High-quality coke products

Information

  • Patent Grant
  • 11767482
  • Patent Number
    11,767,482
  • Date Filed
    Monday, May 3, 2021
    3 years ago
  • Date Issued
    Tuesday, September 26, 2023
    8 months ago
Abstract
High quality coke products made in horizontal ovens such as heat recovery, non-recovery or Thompson ovens from an optimized coal blend. The coke products have unique properties such as an oblong shape and improved Coke Strength after Reaction (CSR) and Coke Reactivity Index (CRI) properties.
Description
TECHNICAL FIELD

This disclosure relates to high quality coke products having unique properties made in ovens including horizontal ovens such as heat recovery, non-recovery or Thompson ovens.


BACKGROUND

Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. Foundry coke is coke of very large size, usually at least 4 inches in diameter, and of exceptional quality such as very low content of impurities, and very high carbon content, strength, and stability. Foundry coke is used in foundry cupolas to melt iron and produce cast iron and ductile iron products. However, the production cost including the manufacturing cost, transportation cost, and environmental cost, for foundry coke is high. Therefore, there is a need in the art to improve the production process thereby to obtain high quality foundry coke at a higher yield and/or a lower cost. This application satisfies the need by providing a high-quality foundry coke with many unique and improved properties.





BRIEF DESCRIPTION OF THE DRAWINGS

This application contains at least one drawing executed in color. Copies of this application with color drawing(s) will be provided by the Office upon request and payment of the necessary fees.



FIG. 1 shows the shape, size, and color of HD+™ foundry coke produced with 10% wt breeze in comparison with commercially available foundry coke. Commercial foundry coke 1 is made in the USA in a conventional byproduct plant, shown on a piece of 8.5 inches×11 inches paper. Commercial foundry coke 2 has extremely high density and is made in a foreign country in a stamp charged byproduct plant, shown on a piece of 8.5 inches×11 inches paper.



FIG. 2 shows the CSR and CRI of HD+™ foundry coke obtained at 5% wt breeze loading (diamonds) and at 8.5% wt breeze loading (circles) in comparison to the CSR and CRI for regular Met Coke (squares) from literature (Diez et al., International Journal of Coal Geology 50: 389-412 (2002)).



FIGS. 3A-3C show the simulation of packing tests for coke pieces having a uniform size of (10 inches×10 inches) (FIG. 3A), coke pieces having a uniform size of (4 inches×10 inches) (FIG. 3B), and coke pieces having random sizes (FIG. 3C).



FIG. 4 shows variability from repeat runs from stochastic nature of simulation in packing tests for cupola.



FIG. 5 shows an example of the calculation of hydraulic radius and an example of user's output of the calculation.





DETAILED DESCRIPTION

Disclosed herein are high quality HD+™ coke products, in particular, HD+™ foundry coke having unique properties. The coking process produces coke products of various sizes in different fractions. Conventionally, the coke products have a substantially round shape and are classified based on size: foundry coke having a size of larger than 4 inches in diameter, egg (industrial coke) having a size of 2-4 inches, stove having a size of 1-2 inches or 1-1.5 inches, nut having a size of ⅜-1 inch, and breeze having a size of less than ⅜ inch. According to aspects of this disclosure, the HD+™ coke products disclosed herein are produced by a proprietary coking process using a predetermined coal blend including certain percentage of inerts or breeze in a horizontal oven such as a heat recovery oven, a non-recovery oven, or a Thompson oven. The HD+™ coke products can be classified differently. In one example, the HD+™ coke products include HD+™ foundry coke having a hydraulic diameter of over 3.5 inches, HD+™ egg coke having a hydraulic diameter of 1.5-3.5 inches, HD+™ breeze having a hydraulic diameter of 0.5-1.5 inches, and HD+™ waste fines having a size of less than 0.5 inch. All HD+™ breeze can be crushed to less than ⅜ inch and recycled to coal blend for the coking process, while waste fines may impose an issue with heat recovery due to potential burn loss and high ash content. Therefore, some or all waste fines are recycled depending on the coking process. HD+™ eggs are only recycled if additional breeze loading is required but mostly, HD+™ eggs can be sold and used in sugar beet and mineral wool or rock wool production.


In certain embodiments, disclosed herein is HD+™ coke having a shape distinguishable from commercially available foundry coke, which has a substantially round shape and a diameter of at least 4 inches. Unlike the conventional round-shaped, black foundry coke, the HD+™ foundry coke disclosed herein has an oblong “finger-shape”, as shown in FIG. 1. In certain embodiments, the HD+™ coke disclosed herein has a gray or light gray color.


In certain embodiments, the HD+™ foundry coke has a high aspect ratio of length to width. For example, the HD+™ foundry coke has a length between 2 and 36 inches, between 3 and 15 inches, between 4 and 12 inches, or between 4 and 10 inches and a width between 1.5 and 12 inches, between 2 and 8 inches, between 3 and 7 inches, between 2 and 4 inches, or between 4 and 6 inches. In some embodiments, the HD+™ foundry coke has a length of at least 2 inches, at least 3 inches, at least 4 inches, at least 5 inches, at least 6 inches, at least 7 inches, at least 8 inches, at least 9 inches, at least 10 inches, at least 11 inches, at least 12 inches, at least 13 inches, at least 14 inches, at least 15 inches, at least 16 inches, at least 17 inches, at least 18 inches, at least 19 inches, at 20 inches, at least 21 inches, at least 22 inches, at least 23 inches, at least 24 inches, at least 25 inches, at least 26 inches, at least 27 inches, at least 28 inches, at least 29 inches, at least 30 inches, at least 31 inches, at least 32 inches, at least 33 inches, at least 34 inches, at least 35 inches, or at least 36 inches. In some embodiments, the HD+™ foundry coke has a width of at least 1.5 inches, at least 2 inches, at least 3 inches, at least 4 inches, at least 5 inches, at least 6 inches, at least 7 inches, at least 8 inches, at least 9 inches, at least 10 inches, at least 11 inches, at least 12 inches, at least 13 inches, at least 14 inches, at least 15 inches, at least 16 inches, at least 17 inches, at least 18 inches. In certain embodiments, the HD+™ foundry coke has a length:width ratio of at least 1.1, at least 1.5, at least 2.0, at least 2.5, at least 3.0, at least 3.5, at least 4.0, at least 4.5, at least 5.0, at least 5.5, at least 6.0, at least 6.5, at least 7.0, at least 7.5, at least 8.0, at least 8.5, at least 9.0, at least 9.5, or at least 10.0. In some embodiments, the HD+™ foundry coke has a length:width ratio of at least 2.0, at least 3.0, or at least 4.0.


