et al. | Jan 1979 | A |
4135948 | Mertens et al. | Jan 1979 | A |
4141796 | Clark et al. | Feb 1979 | A |
4143104 | van Konijnenburg et al. | Mar 1979 | A |
4145195 | Knappstein et al. | Mar 1979 | A |
4147230 | Ormond et al. | Apr 1979 | A |
4162546 | Shortell et al. | Jul 1979 | A |
4176013 | Garthus et al. | Nov 1979 | A |
4181459 | Price | Jan 1980 | A |
4189272 | Gregor et al. | Feb 1980 | A |
4194951 | Pries | Mar 1980 | A |
4196053 | Grohmann | Apr 1980 | A |
4211608 | Kwasnoski et al. | Jul 1980 | A |
4211611 | Bocsanczy | Jul 1980 | A |
4213489 | Cain | Jul 1980 | A |
4213828 | Calderon | Jul 1980 | A |
4222748 | Argo et al. | Sep 1980 | A |
4222824 | Flockenhaus et al. | Sep 1980 | A |
4224109 | Flockenhaus et al. | Sep 1980 | A |
4225393 | Gregor et al. | Sep 1980 | A |
4226113 | Pelletier et al. | Oct 1980 | A |
4230498 | Ruecki | Oct 1980 | A |
4235830 | Bennett et al. | Nov 1980 | A |
4239602 | La Bate | Dec 1980 | A |
4248671 | Belding | Feb 1981 | A |
4249997 | Schmitz | Feb 1981 | A |
4263099 | Porter | Apr 1981 | A |
4268360 | Tsuzuki et al. | May 1981 | A |
4271814 | Lister | Jun 1981 | A |
4284478 | Brommel | Aug 1981 | A |
4285772 | Kress | Aug 1981 | A |
4287024 | Thompson | Sep 1981 | A |
4289479 | Johnson | Sep 1981 | A |
4289584 | Chuss et al. | Sep 1981 | A |
4289585 | Wagener et al. | Sep 1981 | A |
4296938 | Offermann et al. | Oct 1981 | A |
4299666 | Ostmann | Nov 1981 | A |
4302935 | Cousimano | Dec 1981 | A |
4303615 | Jarmell et al. | Dec 1981 | A |
4307673 | Caughey | Dec 1981 | A |
4314787 | Kwasnik et al. | Feb 1982 | A |
4316435 | Nagamatsu et al. | Feb 1982 | A |
4324568 | Wilcox et al. | Apr 1982 | A |
4330372 | Cairns et al. | May 1982 | A |
4334963 | Stog | Jun 1982 | A |
4336107 | Irwin | Jun 1982 | A |
4336843 | Petty | Jun 1982 | A |
4340445 | Kucher et al. | Jul 1982 | A |
4342195 | Lo | Aug 1982 | A |
4344820 | Thompson | Aug 1982 | A |
4344822 | Schwartz et al. | Aug 1982 | A |
4353189 | Thiersch et al. | Oct 1982 | A |
4366029 | Bixby et al. | Dec 1982 | A |
4373244 | Mertens et al. | Feb 1983 | A |
4375388 | Hara et al. | Mar 1983 | A |
4385962 | Stewen et al. | May 1983 | A |
4391674 | Velmin et al. | Jul 1983 | A |
4392824 | Struck et al. | Jul 1983 | A |
4394217 | Holz et al. | Jul 1983 | A |
4395269 | Schuler | Jul 1983 | A |
4396394 | Li et al. | Aug 1983 | A |
4396461 | Neubaum et al. | Aug 1983 | A |
4406619 | Oldengott | Sep 1983 | A |
4407237 | Merritt | Oct 1983 | A |
4421070 | Sullivan | Dec 1983 | A |
4431484 | Weber et al. | Feb 1984 | A |
4439277 | Dix | Mar 1984 | A |
4440098 | Adams | Apr 1984 | A |
4445977 | Husher | May 1984 | A |
4446018 | Cerwick | May 1984 | A |
4448541 | Lucas | May 1984 | A |
4452749 | Kolvek et al. | Jun 1984 | A |
4459103 | Gieskieng | Jul 1984 | A |
4469446 | Goodboy | Sep 1984 | A |
4474344 | Bennett | Oct 1984 | A |
4487137 | Horvat et al. | Dec 1984 | A |
4498786 | Ruscheweyh | Feb 1985 | A |
4506025 | Kleeb et al. | Mar 1985 | A |
4508539 | Nakai | Apr 1985 | A |
4518461 | Gelfand | May 1985 | A |
4527488 | Lindgren | Jul 1985 | A |
4564420 | Spindeler et al. | Jan 1986 | A |
4568426 | Orlando | Feb 1986 | A |
4570670 | Johnson | Feb 1986 | A |
4614567 | Stahlherm et al. | Sep 1986 | A |
4643327 | Campbell | Feb 1987 | A |
4645513 | Kubota et al. | Feb 1987 | A |
4655193 | Blacket | Apr 1987 | A |
4655804 | Kercheval et al. | Apr 1987 | A |
4666675 | Parker et al. | May 1987 | A |
4680167 | Orlando | Jul 1987 | A |
4690689 | Malcosky et al. | Sep 1987 | A |
4704195 | Janicka et al. | Nov 1987 | A |
4720262 | Durr et al. | Jan 1988 | A |
4724976 | Lee | Feb 1988 | A |
4726465 | Kwasnik et al. | Feb 1988 | A |
4732652 | Durselen et al. | Mar 1988 | A |
4749446 | van Laar et al. | Jun 1988 | A |
4793981 | Doyle et al. | Dec 1988 | A |
4824614 | Jones et al. | Apr 1989 | A |
4889698 | Moller et al. | Dec 1989 | A |
4898021 | Weaver et al. | Feb 1990 | A |
4918975 | Voss | Apr 1990 | A |
4919170 | Kallinich et al. | Apr 1990 | A |
4921483 | Wijay | May 1990 | A |
4929179 | Breidenbach et al. | May 1990 | A |
4941824 | Holter et al. | Jul 1990 | A |
5052922 | Stokman et al. | Oct 1991 | A |
5062925 | Durselen et al. | Nov 1991 | A |
5078822 | Hodges et al. | Jan 1992 | A |
5087328 | Wegerer et al. | Feb 1992 | A |
5114542 | Childress et al. | May 1992 | A |
5213138 | Presz | May 1993 | A |
5227106 | Kolvek | Jul 1993 | A |
5228955 | Westbrook, III | Jul 1993 | A |
5234601 | Janke et al. | Aug 1993 | A |
5318671 | Pruitt | Jun 1994 | A |
5370218 | Johnson et al. | Dec 1994 | A |
5398543 | Fukushima et al. | Mar 1995 | A |
5423152 | Kolvek | Jun 1995 | A |
5447606 | Pruitt | Sep 1995 | A |
5480594 | Wilkerson et al. | Jan 1996 | A |
5542650 | Abel et al. | Aug 1996 | A |
5597452 | Hippe et al. | Jan 1997 | A |
5603810 | Michler | Feb 1997 | A |
5622280 | Mays et al. | Apr 1997 | A |
5659110 | Herden et al. | Aug 1997 | A |
5670025 | Baird | Sep 1997 | A |
5687768 | Albrecht et al. | Nov 1997 | A |
5705037 | Reinke et al. | Jan 1998 | A |