In certain embodiments, the HD+™ foundry coke is produced in a horizontal oven such as a heat recovery, non-recovery or Thompson oven by a proprietary process. In certain embodiments, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% of the total coke from a single production process or a single oven falls within the ranges of the length, width, and the ratio of length:width disclosed above. In certain embodiments, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% of the total foundry coke from a single production process falls or a single oven within the ranges of the length, width, and the ratio of length:width disclosed above.


In certain embodiments, the HD+™ foundry coke has a hydraulic diameter (Dh) larger than its actual or effective diameter; whereas the conventional round-shaped foundry coke has a Dh substantially the same as the actual diameter. Dh is a function of hydraulic radius (Rh), which is defined as follows:






Rh
=


ε

bDp


6


(

1
-

ε

b


)







εb is the interparticle porosity of the coke bed, calculated as follows:







ε

b

=

1
-


ρ

b


ρ

a








where ρb is the bulk density and pa is the apparent density of coke.


Dp is the harmonic mean particle diameter. Dp represents the size of a uniform coke that has the same surface-to-volume ratio as a nonuniform coke, calculated as follows:






Dp
=

1






i



fi
Di








where fi is the weight fraction of the coke charge having a diameter Di. For uniform size coke, Dp=Di.


In certain embodiments, the HD+™ foundry coke has a hydraulic diameter of at least 2 inches, at least 2.5 inches, at least 3 inches, at least 3.5 inches, at least 4 inches, at least 4.5 inches, at least 5 inches, at least 5.5 inches, at least 6 inches, at least 6.5 inches, at least 7 inches, at least 7.5 inches, at least 8 inches, at least 8.5 inches, at least 9 inches, at least 9.5 inches, at least 10 inches, at least 10.5 inches, at least 11 inches, at least 11.5 inches, at least 12 inches, at least 12.5 inches, at least 13 inches, at least 13.5 inches, at least 14 inches, at least 14.5 inches, at least 15 inches, at least 15.5 inches, at least 16 inches, at least 16.5 inches, at least 17 inches, at least 17.5 inches, or at least 18 inches. In certain embodiments, the HD+™ egg has a hydraulic diameter of between 1.5 and 3.5 inches or between 1.5 and 2 inches.


Coke Reactivity Index (CRI) represents the percentage of weight loss after Boudouard reaction: CO2+C(coke)=2CO in heated kiln for 2 hours. Coke Strength after Reaction (CSR) is based on a tumble strength test of coke remaining after the CRI kiln reaction. Boudouard reaction occurring at the surface of foundry coke in a cupola is undesirable because the reaction steals heat from iron melting and makes the process less efficient. Thus, a lower CRI is desirable such that the coke is inert enough to resist the Boudouard reaction. On the other hand, the CRI cannot be too low such that the coke is inert to resist combustion. As shown in FIG. 2, CSR and CRI has an inverse correlation. The conventional foundry coke has a CSR of between 10% and 15%, which correlates to a high CRI of at least 60%.


Unless specified otherwise, all percentages disclosed in this document refer to weight percentage. In certain embodiments, the HD+™ foundry coke disclosed herein has a CSR between 5% and 60%, between 5% and 50%, between 15% and 50%, or between 15% and 40%. In certain embodiments, the HD+™ coke has a CRI less than 40%, between 20% and 45%, between 25% and 40%, or between 31% and 37%. The percentage of breeze loading during the coking process affects the CSR of the HD+™ coke, where a higher breeze loading results in a decrease in CSR, shown in FIG. 2. According to aspects of the disclosure, CRI remains low even when CSR is significantly increased. According to one embodiment of the disclosure, HD+™ coke disclosed herein has a combination of a low CRI such as between 25% and 40% and a mid- to high-range CSR such as between 15% and 50%.


In certain embodiments, the HD+™ egg has the same or substantially the same CSR as the HD+™ foundry coke disclosed above. In certain embodiments, the HD+™ egg has the same or substantially the same CRI as the HD+™ foundry coke disclosed above.


After production from the oven, the HD+™ foundry coke is subject to quality control and screening before shipping and delivering to a customer. As used herein, the term “pre-processed” coke products means that the coke products are freshly produced from the oven and before screening, shipping and delivering to a customer; while the term “processed” coke products means that the coke products have been subjected to the process of screening, shipping, and delivering to a customer. In certain embodiments, the pre-processed HD+™ foundry coke has a 4-inch drop shatter of at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90% when using starting materials having a size of at least 4 inches for the industry standard drop shatter test. In certain embodiments, the pre-processed HD+™ foundry coke has a 2-inch drop shatter of at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% when using starting materials having a size of at least 4 inches for the industry standard drop shatter test. In certain embodiments, the processed HD+™ foundry coke has a 4-inch drop shatter of at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90% when using starting materials having a size of at least 4 inches for the industry standard drop shatter test. In certain embodiments, the processed HD+™ foundry coke has a 2-inch drop shatter of at least 80%, at least 85%, at least 90%, or at least 95% when using starting materials having a size of at least 4 inches for the industry standard drop shatter test.


In certain embodiments, the HD+™ foundry coke has one or more customized references, such as an ash content of between 5% and 12%, less than 10%, less than 9.5%, less than 9%, less than 8.5%, less than 8%, less than 7.5%, or less than 7%; a sulfur content of less than 1%, less than 0.9%, less than 0.8%, less than 0.7%, less than 0.6%, or less than 0.5%; a volatile matter (VM) content of less than 2%, less than 1%, between 0.4% and 1%, about 0.5%, or about 0.3%; a moisture content of less than 15%, less than 10%, less than 9%, less than 8%, less than 7%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, or between 1% and 10%; and a fixed carbon content of at least 80%, at least 85%, at least 90%, or at least 95%.


In certain embodiments, the total coke produced by the proprietary process has a size distribution as follows: the HD+™ foundry coke is at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, or at least 80%, the mid-size coke including the HD+™ egg and HD+™ breeze is between 5% and 35%, between 10% and 30%, or between 15% and 20%, the waste fines is less than 10%, less than 8%, or less than 5%. Preferably, the fraction of HD+™ foundry coke is at a highest possible percentage in the total coke produced.


Due to its unique size and shape, the HD+™ coke disclosed herein has an advantage of achieving a desirable packing density as demonstrated in the working example below.


Example 1: Packing Test

This example demonstrates a cupola packing simulation by a simplistic 2D random packing model. Comparing to the uniformly sized coke, coke having a wide size distribution is expected to have a higher bulk density, greater surface area, and lower bed porosity when loaded in an oven.



FIG. 3A shows a 2D simulated packing test of coke having a uniform size of 10 inches×10 inches. The circle represents the cross section of a cupola with a radius of 60 inches. Each of the squares represents a piece of foundry coke that is a cube 10 inches on a side. The coke pieces were sequentially attempted to be added in in random locations and with random rotations. If the new coke piece did not overlap with any previous pieces, then it was placed and otherwise discarded. Overlap was determined by the intersection of coke edges. In this particular simulation 10,000 pieces were attempted and only 61 were able to fit in.


The gross assumptions for this model include: (1) the next layer of pieces lays on top of this one; (2) the parts of the coke pieces that extend outside of the circle are ignored as a trivial error; (3) this cross-section is essentially equivalent to any other cross section in the cupola; (4) the relative density of the coke loading is proportional to the ratio of the sum of the areas of the squares to the area of the total circle; and (5) although not exactly accurate, the relative surface area is roughly proportional to the sum of perimeters of the coke pieces.


In a side-by-side comparison of fitting 10 inches×10 inches pieces (illustrated in FIG. 3A) and 4 inches×10 inches pieces (illustrated in FIG. 3B), the ratio of the covered area and the sum of perimeters of the coke pieces are compared. For the 10 inches×10 inches pieces, 58 pieces were placed, resulting in a 51% coverage of the cupola area of 11,309 square inches: (10×10×58)/11,309=51%; and a sum of perimeters of 2,320 inches: 2×(10+10)×58=2,320. For the 4 inches×10 inches pieces, 138 pieces were placed, resulting in a 49% coverage of the cupola area of 11,309 square inches: (4×10×138)/11,309=49%; and a sum of perimeters of 3,864 inches: 2×(4+10)×138=3,864.


The next improvement in the simulation was to: (1) Allow variation in the length and width of the coke pieces between a user defined maximum and minimum. Each piece is assumed have a square small end (i.e. L×W×W); and (2) Allow for the piece to tilt so smaller “corners” of the piece can fit in the allowed spaces. When full range of tilt was allowed, the simulation favored standing the pieces on small end. Therefore, the maximum tilt was limited to 30 degrees arbitrarily.


Based on this assumption, coke pieces of various sizes were fitted to cupola radius of 60 inches as shown in FIG. 3C. The coke pieces have a length between 4 inches and 10 inches and a width between 3 inches and 5 inches, and 10,000 attempts were made for the fitting. For the pieces of various sizes, 209 pieces were placed, resulting in a 47% coverage of the cupola area of 11,309 square inches: 5,365/11,309=47%; and a sum of perimeters of 4,383 inches. Therefore, the packing test demonstrates that the relative density of the coke loading did not change significantly, while the relative surface area increased significantly comparing the packing simulations in FIGS. 3A-C. The results are summarized in Table 1 below.









TABLE 1







Coke Pieces Packing Test Results










% of
Sum of



coverage area
perimeters


Coke Size
(packing density)
(relative surface area)





A (10 inches × 10 inches)
51%
2320


B (4 inches × 10 inches)
49%
3864


C ([3-5 inches] ×
47%
4383


[4-10 inches])










FIG. 4 shows variability from repeat runs from stochastic nature of simulation.


Example 2: Calculation of Hydraulic Radius

An Excel model was used to calculate hydraulic radius of the foundry coke based on its measured size distribution, the presumed bottom screen cut and the bulk density using the formulas disclosed above.


The oblong shape of our coke has the potential to create a sparse packing density which in turn increases the effective hydraulic radius. This in turn makes the cupola performance of the foundry improve due to the reduction of latent heat loss from the reaction of CO2 and coke to form CO which occurs on the surface of the coke. Higher interstitial volume to coke surface area ratios help on this factor.


Hydraulic radius can also be improved by cutting out the small coke but the yield will be compromised. The oblong coke shape may prove to be a significant cupola performance benefit.


The bulk density of the screened coke, as well as unscreened coke, is measured and can be used in the calculation. The calculation results are shown in FIG. 5.


From the foregoing it will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the technology. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. Thus, the disclosure is not limited except as by the appended claims.

Claims
  • 1. A coke having a hydraulic diameter (Dh) greater than the actual diameter of the coke, wherein the coke has a Coke Reactivity Index (CRI) between 20-45%, a Coke Strength after Reaction (CSR) between 15% and 40%, and a sulfur content less than 1.0%.
  • 2. The coke of claim 1, wherein the Dh is at least 5 inches.
  • 3. The coke of claim 2, wherein the CRI is between 25% and 40%.
  • 4. The coke of claim 3, wherein the CRI is 25-45%.
  • 5. The coke of claim 1, wherein the coke has a 4-inch drop shatter of at least 60% when using a starting material having a size of at least 4 inches in a drop shatter test.
  • 6. The coke of claim 1, wherein the coke has a 2-inch drop shatter of at least 80% when using a starting material having a size of at least 4 inches in a drop shatter test.
  • 7. The coke of claim 1, wherein the coke has a 4-inch drop shatter of at least 30% when using a starting material having a size of at least 4 inches in a drop shatter test.
  • 8. The coke of claim 1, wherein the coke has a 2-inch drop shatter of at least 40% when using a starting material having a size of at least 4 inches in a drop shatter test.
  • 9. A coke having a hydraulic diameter (Dh) greater than the actual diameter of the coke, wherein the coke has a Coke Reactivity Index (CRI) between 20-45%, a Coke Strength after Reaction (CSR) between 5% and 60%, and, a fixed carbon content at least 80%.
  • 10. A coke having a hydraulic diameter (Dh) greater than the actual diameter of the coke, wherein the coke has a Coke Reactivity Index (CRI) between 20-45%, a Coke Strength after Reaction (CSR) between 15% and 40%, and an ash content less than 10%.
  • 11. The coke of claim 1, wherein the coke has a sulfur content of less than 0.5%.
  • 12. A coke having a hydraulic diameter (Dh) greater than the actual diameter of the coke, wherein the coke has a Coke Reactivity Index (CRI) between 20-45%, a Coke Strength after Reaction (CSR) between 15% and 40%, and, a volatile matter (VM) content of less than 2%.
  • 13. A coke having a hydraulic diameter (Dh) greater than the actual diameter of the coke, wherein the coke has a Coke Reactivity Index (CRI) between 20-45%, a Coke Strength after Reaction (CSR) between 15% and 40%, and a moisture content between 1% and 10%.
  • 14. A coke having a hydraulic diameter (Dh) greater than the actual diameter of the coke, wherein the coke has a Coke Reactivity Index (CRI) between 20-45%, a Coke Strength after Reaction (CSR) between 5% and 60%, and a gray or light gray color.
PRIORITY CLAIM