5715962 | McDonnell | Feb 1998 | A |
5720855 | Baird | Feb 1998 | A |
5752548 | Matsumoto et al. | May 1998 | A |
5787821 | Bhat et al. | Aug 1998 | A |
5810032 | Hong et al. | Sep 1998 | A |
5816210 | Yamaguchi | Oct 1998 | A |
5857308 | Dismore et al. | Jan 1999 | A |
5881551 | Dang | Mar 1999 | A |
5913448 | Mann et al. | Jun 1999 | A |
5928476 | Daniels | Jul 1999 | A |
5966886 | Di Loreto | Oct 1999 | A |
5968320 | Sprague | Oct 1999 | A |
6002993 | Naito et al. | Dec 1999 | A |
6003706 | Rosen | Dec 1999 | A |
6017214 | Sturgulewski | Jan 2000 | A |
6059932 | Sturgulewski | May 2000 | A |
6139692 | Tamura et al. | Oct 2000 | A |
6152668 | Knoch | Nov 2000 | A |
6156688 | Ando et al. | Dec 2000 | A |
6173679 | Bruckner et al. | Jan 2001 | B1 |
6187148 | Sturgulewski | Feb 2001 | B1 |
6189819 | Racine | Feb 2001 | B1 |
6290494 | Barkdoll | Sep 2001 | B1 |
6412221 | Emsbo | Jul 2002 | B1 |
6495268 | Harth, III et al. | Dec 2002 | B1 |
6539602 | Ozawa et al. | Apr 2003 | B1 |
6596128 | Westbrook | Jul 2003 | B2 |
6626984 | Taylor | Sep 2003 | B1 |
6699035 | Brooker | Mar 2004 | B2 |
6712576 | Skarzenski et al. | Mar 2004 | B2 |
6758875 | Reid et al. | Jul 2004 | B2 |
6786941 | Reeves et al. | Sep 2004 | B2 |
6830660 | Yamauchi et al. | Dec 2004 | B1 |
6907895 | Johnson et al. | Jun 2005 | B2 |
6946011 | Snyder | Sep 2005 | B2 |
6964236 | Schucker | Nov 2005 | B2 |
7056390 | Fratello | Jun 2006 | B2 |
7077892 | Lee | Jul 2006 | B2 |
7314060 | Chen et al. | Jan 2008 | B2 |
7331298 | Barkdoll et al. | Feb 2008 | B2 |
7433743 | Pistikopoulos et al. | Oct 2008 | B2 |
7497930 | Barkdoll et al. | Mar 2009 | B2 |
7547377 | Inamasu et al. | Jun 2009 | B2 |
7611609 | Valia et al. | Nov 2009 | B1 |
7644711 | Creel | Jan 2010 | B2 |
7722843 | Srinivasachar | May 2010 | B1 |
7727307 | Winkler | Jun 2010 | B2 |
7785447 | Eatough et al. | Aug 2010 | B2 |
7803627 | Hodges et al. | Sep 2010 | B2 |
7823401 | Takeuchi et al. | Nov 2010 | B2 |
7827689 | Crane | Nov 2010 | B2 |
7998316 | Barkdoll | Aug 2011 | B2 |
8071060 | Ukai et al. | Dec 2011 | B2 |
8079751 | Kapila et al. | Dec 2011 | B2 |
8080088 | Srinivasachar | Dec 2011 | B1 |
8146376 | Williams et al. | Apr 2012 | B1 |
8152970 | Barkdoll et al. | Apr 2012 | B2 |
8172930 | Barkdoll | May 2012 | B2 |
8236142 | Westbrook | Aug 2012 | B2 |
8266853 | Bloom et al. | Sep 2012 | B2 |
8383055 | Palmer | Feb 2013 | B2 |
8398935 | Howell et al. | Mar 2013 | B2 |
8409405 | Kim et al. | Apr 2013 | B2 |
8500881 | Orita et al. | Aug 2013 | B2 |
8515508 | Kawamura et al. | Aug 2013 | B2 |
8568568 | Schuecker et al. | Oct 2013 | B2 |
8640635 | Bloom et al. | Feb 2014 | B2 |
8647476 | Kim et al. | Feb 2014 | B2 |
8800795 | Hwang | Aug 2014 | B2 |
8956995 | Masatsugu et al. | Feb 2015 | B2 |
8980063 | Kim et al. | Mar 2015 | B2 |
9039869 | Kim et al. | May 2015 | B2 |
9057023 | Reichelt et al. | Jun 2015 | B2 |
9103234 | Gu et al. | Aug 2015 | B2 |
9169439 | Sarpen et al. | Oct 2015 | B2 |
9193913 | Quanci et al. | Nov 2015 | B2 |
9193915 | West et al. | Nov 2015 | B2 |
9200225 | Barkdoll et al. | Dec 2015 | B2 |
9238778 | Quanci et al. | Jan 2016 | B2 |
9243186 | Quanci et al. | Jan 2016 | B2 |
9249357 | Quanci et al. | Feb 2016 | B2 |
9273249 | Quanci et al. | Mar 2016 | B2 |
9273250 | Choi et al. | Mar 2016 | B2 |
9321965 | Barkdoll | Apr 2016 | B2 |
9359554 | Quanci et al. | Jun 2016 | B2 |
9404043 | Kim | Aug 2016 | B2 |
9463980 | Fukada et al. | Oct 2016 | B2 |
9498786 | Pearson | Nov 2016 | B2 |
9580656 | Quanci et al. | Feb 2017 | B2 |
9672499 | Quanci et al. | Jun 2017 | B2 |
9708542 | Quanci et al. | Jul 2017 | B2 |
9862888 | Quanci et al. | Jan 2018 | B2 |
9976089 | Quanci et al. | May 2018 | B2 |
10016714 | Quanci et al. | Jul 2018 | B2 |
10041002 | Quanci et al. | Aug 2018 | B2 |
10047295 | Chun et al. | Aug 2018 | B2 |
10047296 | Chun et al. | Aug 2018 | B2 |
10053627 | Sarpen et al. | Aug 2018 | B2 |
10233392 | Quanci et al. | Mar 2019 | B2 |
10308876 | Quanci et al. | Jun 2019 | B2 |
10323192 | Quanci et al. | Jun 2019 | B2 |
10392563 | Kim et al. | Aug 2019 | B2 |
10435042 | Weymouth | Oct 2019 | B1 |
10526541 | West et al. | Jan 2020 | B2 |
10578521 | Dinakaran et al. | Mar 2020 | B1 |
10611965 | Quanci et al. | Apr 2020 | B2 |
10619101 | Quanci et al. | Apr 2020 | B2 |
10732621 | Cella et al. | Aug 2020 | B2 |
10877007 | Steele et al. | Dec 2020 | B2 |
10883051 | Quanci et al. | Jan 2021 | B2 |
10920148 | Quanci et al. | Feb 2021 | B2 |
10927303 | Choi et al. | Feb 2021 | B2 |
10947455 | Quanci et al. | Mar 2021 | B2 |
10968393 | West et al. | Apr 2021 | B2 |
10968395 | Quanci et al. | Apr 2021 | B2 |
10975309 | Quanci et al. | Apr 2021 | B2 |
10975310 | Quanci et al. | Apr 2021 | B2 |
10975311 | Quanci et al. | Apr 2021 | B2 |
1378782 | Floyd | May 2021 | A1 |
11008517 | Chun et al. | May 2021 | B2 |
11008518 | Quanci et al. | May 2021 | B2 |
11021655 | Quanci et al. | Jun 2021 | B2 |
11053444 | Quanci et al. | Jul 2021 | B2 |
11098252 | Quanci et al. | Aug 2021 | B2 |
11117087 | Quanci | Sep 2021 | B2 |
11142699 | West et al. | Oct 2021 | B2 |
1429346 | Hom | Sep 2022 | A1 |
20020170605 | Shiraishi et al. | Nov 2002 | A1 |
20030014954 | Ronning et al. | Jan 2003 | A1 |
20030015809 | Carson | Jan 2003 | A1 |
20030057083 | Eatough et al. | Mar 2003 | A1 |
20040220840 | Bonissone et al. | Nov 2004 | A1 |
20050087767 | Fitzgerald et al. | Apr 2005 | A1 |
20050096759 | Benjamin et al. | May 2005 | A1 |
20060029532 | Breen et al. | Feb 2006 | A1 |
20060102420 | Huber et al. | May 2006 | A1 |
20060149407 | Markham et al. | Jul 2006 | A1 |
20070087946 | Quest et al. | Apr 2007 | A1 |
20070102278 | Inamasu et al. | May 2007 | A1 |
20070116619 | Taylor et al. | May 2007 | A1 |
20070251198 | Witter | Nov 2007 | A1 |
20080028935 | Andersson | Feb 2008 | A1 |
20080179165 | Chen et al. | Jul 2008 | A1 |
20080250863 | Moore | Oct 2008 | A1 |
20080257236 | Green | Oct 2008 | A1 |
20080271985 | Yamasaki | Nov 2008 | A1 |
20080289305 | Girondi | Nov 2008 | A1 |
20090007785 | Kimura et al. | Jan 2009 | A1 |
20090032385 | Engle | Feb 2009 | A1 |
20090105852 | Wintrich et al. | Apr 2009 | A1 |
20090152092 | Kim et al. | Jun 2009 | A1 |
20090162269 | Barger et al. | Jun 2009 | A1 |
20090217576 | Kim et al. | Sep 2009 | A1 |
20090257932 | Canari et al. | Oct 2009 | A1 |
20090283395 | Hippe | Nov 2009 | A1 |
20100015564 | Chun et al. | Jan 2010 | A1 |
20100095521 | Kartal et al. | Apr 2010 | A1 |
20100106310 | Grohman | Apr 2010 | A1 |
20100113266 | Abe et al. | May 2010 | A1 |
20100115912 | Worley | May 2010 | A1 |
20100119425 | Palmer | May 2010 | A1 |
20100181297 | Whysail | Jul 2010 | A1 |
20100196597 | Di Loreto | Aug 2010 | A1 |
20100276269 | Schuecker et al. | Nov 2010 | A1 |
20100287871 | Bloom et al. | Nov 2010 | A1 |
20100300867 | Kim et al. | Dec 2010 | A1 |
20100314234 | Knoch et al. | Dec 2010 | A1 |
20110000284 | Kumar et al. | Jan 2011 | A1 |
20110014406 | Coleman et al. | Jan 2011 | A1 |
20110048917 | Kim et al. | Mar 2011 | A1 |
20110083314 | Baird | Apr 2011 | A1 |
20110088600 | McRae | Apr 2011 | A1 |
20110120852 | Kim | May 2011 | A1 |
20110144406 | Masatsugu et al. | Jun 2011 | A1 |
20110168482 | Merchant et al. | Jul 2011 | A1 |
20110174301 | Haydock et al. | Jul 2011 | A1 |
20110192395 | Kim | Aug 2011 | A1 |
20110198206 | Kim et al. | Aug 2011 | A1 |
20110223088 | Chang et al. | Sep 2011 | A1 |
20110253521 | Kim | Oct 2011 | A1 |
20110291827 | Baldocchi et al. | Dec 2011 | A1 |
20110313218 | Dana | Dec 2011 | A1 |
20110315538 | Kim et al. | Dec 2011 | A1 |
20120031076 | Frank et al. | Feb 2012 | A1 |
20120125709 | Merchant et al. | May 2012 | A1 |
20120152720 | Reichelt et al. | Jun 2012 | A1 |
20120177541 | Mutsuda et al. | Jul 2012 | A1 |
20120179421 | Dasgupta | Jul 2012 | A1 |
20120180133 | Ai-Harbi et al. | Jul 2012 | A1 |
20120228115 | Westbrook | Sep 2012 | A1 |
20120247939 | Kim et al. | Oct 2012 | A1 |
20120305380 | Wang et al. | Dec 2012 | A1 |
20120312019 | Rechtman | Dec 2012 | A1 |
20130020781 | Kishikawa | Jan 2013 | A1 |
20130045149 | Miller | Feb 2013 | A1 |
20130213114 | Wetzig et al. | Aug 2013 | A1 |
20130216717 | Rago et al. | Aug 2013 | A1 |
20130220373 | Kim | Aug 2013 | A1 |
20130306462 | Kim et al. | Nov 2013 | A1 |
20140033917 | Rodgers et al. | Feb 2014 | A1 |
20140039833 | Sharpe, Jr. et al. | Feb 2014 | A1 |
20140156584 | Motukuri et al. | Jun 2014 | A1 |
20140182683 | Quanci et al. | Jul 2014 | A1 |
20140208997 | Alferyev et al. | Jul 2014 | A1 |
20140224123 | Walters | Aug 2014 | A1 |
20140262726 | West et al. | Sep 2014 | A1 |
20150041304 | Kim | Feb 2015 | A1 |
20150122629 | Freimuth et al. | May 2015 | A1 |
20150143908 | Cetinkaya | May 2015 | A1 |
20150175433 | Micka et al. | Jun 2015 | A1 |
20150219530 | Li et al. | Aug 2015 | A1 |
20150226499 | Mikkelsen | Aug 2015 | A1 |
20150361347 | Ball et al. | Dec 2015 | A1 |
20160026193 | Rhodes et al. | Jan 2016 | A1 |
20160048139 | Samples et al. | Feb 2016 | A1 |
20160149944 | Obermeirer et al. | May 2016 | A1 |
20160154171 | Kato et al. | Jun 2016 | A1 |
20160319198 | Quanci et al. | Nov 2016 | A1 |
20160370082 | Olivo | Dec 2016 | A1 |
20170173519 | Naito | Jun 2017 | A1 |
20170182447 | Sappok et al. | Jun 2017 | A1 |
20170183569 | Quanci et al. | Jun 2017 | A1 |
20170226425 | Kim et al. | Aug 2017 | A1 |
20170261417 | Zhang | Sep 2017 | A1 |
20170313943 | Valdevies | Nov 2017 | A1 |
20170352243 | Quanci et al. | Dec 2017 | A1 |
20180340122 | Crum et al. | Nov 2018 | A1 |
20190169503 | Chun et al. | Jun 2019 | A1 |
20190317167 | LaBorde et al. | Oct 2019 | A1 |
20200071190 | Wiederin et al. | Mar 2020 | A1 |
20200139273 | Badiei | May 2020 | A1 |
20200173679 | O'Reilly et al. | Jun 2020 | A1 |
20200206669 | Quanci et al. | Jul 2020 | A1 |
20200206683 | Quanci et al. | Jul 2020 | A1 |
20200208058 | Quanci et al. | Jul 2020 | A1 |
20200208059 | Quanci et al. | Jul 2020 | A1 |
20200208060 | Quanci et al. | Jul 2020 | A1 |
20200208062 | Quanci et al. | Jul 2020 | A1 |