This application claims priority to U.S. Provisional Application No. 63/019,405, filed on May 3, 2020, the content of which is hereby incorporated by reference in its entirety.

US Referenced Citations (511)
Number Name Date Kind
425797 Hunt Apr 1890 A
469868 Osbourn Mar 1892 A
705926 Hemingway Jul 1902 A
760372 Beam May 1904 A
845719 Schniewind Feb 1907 A
875989 Garner Jan 1908 A
976580 Krause Jul 1909 A
1140798 Carpenter May 1915 A
1424777 Schondeling Aug 1922 A
1430027 Plantinga Sep 1922 A
1486401 Van Ackeren Mar 1924 A
1530995 Geiger Mar 1925 A
1572391 Klaiber Feb 1926 A
1677973 Marquard Jul 1928 A
1705039 Thornhill Mar 1929 A
1721813 Geipert Jul 1929 A
1757682 Palm May 1930 A
1818370 Wine Aug 1931 A
1818994 Kreisinger Aug 1931 A
1830951 Lovett Nov 1931 A
1848818 Becker Mar 1932 A
1895202 Montgomery Jan 1933 A
1947499 Schrader et al. Feb 1934 A
1955962 Jones Apr 1934 A
1979507 Underwood Nov 1934 A
2075337 Burnaugh Mar 1937 A
2141035 Daniels Dec 1938 A
2195466 Otto Apr 1940 A
2235970 Wilputte Mar 1941 A
2340283 Vladu Jan 1944 A
2340981 Otto Feb 1944 A
2394173 Harris et al. Feb 1946 A
2424012 Bangham et al. Jul 1947 A
2486199 Nier Oct 1949 A
2609948 Laveley Sep 1952 A
2641575 Otto Jun 1953 A
2649978 Smith Aug 1953 A
2667185 Beavers Jan 1954 A
2723725 Keiffer Nov 1955 A
2756842 Chamberlin et al. Jul 1956 A
2813708 Frey Nov 1957 A
2827424 Homan Mar 1958 A
2873816 Emil et al. Feb 1959 A
2902991 Whitman Sep 1959 A
2907698 Schulz Oct 1959 A
2968083 Lentz et al. Jan 1961 A
3015893 McCreary Jan 1962 A
3026715 Briggs Mar 1962 A
3033764 Hannes May 1962 A
3175961 Samson Mar 1965 A
3199135 Trucker Aug 1965 A
3224805 Clyatt Dec 1965 A
3259551 Thompson, Jr. Jul 1966 A
3265044 Juchtern Aug 1966 A
3267913 Jakob Aug 1966 A
3327521 Briggs Jun 1967 A
3342990 Barrington et al. Sep 1967 A
3444046 Harlow May 1969 A
3444047 Wilde May 1969 A
3448012 Allred Jun 1969 A
3453839 Sabin Jul 1969 A
3462345 Kernan Aug 1969 A
3511030 Brown et al. May 1970 A
3542650 Kulakov Nov 1970 A
3545470 Paton Dec 1970 A
3587198 Hensel Jun 1971 A
3591827 Hall Jul 1971 A
3592742 Thompson Jul 1971 A
3616408 Hickam Oct 1971 A
3623511 Levin Nov 1971 A
3630852 Nashan et al. Dec 1971 A
3652403 Knappstein et al. Mar 1972 A
3676305 Cremer Jul 1972 A
3709794 Kinzler et al. Jan 1973 A
3710551 Sved Jan 1973 A
3746626 Morrison, Jr. Jul 1973 A
3748235 Pries Jul 1973 A
3784034 Thompson Jan 1974 A
3806032 Pries Apr 1974 A
3811572 Tatterson May 1974 A
3836161 Pries Oct 1974 A
3839156 Jakobi et al. Oct 1974 A
3844900 Schulte Oct 1974 A
3857758 Mole Dec 1974 A
3875016 Schmidt-Balve Apr 1975 A
3876143 Rossow et al. Apr 1975 A
3876506 Dix et al. Apr 1975 A
3878053 Hyde Apr 1975 A
3894302 Lasater Jul 1975 A
3897312 Armour et al. Jul 1975 A
3906992 Leach Sep 1975 A
3912091 Thompson Oct 1975 A
3912597 MacDonald Oct 1975 A
3917458 Polak Nov 1975 A
3928144 Jakimowicz Dec 1975 A
3930961 Sustarsic et al. Jan 1976 A
3933443 Lohrmann Jan 1976 A
3957591 Riecker May 1976 A
3959084 Price May 1976 A
3963582 Helm et al. Jun 1976 A
3969191 Bollenbach Jul 1976 A
3975148 Fukuda et al. Aug 1976 A
3979870 Moore Sep 1976 A
3984289 Sustarsic et al. Oct 1976 A
3990948 Lindgren Nov 1976 A
4004702 Szendroi Jan 1977 A
4004983 Pries Jan 1977 A
4025395 Ekholm et al. May 1977 A
4040910 Knappstein et al. Aug 1977 A
4045056 Kandakov et al. Aug 1977 A
4045299 McDonald Aug 1977 A
4059885 Oldengott Nov 1977 A
4065059 Jablin Dec 1977 A
4067462 Thompson Jan 1978 A
4077848 Grainer et al. Mar 1978 A
4083753 Rogers et al. Apr 1978 A
4086231 Ikio Apr 1978 A
4093245 Connor Jun 1978 A
4100033 Holter Jul 1978 A
4100491 Newman, Jr. et al. Jul 1978 A
4100889 Chayes Jul 1978 A
4111757 Carimboli Sep 1978 A
4124450 MacDonald Nov 1978 A
4133720 Franzer et al. Jan 1979 A
4135948 Mertens et al. Jan 1979 A
4141796 Clark et al. Feb 1979 A
4143104 van Konijnenburg et al. Mar 1979 A
4145195 Knappstein et al. Mar 1979 A
4147230 Ormond et al. Apr 1979 A
4162546 Shortell et al. Jul 1979 A
4176013 Garthus et al. Nov 1979 A
4181459 Price Jan 1980 A