20200208063 | Quanci et al. | Jul 2020 | A1 |
20200208833 | Quanci et al. | Jul 2020 | A1 |
20200231876 | Quanci et al. | Jul 2020 | A1 |
20200407641 | Quanci et al. | Dec 2020 | A1 |
20210024828 | Ball et al. | Jan 2021 | A1 |
20210032541 | Crum et al. | Feb 2021 | A1 |
20210040391 | Quanci et al. | Feb 2021 | A1 |
20210130697 | Quanci et al. | May 2021 | A1 |
20210163821 | Quanci et al. | Jun 2021 | A1 |
20210163822 | Quanci et al. | Jun 2021 | A1 |
20210163823 | Quanci et al. | Jun 2021 | A1 |
20210198579 | Quanci et al. | Jul 2021 | A1 |
20210363426 | West et al. | Nov 2021 | A1 |
20210363427 | Quanci et al. | Nov 2021 | A1 |
20210371752 | Quanci et al. | Dec 2021 | A1 |
20210388270 | Choi et al. | Dec 2021 | A1 |
20220056342 | Quanci et al. | Feb 2022 | A1 |
20220298423 | Quanci et al. | Sep 2022 | A1 |
20220325183 | Quanci et al. | Oct 2022 | A1 |
20220356410 | Quanci et al. | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
1172895 | Aug 1984 | CA |
2775992 | May 2011 | CA |
2822841 | Jul 2012 | CA |
2822857 | Jul 2012 | CA |
2905110 | Sep 2014 | CA |
87212113 | Jun 1988 | CN |
87107195 | Jul 1988 | CN |
2064363 | Oct 1990 | CN |
2139121 | Jul 1993 | CN |
1092457 | Sep 1994 | CN |
1255528 | Jun 2000 | CN |
1270983 | Oct 2000 | CN |
2528771 | Feb 2002 | CN |
1358822 | Jul 2002 | CN |
2521473 | Nov 2002 | CN |
1468364 | Jan 2004 | CN |
1527872 | Sep 2004 | CN |
2668641 | Jan 2005 | CN |
1957204 | May 2007 | CN |
101037603 | Sep 2007 | CN |
101058731 | Oct 2007 | CN |
101157874 | Apr 2008 | CN |
101211495 | Jul 2008 | CN |
201121178 | Sep 2008 | CN |
101395248 | Mar 2009 | CN |
100510004 | Jul 2009 | CN |
101486017 | Jul 2009 | CN |
201264981 | Jul 2009 | CN |
101497835 | Aug 2009 | CN |
101509427 | Aug 2009 | CN |
101886466 | Nov 2010 | CN |
101910530 | Dec 2010 | CN |
102072829 | May 2011 | CN |
102155300 | Aug 2011 | CN |
2509188 | Nov 2011 | CN |
202226816 | May 2012 | CN |
202265541 | Jun 2012 | CN |
102584294 | Jul 2012 | CN |
202415446 | Sep 2012 | CN |
202470353 | Oct 2012 | CN |
103399536 | Nov 2013 | CN |
103468289 | Dec 2013 | CN |
103913193 | Jul 2014 | CN |
203981700 | Dec 2014 | CN |
104498059 | Apr 2015 | CN |
105137947 | Dec 2015 | CN |
105189704 | Dec 2015 | CN |
105264448 | Jan 2016 | CN |
105467949 | Apr 2016 | CN |
106661456 | May 2017 | CN |
106687564 | May 2017 | CN |
107445633 | Dec 2017 | CN |
100500619 | Jun 2020 | CN |
201729 | Sep 1908 | DE |
212176 | Jul 1909 | DE |
1212037 | Mar 1966 | DE |
2720688 | Nov 1978 | DE |
3231697 | Jan 1984 | DE |
3328702 | Feb 1984 | DE |
3315738 | Mar 1984 | DE |
3329367 | Nov 1984 | DE |
3407487 | Jun 1985 | DE |
19545736 | Jun 1997 | DE |
19803455 | Aug 1999 | DE |
10122531 | Nov 2002 | DE |
10154785 | May 2003 | DE |
102005015301 | Oct 2006 | DE |
102006004669 | Aug 2007 | DE |
102006026521 | Dec 2007 | DE |
102009031436 | Jan 2011 | DE |
102011052785 | Dec 2012 | DE |
010510 | Oct 2008 | EA |
0126399 | Nov 1984 | EP |
0208490 | Jan 1987 | EP |
0903393 | Mar 1999 | EP |
1538503 | Jun 2005 | EP |
1860034 | Nov 2007 | EP |
2295129 | Mar 2011 | EP |
2468837 | Jun 2012 | EP |
2339664 | Aug 1977 | FR |
2517802 | Jun 1983 | FR |
2764978 | Dec 1998 | FR |
364236 | Jan 1932 | GB |
368649 | Mar 1932 | GB |
441784 | Jan 1936 | GB |
606340 | Aug 1948 | GB |
611524 | Nov 1948 | GB |
725865 | Mar 1955 | GB |
871094 | Jun 1961 | GB |
923205 | May 1963 | GB |
S50148405 | Dec 1975 | JP |
S5319301 | Feb 1978 | JP |
54054101 | Apr 1979 | JP |
S5453103 | Apr 1979 | JP |
57051786 | Mar 1982 | JP |
57051787 | Mar 1982 | JP |
57083585 | May 1982 | JP |
57090092 | Jun 1982 | JP |
S57172978 | Oct 1982 | JP |
58091788 | May 1983 | JP |
59051978 | Mar 1984 | JP |
59053589 | Mar 1984 | JP |
59071388 | Apr 1984 | JP |
59108083 | Jun 1984 | JP |
59145281 | Aug 1984 | JP |
60004588 | Jan 1985 | JP |
61106690 | May 1986 | JP |
62011794 | Jan 1987 | JP |
62285980 | Dec 1987 | JP |
01103694 | Apr 1989 | JP |
01249886 | Oct 1989 | JP |
H0319127 | Mar 1991 | JP |
03197588 | Aug 1991 | JP |
04159392 | Jun 1992 | JP |
H04178494 | Jun 1992 | JP |
H05230466 | Sep 1993 | JP |
H0649450 | Feb 1994 | JP |
H0654753 | Jul 1994 | JP |
H06264062 | Sep 1994 | JP |
H06299156 | Oct 1994 | JP |
07188668 | Jul 1995 | JP |
07216357 | Aug 1995 | JP |
H07204432 | Aug 1995 | JP |
H08104875 | Apr 1996 | JP |
08127778 | May 1996 | JP |
H10273672 | Oct 1998 | JP |
H11131074 | May 1999 | JP |
H11256166 | Sep 1999 | JP |
2000204373 | Jul 2000 | JP |
2000219883 | Aug 2000 | JP |
2001055576 | Feb 2001 | JP |
2001200258 | Jul 2001 | JP |
2002097472 | Apr 2002 | JP |
2002106941 | Apr 2002 | JP |
2003041258 | Feb 2003 | JP |
2003051082 | Feb 2003 | JP |
2003071313 | Mar 2003 | JP |
2003292968 | Oct 2003 | JP |
2003342581 | Dec 2003 | JP |
2004169016 | Jun 2004 | JP |
2005503448 | Feb 2005 | JP |
2005135422 | May 2005 | JP |
2005154597 | Jun 2005 | JP |
2005263983 | Sep 2005 | JP |
2005344085 | Dec 2005 | JP |
2006188608 | Jul 2006 | JP |
2007063420 | Mar 2007 | JP |
4101226 | Jun 2008 | JP |
2008231278 | Oct 2008 | JP |