4189272 Gregor et al. Feb 1980 A
4194951 Pries Mar 1980 A
4196053 Grohmann Apr 1980 A
4211608 Kwasnoski et al. Jul 1980 A
4211611 Bocsanczy Jul 1980 A
4213489 Cain Jul 1980 A
4213828 Calderon Jul 1980 A
4222748 Argo et al. Sep 1980 A
4222824 Flockenhaus et al. Sep 1980 A
4224109 Flockenhaus et al. Sep 1980 A
4225393 Gregor et al. Sep 1980 A
4226113 Pelletier et al. Oct 1980 A
4230498 Ruecki Oct 1980 A
4235830 Bennett et al. Nov 1980 A
4239602 La Bate Dec 1980 A
4248671 Belding Feb 1981 A
4249997 Schmitz Feb 1981 A
4263099 Porter Apr 1981 A
4268360 Tsuzuki et al. May 1981 A
4271814 Lister Jun 1981 A
4284478 Brommel Aug 1981 A
4285772 Kress Aug 1981 A
4287024 Thompson Sep 1981 A
4289479 Johnson Sep 1981 A
4289584 Chuss et al. Sep 1981 A
4289585 Wagener et al. Sep 1981 A
4296938 Offermann et al. Oct 1981 A
4299666 Ostmann Nov 1981 A
4302935 Cousimano Dec 1981 A
4303615 Jarmell et al. Dec 1981 A
4307673 Caughey Dec 1981 A
4314787 Kwasnik et al. Feb 1982 A
4316435 Nagamatsu et al. Feb 1982 A
4324568 Wilcox et al. Apr 1982 A
4330372 Cairns et al. May 1982 A
4334963 Stog Jun 1982 A
4336107 Irwin Jun 1982 A
4336843 Petty Jun 1982 A
4340445 Kucher et al. Jul 1982 A
4342195 Lo Aug 1982 A
4344820 Thompson Aug 1982 A
4344822 Schwartz et al. Aug 1982 A
4353189 Thiersch et al. Oct 1982 A
4366029 Bixby et al. Dec 1982 A
4373244 Mertens et al. Feb 1983 A
4375388 Hara et al. Mar 1983 A
4385962 Stewen et al. May 1983 A
4391674 Velmin et al. Jul 1983 A
4392824 Struck et al. Jul 1983 A
4394217 Holz et al. Jul 1983 A
4395269 Schuler Jul 1983 A
4396394 Li et al. Aug 1983 A
4396461 Neubaum et al. Aug 1983 A
4406619 Oldengott Sep 1983 A
4407237 Merritt Oct 1983 A
4421070 Sullivan Dec 1983 A
4431484 Weber et al. Feb 1984 A
4439277 Dix Mar 1984 A
4440098 Adams Apr 1984 A
4445977 Husher May 1984 A
4446018 Cerwick May 1984 A
4448541 Lucas May 1984 A
4452749 Kolvek et al. Jun 1984 A
4459103 Gieskieng Jul 1984 A
4469446 Goodboy Sep 1984 A
4474344 Bennett Oct 1984 A
4487137 Horvat et al. Dec 1984 A
4498786 Ruscheweyh Feb 1985 A
4506025 Kleeb et al. Mar 1985 A
4508539 Nakai Apr 1985 A
4518461 Gelfand May 1985 A
4527488 Lindgren Jul 1985 A
4564420 Spindeler et al. Jan 1986 A
4568426 Orlando Feb 1986 A
4570670 Johnson Feb 1986 A
4614567 Stahlherm et al. Sep 1986 A
4643327 Campbell Feb 1987 A
4645513 Kubota et al. Feb 1987 A
4655193 Blacket Apr 1987 A
4655804 Kercheval et al. Apr 1987 A
4666675 Parker et al. May 1987 A
4680167 Orlando Jul 1987 A
4690689 Malcosky et al. Sep 1987 A
4704195 Janicka et al. Nov 1987 A
4720262 Durr et al. Jan 1988 A
4724976 Lee Feb 1988 A
4726465 Kwasnik et al. Feb 1988 A
4732652 Durselen et al. Mar 1988 A
4749446 van Laar et al. Jun 1988 A
4793981 Doyle et al. Dec 1988 A
4824614 Jones et al. Apr 1989 A
4889698 Moller et al. Dec 1989 A
4898021 Weaver et al. Feb 1990 A
4918975 Voss Apr 1990 A
4919170 Kallinich et al. Apr 1990 A
4921483 Wijay May 1990 A
4929179 Breidenbach et al. May 1990 A
4941824 Holter et al. Jul 1990 A
5052922 Stokman et al. Oct 1991 A
5062925 Durselen et al. Nov 1991 A
5078822 Hodges et al. Jan 1992 A
5087328 Wegerer et al. Feb 1992 A
5114542 Childress et al. May 1992 A
5213138 Presz May 1993 A
5227106 Kolvek Jul 1993 A
5228955 Westbrook, III Jul 1993 A
5234601 Janke et al. Aug 1993 A
5318671 Pruitt Jun 1994 A
5370218 Johnson et al. Dec 1994 A
5398543 Fukushima et al. Mar 1995 A
5423152 Kolvek Jun 1995 A
5447606 Pruitt Sep 1995 A
5480594 Wilkerson et al. Jan 1996 A
5542650 Abel et al. Aug 1996 A
5597452 Hippe et al. Jan 1997 A
5603810 Michler Feb 1997 A
5622280 Mays et al. Apr 1997 A
5659110 Herden et al. Aug 1997 A
5670025 Baird Sep 1997 A
5687768 Albrecht et al. Nov 1997 A
5705037 Reinke et al. Jan 1998 A
5715962 McDonnell Feb 1998 A
5720855 Baird Feb 1998 A
5752548 Matsumoto et al. May 1998 A
5787821 Bhat et al. Aug 1998 A
5810032 Hong et al. Sep 1998 A
5816210 Yamaguchi Oct 1998 A
5857308 Dismore et al. Jan 1999 A
5881551 Dang Mar 1999 A
5913448 Mann et al. Jun 1999 A
5928476 Daniels Jul 1999 A
5966886 Di Loreto Oct 1999 A