2009019106 | Jan 2009 | JP |
2009073864 | Apr 2009 | JP |
2009073865 | Apr 2009 | JP |
2009135276 | Jun 2009 | JP |
2009144121 | Jul 2009 | JP |
2010229239 | Oct 2010 | JP |
2010248389 | Nov 2010 | JP |
2011504947 | Feb 2011 | JP |
2011068733 | Apr 2011 | JP |
2011102351 | May 2011 | JP |
2012102302 | May 2012 | JP |
2013006957 | Jan 2013 | JP |
2013510910 | Mar 2013 | JP |
2013189322 | Sep 2013 | JP |
2014040502 | Mar 2014 | JP |
2015094091 | May 2015 | JP |
2016169897 | Sep 2016 | JP |
1019960008754 | Oct 1996 | KR |
19990017156 | May 1999 | KR |
1019990054426 | Jul 1999 | KR |
20000042375 | Jul 2000 | KR |
100296700 | Oct 2001 | KR |
20030012458 | Feb 2003 | KR |
1020040020883 | Mar 2004 | KR |
20040107204 | Dec 2004 | KR |
20050053861 | Jun 2005 | KR |
20060132336 | Dec 2006 | KR |
100737393 | Jul 2007 | KR |
100797852 | Jan 2008 | KR |
20080069170 | Jul 2008 | KR |
20110010452 | Feb 2011 | KR |
101314288 | Apr 2011 | KR |
20120033091 | Apr 2012 | KR |
20130050807 | May 2013 | KR |
101318388 | Oct 2013 | KR |
20140042526 | Apr 2014 | KR |
20150011084 | Jan 2015 | KR |
20170038102 | Apr 2017 | KR |
20170058808 | May 2017 | KR |
20170103857 | Sep 2017 | KR |
101862491 | May 2018 | KR |
2083532 | Jul 1997 | RU |
2441898 | Feb 2012 | RU |
2493233 | Sep 2013 | RU |
1535880 | Jan 1990 | SU |
201241166 | Oct 2012 | TW |
201245431 | Nov 2012 | TW |
50580 | Oct 2002 | UA |
WO9012074 | Oct 1990 | WO |
WO9945083 | Sep 1999 | WO |
WO02062922 | Aug 2002 | WO |
WO2005023649 | Mar 2005 | WO |
WO2005031297 | Apr 2005 | WO |
WO2005115583 | Dec 2005 | WO |
WO2007103649 | Sep 2007 | WO |
WO2008034424 | Mar 2008 | WO |
WO2008105269 | Sep 2008 | WO |
WO2011000447 | Jan 2011 | WO |
WO2011126043 | Oct 2011 | WO |
WO2012029979 | Mar 2012 | WO |
WO2012031726 | Mar 2012 | WO |
WO2013023872 | Feb 2013 | WO |
WO2010107513 | Sep 2013 | WO |
WO2014021909 | Feb 2014 | WO |
WO2014043667 | Mar 2014 | WO |
WO2014105064 | Jul 2014 | WO |
WO2014153050 | Sep 2014 | WO |
WO2016004106 | Jan 2016 | WO |
WO2016033511 | Mar 2016 | WO |
WO2016086322 | Jun 2016 | WO |
Entry |
---|
U.S. Appl. No. 17/584,672, filed Jan. 26, 2022, Quanci et al. |
U.S. Appl. No. 17/521,061, filed Nov. 8, 2021, Crum et al. |
U.S. Appl. No. 17/526,477, filed Nov. 15, 2021, Quanci et al. |
U.S. Appl. No. 17/532,058, filed Nov. 22, 2021, Quanci et al. |
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, Mar. 3, 2021, Quanci et al. |
U.S. Appl. No. 17/190,720, filed Mar. 3, 2021, Mar. 3, 2021, West et al. |
U.S. Appl. No. 17/222,886, filed Apr. 5, 2021, Apr. 5, 2021, Quanci et al. |
U.S. Appl. No. 17/228,469, filed Apr. 12, 2021, Apr. 12, 2021, Quanci et al. |
U.S. Appl. No. 17/228,501, filed Apr. 12, 2021, Apr. 12, 2021, Quanci et al. |
U.S. Appl. No. 17/320,343, filed May 14, 2021, May 14, 2021, Quanci et al. |
U.S. Appl. No. 17/321,857, filed May 17, 2021, May 17, 2021, Quanci et al. |
U.S. Appl. No. 17/363,701, filed Jun. 30, 2021, Jun. 30, 2021, Quanci et al. |
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, Jul. 29, 2021, Quanci et al. |
U.S. Appl. No. 17/459,380, filed Aug. 27, 2021, Aug. 27, 2021, Quanci et al. |
U.S. Appl. No. 17/471,491, filed Sep. 10, 2021, Sep. 10, 2021, West et al. |
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010. |
Astrom, et al., “Feedback Systems: An Introduction for Scientists and Engineers,” Sep. 16, 2006, available on line at http://people/duke.edu/-hpgavin/SystemID/References/Astrom-Feedback-2006.pdf; 404 pages. |
Basset et al., “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Instn Meeh Engrs., vol. 215, Part C, p. 861-881 IMechIE 2001. |
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67. |
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64. |
Boyes, Walt. (2003), Instrumentation Reference Book (3rd Edition)—34.7.4.6 Infrared and Thermal Cameras, Elsevier. Online version available at: https://app.knovel.com/hotlink/pdf/id:kt004QMGV6/instrumentation-reference-2/ditigal-video. |
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages. |
“Conveyor Chain Designer Guild”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, available online at: http://www.renold/com/upload/renoldswitzerland/conveyor_chain_-_designer_guide.pdf. |
Costa, et al., “Edge Effects on the Flow Characteristics in a 90 deg Tee Junction,” Transactions of the ASME, Nov. 2006, vol. 128, pp. 1204-1217. |
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546. |
Database WPI, Week 199115, Thomson Scientific, Lond, GB; AN 1991-107552. |
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412. |
Industrial Furnace Design Handbook, Editor-in-Chief: First Design Institute of First Ministry of Machinery Industry, Beijing: Mechanical Industry Press, pp. 180-183, Oct. 1981. |
Joseph, B., “A tutorial on inferential control and its applications,” Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, 1999, pp. 3106-3118 vol. 5. |
Kerlin, Thomas (1999), Practical Thermocouple Thermometry—1.1 The Thermocouple. ISA. Online version available at https:app.knovel.com/pdf/id:kt007XPTM3/practical-thermocouple/the-thermocouple. |