5968320 Sprague Oct 1999 A
6002993 Naito et al. Dec 1999 A
6003706 Rosen Dec 1999 A
6017214 Sturgulewski Jan 2000 A
6059932 Sturgulewski May 2000 A
6139692 Tamura et al. Oct 2000 A
6152668 Knoch Nov 2000 A
6156688 Ando et al. Dec 2000 A
6173679 Bruckner et al. Jan 2001 B1
6187148 Sturgulewski Feb 2001 B1
6189819 Racine Feb 2001 B1
6290494 Barkdoll Sep 2001 B1
6412221 Emsbo Jul 2002 B1
6495268 Harth, III et al. Dec 2002 B1
6539602 Ozawa et al. Apr 2003 B1
6596128 Westbrook Jul 2003 B2
6626984 Taylor Sep 2003 B1
6699035 Brooker Mar 2004 B2
6712576 Skarzenski et al. Mar 2004 B2
6758875 Reid et al. Jul 2004 B2
6786941 Reeves et al. Sep 2004 B2
6830660 Yamauchi et al. Dec 2004 B1
6907895 Johnson et al. Jun 2005 B2
6946011 Snyder Sep 2005 B2
6964236 Schucker Nov 2005 B2
7056390 Fratello Jun 2006 B2
7077892 Lee Jul 2006 B2
7314060 Chen et al. Jan 2008 B2
7331298 Barkdoll et al. Feb 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7497930 Barkdoll et al. Mar 2009 B2
7547377 Inamasu et al. Jun 2009 B2
7611609 Valia et al. Nov 2009 B1
7644711 Creel Jan 2010 B2
7722843 Srinivasachar May 2010 B1
7727307 Winkler Jun 2010 B2
7785447 Eatough et al. Aug 2010 B2
7803627 Hodges et al. Sep 2010 B2
7823401 Takeuchi et al. Nov 2010 B2
7827689 Crane Nov 2010 B2
7998316 Barkdoll Aug 2011 B2
8071060 Ukai et al. Dec 2011 B2
8079751 Kapila et al. Dec 2011 B2
8080088 Srinivasachar Dec 2011 B1
8146376 Williams et al. Apr 2012 B1
8152970 Barkdoll et al. Apr 2012 B2
8172930 Barkdoll May 2012 B2
8236142 Westbrook Aug 2012 B2
8266853 Bloom et al. Sep 2012 B2
8383055 Palmer Feb 2013 B2
8398935 Howell et al. Mar 2013 B2
8409405 Kim et al. Apr 2013 B2
8500881 Orita et al. Aug 2013 B2
8515508 Kawamura et al. Aug 2013 B2
8568568 Schuecker et al. Oct 2013 B2
8640635 Bloom et al. Feb 2014 B2
8647476 Kim et al. Feb 2014 B2
8800795 Hwang Aug 2014 B2
8956995 Masatsugu et al. Feb 2015 B2
8980063 Kim et al. Mar 2015 B2
9039869 Kim et al. May 2015 B2
9057023 Reichelt et al. Jun 2015 B2
9103234 Gu et al. Aug 2015 B2
9169439 Sarpen et al. Oct 2015 B2
9193913 Quanci et al. Nov 2015 B2
9193915 West et al. Nov 2015 B2
9200225 Barkdoll et al. Dec 2015 B2
9238778 Quanci et al. Jan 2016 B2
9243186 Quanci et al. Jan 2016 B2
9249357 Quanci et al. Feb 2016 B2
9273249 Quanci et al. Mar 2016 B2
9273250 Choi et al. Mar 2016 B2
9321965 Barkdoll Apr 2016 B2
9359554 Quanci et al. Jun 2016 B2
9404043 Kim Aug 2016 B2
9463980 Fukada et al. Oct 2016 B2
9498786 Pearson Nov 2016 B2
9580656 Quanci et al. Feb 2017 B2
9672499 Quanci et al. Jun 2017 B2
9708542 Quanci et al. Jul 2017 B2
9862888 Quanci et al. Jan 2018 B2
9976089 Quanci et al. May 2018 B2
10016714 Quanci et al. Jul 2018 B2
10041002 Quanci et al. Aug 2018 B2
10047295 Chun et al. Aug 2018 B2
10047296 Chun et al. Aug 2018 B2
10053627 Sarpen et al. Aug 2018 B2
10233392 Quanci et al. Mar 2019 B2
10308876 Quanci et al. Jun 2019 B2
10323192 Quanci et al. Jun 2019 B2
10392563 Kim et al. Aug 2019 B2
10435042 Weymouth Oct 2019 B1
10526541 West et al. Jan 2020 B2
10578521 Dinakaran et al. Mar 2020 B1
10611965 Quanci et al. Apr 2020 B2
10619101 Quanci et al. Apr 2020 B2
10732621 Cella et al. Aug 2020 B2
10877007 Steele et al. Dec 2020 B2
10883051 Quanci et al. Jan 2021 B2
10920148 Quanci et al. Feb 2021 B2
10927303 Choi et al. Feb 2021 B2
10947455 Quanci et al. Mar 2021 B2
10968393 West et al. Apr 2021 B2
10968395 Quanci et al. Apr 2021 B2
10975309 Quanci et al. Apr 2021 B2
10975310 Quanci et al. Apr 2021 B2
10975311 Quanci et al. Apr 2021 B2
1378782 Floyd May 2021 A1
11008517 Chun et al. May 2021 B2
11008518 Quanci et al. May 2021 B2
11021655 Quanci et al. Jun 2021 B2
11053444 Quanci et al. Jul 2021 B2
11098252 Quanci et al. Aug 2021 B2
11117087 Quanci Sep 2021 B2
11142699 West et al. Oct 2021 B2
1429346 Hom Sep 2022 A1
20020170605 Shiraishi et al. Nov 2002 A1
20030014954 Ronning et al. Jan 2003 A1
20030015809 Carson Jan 2003 A1
20030057083 Eatough et al. Mar 2003 A1
20040220840 Bonissone et al. Nov 2004 A1
20050087767 Fitzgerald et al. Apr 2005 A1