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32. |
Knoerzer et al. “Jewell-Thompson Non-Recovery Cokemaking”, Steel Times, Fuel & Metallurgical Journals Ltd. London, GB, vol. 221, No. 4, Apr. 1, 1993, pp. 172-173, 184. |
Madias, et al., “A review on stamped charging of coals” (2013). Available at https://www.researchgate.net/publication/263887759_A_review_on_stamped_charging_of_coals. |
Metallurgical Coke MSDS, ArcelorMittal, May 30, 2011, available online at http://dofasco.arcelormittal.com/-/media/Files/A/Arcelormittal-Canada/material-safety/metallurgical-coke.pdf. |
“Middletown Coke Company HRSG Maintenance BACT Analysis Option 1—Individual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case #1—24.5 VM”, (Sep. 1, 2009), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplication/mcc/new/262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 * p. 7 * * pp. 8-11 *. |
Practical Technical Manual of Refractories, Baoyu Hu, etc., Beijing: Metallurgical Industry Press, Chapter 6; 2004, 6-30. |
Refractories for Ironmaking and Steelmaking: A History of Battles over High Temperatures; Kyoshi Sugita (Japan, Shaolin Zhang), 1995, p. 160, 2004, 2-29. |
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages. |
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25. |
Walker D N et al., “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental impact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue De Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23. |
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28. |
“What is dead-band control,” forum post by user “wireaddict” on AllAboutCircuits.com message board, Feb. 8, 2007, accessed Oct. 24, 2018 at https:/forum.allaboutcircuits.com/threads/what-is-dead-band-control.4728/; 8 pages. |
Yu et al., “Coke Oven Production Technology,” Lianoning Science and Technology Press, first edition, Apr. 2014, pp. 356-358. |
“Resources and Utilization of Coking Coal in China,” Mingxin Shen ed., Chemical Industry Press, first edition, Jan. 2007, pp. 242-243, 247. |
International Search Report and Written Opinion for PCT/US2021/030520; dated Sep. 16, 2021; 15 pages. |
U.S. Appl. No. 17/843,164, filed Jun. 17, 2022, Quanci et al. |
U.S. Appl. No. 17/947,520, filed Sep. 19, 2022, Quanci et al. |
U.S. Appl. No. 17/967,615, filed Oct. 17, 2022, Quanci et al. |
U.S. Appl. No. 18/047,916, filed Oct. 19, 2022, Quanci et al. |
U.S. Appl. No. 18/052,739, filed Nov. 4, 2022, Quanci et al. |
U.S. Appl. No. 18/052,760, filed Nov. 4, 2022, Quanci et al. |
“High Alumina Cement-Manufacture, Characteristics and Uses,” TheConstructor.org, https://theconstructor.org/concrete/high-alumina-cement/23686/; 12 pages. |
“Refractory Castables,” Victas.com, Dec. 28, 2011 (date obtained from WayBack Machine), https://www/vitcas.com/refactory-castables; 5 pages. |
U.S. Appl. No. 07/587,742, filed Sep. 25, 1990, now U.S. Pat. No. 5,114,542, titled Nonrecovery Coke Oven Battery and Method of Operation. |
U.S. Appl. No. 07/878,904, filed May 6, 1992, now U.S. Pat. No. 5,318,671, titled Method of Operation of Nonrecovery Coke Oven Battery. |
U.S. Appl. No. 09/783,195, filed Feb. 14, 2001, now U.S. Pat. No. 6,596,128, titled Coke Oven Flue Gas Sharing. |
U.S. Appl. No. 07/886,804, filed May 22, 1992, now U.S. Pat. No. 5,228,955, titled High Strength Coke Oven Wall HAving Gas Flues Therein. |
U.S. Appl. No. 08/059,673, filed May 12, 1993, now U.S. Pat. No. 5,447,606, titled Method of and Apparatus for Capturing Coke Oven Charging Emissions. |
U.S. Appl. No. 08/914,140, filed Aug. 19, 1997, now U.S. Pat. No. 5,928,476, titled Nonrecovery Coke Oven Door. |
U.S. Appl. No. 09/680,187, filed Oct. 5, 2000, now U.S. Pat. No. 6,290,494, titled Method and Apparatus for Coal Coking. |
U.S. Appl. No. 10/933,866, filed Sep. 3, 2004, now U.S. Pat. No. 7,331,298, titled Coke Oven Rotary Wedge Door Latch. |
U.S. Appl. No. 11/424,566, filed Jun. 16, 2006, now U.S. Pat. No. 7,497,930, titled Method and Apparatus for Compacting Coal for a Coal Coking Process. |
U.S. Appl. No. 12/405,269, filed Mar. 17, 2009, now U.S. Pat. No. 7,998,316, titled Flat Push Coke Wet Quenching Apparatus and Process. |
U.S. Appl. No. 13/205,960, filed Aug. 9, 2011, now U.S. Pat. No. 9,321,965, titled Flat Push Coke Wet Quenching Apparatus and Process. |
U.S. Appl. No. 11/367,236, filed Mar. 3, 2006, now U.S. Pat. No. 8,152,970, titled Method and Apparatus for Producing Coke. |
U.S. Appl. No. 12/403,391, filed Mar. 13, 2009, now U.S. Pat. No. 8,172,930, titled Cleanable in SITU Spark Arrestor. |
U.S. Appl. No. 12/849,192, filed Aug. 3, 2010, now U.S. Pat. No. 9,200,225, titled Method and Apparatus for Compacting Coal for a Coal Coking Process. |
U.S. Appl. No. 13/631,215, filed Sep. 28, 2012, now U.S. Pat. No. 9,683,740, titled Methods for Handling Coal Processing Emissions and Associates Systems and Devices. |