20050096759 Benjamin et al. May 2005 A1
20060029532 Breen et al. Feb 2006 A1
20060102420 Huber et al. May 2006 A1
20060149407 Markham et al. Jul 2006 A1
20070087946 Quest et al. Apr 2007 A1
20070102278 Inamasu et al. May 2007 A1
20070116619 Taylor et al. May 2007 A1
20070251198 Witter Nov 2007 A1
20080028935 Andersson Feb 2008 A1
20080179165 Chen et al. Jul 2008 A1
20080250863 Moore Oct 2008 A1
20080257236 Green Oct 2008 A1
20080271985 Yamasaki Nov 2008 A1
20080289305 Girondi Nov 2008 A1
20090007785 Kimura et al. Jan 2009 A1
20090032385 Engle Feb 2009 A1
20090105852 Wintrich et al. Apr 2009 A1
20090152092 Kim et al. Jun 2009 A1
20090162269 Barger et al. Jun 2009 A1
20090217576 Kim et al. Sep 2009 A1
20090257932 Canari et al. Oct 2009 A1
20090283395 Hippe Nov 2009 A1
20100015564 Chun et al. Jan 2010 A1
20100095521 Kartal et al. Apr 2010 A1
20100106310 Grohman Apr 2010 A1
20100113266 Abe et al. May 2010 A1
20100115912 Worley May 2010 A1
20100119425 Palmer May 2010 A1
20100181297 Whysail Jul 2010 A1
20100196597 Di Loreto Aug 2010 A1
20100276269 Schuecker et al. Nov 2010 A1
20100287871 Bloom et al. Nov 2010 A1
20100300867 Kim et al. Dec 2010 A1
20100314234 Knoch et al. Dec 2010 A1
20110000284 Kumar et al. Jan 2011 A1
20110014406 Coleman et al. Jan 2011 A1
20110048917 Kim et al. Mar 2011 A1
20110083314 Baird Apr 2011 A1
20110088600 McRae Apr 2011 A1
20110120852 Kim May 2011 A1
20110144406 Masatsugu et al. Jun 2011 A1
20110168482 Merchant et al. Jul 2011 A1
20110174301 Haydock et al. Jul 2011 A1
20110192395 Kim Aug 2011 A1
20110198206 Kim et al. Aug 2011 A1
20110223088 Chang et al. Sep 2011 A1
20110253521 Kim Oct 2011 A1
20110291827 Baldocchi et al. Dec 2011 A1
20110313218 Dana Dec 2011 A1
20110315538 Kim et al. Dec 2011 A1
20120031076 Frank et al. Feb 2012 A1
20120125709 Merchant et al. May 2012 A1
20120152720 Reichelt et al. Jun 2012 A1
20120177541 Mutsuda et al. Jul 2012 A1
20120179421 Dasgupta Jul 2012 A1
20120180133 Ai-Harbi et al. Jul 2012 A1
20120228115 Westbrook Sep 2012 A1
20120247939 Kim et al. Oct 2012 A1
20120305380 Wang et al. Dec 2012 A1
20120312019 Rechtman Dec 2012 A1
20130020781 Kishikawa Jan 2013 A1
20130045149 Miller Feb 2013 A1
20130213114 Wetzig et al. Aug 2013 A1
20130216717 Rago et al. Aug 2013 A1
20130220373 Kim Aug 2013 A1
20130306462 Kim et al. Nov 2013 A1
20140033917 Rodgers et al. Feb 2014 A1
20140039833 Sharpe, Jr. et al. Feb 2014 A1
20140156584 Motukuri et al. Jun 2014 A1
20140182683 Quanci et al. Jul 2014 A1
20140208997 Alferyev et al. Jul 2014 A1
20140224123 Walters Aug 2014 A1
20140262726 West et al. Sep 2014 A1
20150041304 Kim Feb 2015 A1
20150122629 Freimuth et al. May 2015 A1
20150143908 Cetinkaya May 2015 A1
20150175433 Micka et al. Jun 2015 A1
20150219530 Li et al. Aug 2015 A1
20150226499 Mikkelsen Aug 2015 A1
20150361347 Ball et al. Dec 2015 A1
20160026193 Rhodes et al. Jan 2016 A1
20160048139 Samples et al. Feb 2016 A1
20160149944 Obermeirer et al. May 2016 A1
20160154171 Kato et al. Jun 2016 A1
20160319198 Quanci et al. Nov 2016 A1
20160370082 Olivo Dec 2016 A1
20170173519 Naito Jun 2017 A1
20170182447 Sappok et al. Jun 2017 A1
20170183569 Quanci et al. Jun 2017 A1
20170226425 Kim et al. Aug 2017 A1
20170261417 Zhang Sep 2017 A1
20170313943 Valdevies Nov 2017 A1
20170352243 Quanci et al. Dec 2017 A1
20180340122 Crum et al. Nov 2018 A1
20190169503 Chun et al. Jun 2019 A1
20190317167 LaBorde et al. Oct 2019 A1
20200071190 Wiederin et al. Mar 2020 A1
20200139273 Badiei May 2020 A1
20200173679 O'Reilly et al. Jun 2020 A1
20200206669 Quanci et al. Jul 2020 A1
20200206683 Quanci et al. Jul 2020 A1
20200208058 Quanci et al. Jul 2020 A1
20200208059 Quanci et al. Jul 2020 A1
20200208060 Quanci et al. Jul 2020 A1
20200208062 Quanci et al. Jul 2020 A1
20200208063 Quanci et al. Jul 2020 A1
20200208833 Quanci et al. Jul 2020 A1
20200231876 Quanci et al. Jul 2020 A1
20200407641 Quanci et al. Dec 2020 A1
20210024828 Ball et al. Jan 2021 A1
20210032541 Crum et al. Feb 2021 A1