U.S. Appl. No. 13/730,692, filed Dec. 28, 2012, now U.S. Pat. No. 9,193,913, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle. |
U.S. Appl. No. 14/921,723, filed Oct. 23, 2015, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle. |
U.S. Appl. No. 14/655,204, now U.S. Pat. No. 10,016,714, filed Jun. 24, 2015, titled Systems and Methods for Removing Mercury From Emissions. |
U.S. Appl. No. 16/000,516, now U.S. Pat. No. 11,117,087, filed Jun. 5, 2018, titled Systems and Methods for Removing Mercury From Emissions. |
U.S. Appl. No. 17/459,380, filed Jun. 5, 2018, titled Systems and Methods for Removing Mercury from Emissions. |
U.S. Appl. No. 13/830,971, filed Mar. 14, 2013, now U.S. Pat. No. 10,047,296, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods, now U.S. Pat. No. 10,047,295. |
U.S. Appl. No. 16/026,363, filed Jul. 3, 2018, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods. |
U.S. Appl. No. 13/730,796, filed Dec. 28, 2012, now U.S. Pat. No. 10,883,051, titled Methods and Systems for Improved Coke Quenching. |
U.S. Appl. No. 17/140,564, filed Jan. 4, 2021, titled Methods and Systems for Improved Coke Quenching. |
U.S. Appl. No. 13/730,598, filed Dec. 28, 2012, now U.S. Pat. No. 9,238,778, titled Systems and Methods for Improving Quenched Coke Recovery. |
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, now U.S. Pat. No. 9,862,888, titled Systems and Methods for Improving Quenching Coke Recovery. |
U.S. Appl. No. 15/830,320, filed Dec. 4, 2017, now U.S. Pat. No. 10,323,192, titled Systems and Methods for Improving Quenched Coke Recovery. |
U.S. Appl. No. 13/730,735, filed Dec. 28, 2012, now U.S. Pat. No. 9,273,249, titled Systems and Methods for Controlling Air Distribution in a Coke Oven. |
U.S. Appl. No. 14/655,013, filed Jun. 23, 2015, now U.S. Pat. No. 11,142,699, titled Vent Stack Lids and Associated Systems and Methods. |
U.S. Appl. No. 17/471,491, filed Sep. 10, 2021, now U.S. Pat. No. 11,142,699, titled Vent Stack Lids and Associated Systems and Methods. |
U.S. Appl. No. 13/843,166, now U.S. Pat. No. 9,273,250, filed Mar. 15, 2013, titled Methods and Systems for Improved Quench Tower Design. |
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, now U.S. Pat. No. 10,927,303, titled Methods for Improved Quench Tower Design. |
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, titled Methods and Systems for Improved Quench Tower Design. |
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, titled Systems and Methods for Maintaining a Hot Car in a Coke Plant. |
U.S. Appl. No. 16/897,957, filed Jun. 10, 2020, titled Systems and Methodds for Maintaining a Hot Car in a Coke Plant. |
U.S. Appl. No. 13/829,588, now U.S. Pat. No. 9,193,915, filed Mar. 14, 2013, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns. |
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, now U.S. Pat. No. 10,526,541, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns. |
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, now U.S. Pat. No. 10/968,383, titled Coke Ovens Having Monolith Component Construction. |
U.S. Appl. No. 16/704,689, filed Dec. 5, 2019, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns. |
U.S. Appl. No. 17/190,720, filed Mar. 3, 2021, titled Coke Ovens Having Monolith Component Construction. |
U.S. Appl. No. 13/589,009, filed Aug. 17, 2012, titled Automatic Draft Control Systems for Coke Plants. |
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, now U.S. Pat. No. 10,947,455, titled Automatic Draft Control System for Coke Plants. |
U.S. Appl. No. 17/176,391, filed Feb. 16, 2021, titled Automatic Draft Control System for Coke Plants. |
U.S. Appl. No. 13/588,996, now U.S. Pat. No. 9,243,186, filed Aug. 17, 2012, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 14/959,450, filed Dec. 4, 2015, now U.S. Pat. No. 10,041,002, titled Coke Plant Including Exhaust Gas Sharing, now U.S. Pat. No. 10,041,002. |
U.S. Appl. No. 16/047,198, filed Jul. 27, 2018, now U.S. Pat. No. 10,611,965, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, titled Coke Plant Including Exhaust Gas Sharing. |
U.S. Appl. No. 13/589,004, now U.S. Pat. No. 9,249,357, filed Aug. 17, 2012, titled Method and Apparatus for Volatile Matter Sharing in Stamp-Charged Coke Ovens. |
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor. |
U.S. Appl. No. 15/281,891, filed Sep. 30, 2016, now U.S. Pat. No. 10,975,309, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor. |
U.S. Appl. No. 17/191,119, filed Mar. 3, 2021, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor. |
U.S. Appl. No. 13/598,394, now U.S. Pat. No. 9,169,439, filed Aug. 29, 2012, titled Method and Apparatus for Testing Coal Coking Properties. |
U.S. Appl. No. 14/865,581, filed Sep. 25, 2015, now U.S. Pat. No. 10,053,627, titled MEthod and Apparatus for Testing Coal Coking Properties, now U.S. Pat. No. 10,053,627. |
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, titled Coke Oven Charging System. |
U.S. Appl. No. 15/443,246, now U.S. Pat. No. 9,976,089, filed Feb. 27, 2017, titled Coke Oven Charging System. |
U.S. Appl. No. 14/587,670, filed Dec. 31, 2014, now U.S. Pat. No. 10,619,101, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices. |
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices. |
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, now U.S. Pat. No. 10,975,310, titled Multi-Modal Beds of Coking Material. |
U.S. Appl. No. 14/983,837, filed Dec. 30, 2015, now U.S. Pat. No. 10,968,395, titled Multi-Modal Beds of Coking Material. |
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, not U.S. Pat. No. 10,975,311, titled Multi-Modal Beds of Coking Material. |
U.S. Appl. No. 17/222,886, filed Apr. 12, 2021, titled Multi-Modal Beds of Coking Material. |
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, now U.S. Pat. No. 11,060,032, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques. |
U.S. Appl. No. 17/172,476, filed Feb. 10, 2021, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques. |
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, now U.S. Pat. No. 10,233,392, titled Method and System for Optimizing Coke Plant Operation and Output. |
U.S. Appl. No. 16/251,352, filed Jan. 18, 2019, now U.S. Pat. No. 11,053,444, titled Method and System for Optimizing Coke Plant Operation and Output. |
U.S. Appl. No. 17/363,701, filed Jun. 30, 2021, titled Method and System for Optimizing Coke Plant Operation and Output. |
U.S. Appl. No. 14/839,551, filed Aug. 28, 2015, now U.S. Pat. No. 10,308,876, titled Burn Profiles for Coke Operations. |
U.S. Appl. No. 16/428,014, filed May 31, 2019, now U.S. Pat. No. 10,920,148, titled Improved Burn Profiles for Coke Operations. |
U.S. Appl. No. 17/155,219, filed Jan. 22, 2021, titled Improved Burn Profiles for Coke Operations. |
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, U.S. Pat. No. 9,708,542, titled Method and Systems for Optimizing Coke Plant Operation and Output. |
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, now U.S. Pat. No. 10,526,542, titled Method and System for Dynamically Charging a Coke Oven. |
U.S. Appl. No. 16/735,103, now U.S. Pat. No. 11,214,739, filed Jan. 6, 2020, titled Method and System for Dynamically Charging a Coke Oven. |
U.S. Appl. No. 17/526,477, filed Jan. 6, 2020, titled Method and System for Dynamically Charging a Coke Oven. |
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, titled Methods and Systems for Automatically Generating a Remedial Action in an Industrial Facility. |
U.S. Appl. No. 15/987,860, filed May 23, 2018, now U.S. Pat. No. 10,851,306, titled System and Method for Repairing a Coke Oven. |
U.S. Appl. No. 17/076,563, filed Oct. 21, 2020, now U.S. Pat. No. 11,186,778, titled System and Method for Repairing a Coke Oven. |
U.S. Appl. No. 17/521,061, filed Nov. 8, 2021, titled System and Method for Repairing a Coke Oven. |
U.S. Appl. No. 17/135,483, filed Dec. 28, 2020, titled Oven Health Optimization Systems and Methods. |
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, titled Oven Uptakes. |
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, titled Systems and Methods for Treating a Surface of a Coke Plant. |
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, titled Gaseous Tracer Leak Detection. |
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant Treatment Systems. |
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, titled Systems and Methods for Utilizing Flue Gas. |
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, now U.S. Pat. No. 11,008,518, titled Coke Plant Tunnel Repair and Flexible Joints. |
U.S. Appl. No. 17/320,343, filed May 14, 2021, titled Coke Plant Tunnel Repair and Flexible Joints. |
U.S. Appl. No. 16/729,170, now U.S. Pat. No. 11,193,069, filed Dec. 27, 2019, titled Coke Plant Tunnel Repair and Anchor Distribution. |
U.S. Appl. No. 17/532,058, filed Nov. 22, 2021, titled Coke Plant Tunnel Repair and Anchor Distribution. |
U.S. Appl. No. 16/729,157, filed Dec. 27, 2019, now U.S. Pat. No. 11,071,935, titled Particulate Detection for Industrial Facilities, and Associated Systems and Methods. |
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, now U.S. Pat. No. 11,021,655, titled Decarbonization of Coke Ovens and Associated Systems and Methods. |
U.S. Appl. No. 17/321,857, filed May 17, 2021, titled Decarbonization of Coke Ovens and Associated Systems and Methods. |
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, now U.S. Pat. No. 11,261,381, titled Heat Recovery Oven Foundation. |
U.S. Appl. No. 17/584,672, filed Jan. 26, 2022, titled Heat Recovery Oven Foundation. |
U.S. Appl. No. 16/729,219, now U.S. Pat. No. 11,098,252, filed Dec. 27, 2019, titled Spring-Loaded Heat Recovery Oven System and Method. |
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, titled Spring-Loaded Heat Recovery Oven System and Method. |
Number | Date | Country | |
---|---|---|---|
20210340454 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
63019405 | May 2020 | US |