20210040391 Quanci et al. Feb 2021 A1
20210130697 Quanci et al. May 2021 A1
20210163821 Quanci et al. Jun 2021 A1
20210163822 Quanci et al. Jun 2021 A1
20210163823 Quanci et al. Jun 2021 A1
20210198579 Quanci et al. Jul 2021 A1
20210363426 West et al. Nov 2021 A1
20210363427 Quanci et al. Nov 2021 A1
20210371752 Quanci et al. Dec 2021 A1
20210388270 Choi et al. Dec 2021 A1
20220056342 Quanci et al. Feb 2022 A1
20220298423 Quanci et al. Sep 2022 A1
20220325183 Quanci et al. Oct 2022 A1
20220356410 Quanci et al. Nov 2022 A1
Foreign Referenced Citations (219)
Number Date Country
1172895 Aug 1984 CA
2775992 May 2011 CA
2822841 Jul 2012 CA
2822857 Jul 2012 CA
2905110 Sep 2014 CA
87212113 Jun 1988 CN
87107195 Jul 1988 CN
2064363 Oct 1990 CN
2139121 Jul 1993 CN
1092457 Sep 1994 CN
1255528 Jun 2000 CN
1270983 Oct 2000 CN
2528771 Feb 2002 CN
1358822 Jul 2002 CN
2521473 Nov 2002 CN
1468364 Jan 2004 CN
1527872 Sep 2004 CN
2668641 Jan 2005 CN
1957204 May 2007 CN
101037603 Sep 2007 CN
101058731 Oct 2007 CN
101157874 Apr 2008 CN
101211495 Jul 2008 CN
201121178 Sep 2008 CN
101395248 Mar 2009 CN
100510004 Jul 2009 CN
101486017 Jul 2009 CN
201264981 Jul 2009 CN
101497835 Aug 2009 CN
101509427 Aug 2009 CN
101886466 Nov 2010 CN
101910530 Dec 2010 CN
102072829 May 2011 CN
102155300 Aug 2011 CN
2509188 Nov 2011 CN
202226816 May 2012 CN
202265541 Jun 2012 CN
102584294 Jul 2012 CN
202415446 Sep 2012 CN
202470353 Oct 2012 CN
103399536 Nov 2013 CN
103468289 Dec 2013 CN
103913193 Jul 2014 CN
203981700 Dec 2014 CN
104498059 Apr 2015 CN
105137947 Dec 2015 CN
105189704 Dec 2015 CN
105264448 Jan 2016 CN
105467949 Apr 2016 CN
106661456 May 2017 CN
106687564 May 2017 CN
107445633 Dec 2017 CN
100500619 Jun 2020 CN
201729 Sep 1908 DE
212176 Jul 1909 DE
1212037 Mar 1966 DE
2720688 Nov 1978 DE
3231697 Jan 1984 DE
3328702 Feb 1984 DE
3315738 Mar 1984 DE
3329367 Nov 1984 DE
3407487 Jun 1985 DE
19545736 Jun 1997 DE
19803455 Aug 1999 DE
10122531 Nov 2002 DE
10154785 May 2003 DE
102005015301 Oct 2006 DE
102006004669 Aug 2007 DE
102006026521 Dec 2007 DE
102009031436 Jan 2011 DE
102011052785 Dec 2012 DE
010510 Oct 2008 EA
0126399 Nov 1984 EP
0208490 Jan 1987 EP
0903393 Mar 1999 EP
1538503 Jun 2005 EP
1860034 Nov 2007 EP
2295129 Mar 2011 EP
2468837 Jun 2012 EP
2339664 Aug 1977 FR
2517802 Jun 1983 FR
2764978 Dec 1998 FR
364236 Jan 1932 GB
368649 Mar 1932 GB
441784 Jan 1936 GB
606340 Aug 1948 GB
611524 Nov 1948 GB
725865 Mar 1955 GB
871094 Jun 1961 GB
923205 May 1963 GB
S50148405 Dec 1975 JP
S5319301 Feb 1978 JP
54054101 Apr 1979 JP
S5453103 Apr 1979 JP
57051786 Mar 1982 JP
57051787 Mar 1982 JP
57083585 May 1982 JP
57090092 Jun 1982 JP
S57172978 Oct 1982 JP
58091788 May 1983 JP
59051978 Mar 1984 JP
59053589 Mar 1984 JP
59071388 Apr 1984 JP
59108083 Jun 1984 JP
59145281 Aug 1984 JP
60004588 Jan 1985 JP
61106690 May 1986 JP
62011794 Jan 1987 JP
62285980 Dec 1987 JP
01103694 Apr 1989 JP
01249886 Oct 1989 JP
H0319127 Mar 1991 JP
03197588 Aug 1991 JP
04159392 Jun 1992 JP
H04178494 Jun 1992 JP
H05230466 Sep 1993 JP
H0649450 Feb 1994 JP
H0654753 Jul 1994 JP
H06264062 Sep 1994 JP
H06299156 Oct 1994 JP
07188668 Jul 1995 JP
07216357 Aug 1995 JP
H07204432 Aug 1995 JP
H08104875 Apr 1996 JP
08127778 May 1996 JP
H10273672 Oct 1998 JP
H11131074 May 1999 JP
H11256166 Sep 1999 JP
2000204373 Jul 2000 JP
2000219883 Aug 2000 JP
2001055576 Feb 2001 JP
2001200258 Jul 2001 JP
2002097472 Apr 2002 JP
2002106941 Apr 2002 JP
2003041258 Feb 2003 JP
2003051082 Feb 2003 JP
2003071313 Mar 2003 JP
2003292968 Oct 2003 JP
2003342581 Dec 2003 JP
2004169016 Jun 2004 JP
2005503448 Feb 2005 JP
2005135422 May 2005 JP
2005154597 Jun 2005 JP
2005263983 Sep 2005 JP
2005344085 Dec 2005 JP
2006188608 Jul 2006 JP
2007063420 Mar 2007 JP
4101226 Jun 2008 JP
2008231278 Oct 2008 JP
2009019106 Jan 2009 JP
2009073864 Apr 2009 JP
2009073865 Apr 2009 JP
2009135276 Jun 2009 JP
2009144121 Jul 2009 JP
2010229239 Oct 2010 JP
2010248389 Nov 2010 JP
2011504947 Feb 2011 JP
2011068733 Apr 2011 JP
2011102351 May 2011 JP
2012102302 May 2012 JP
2013006957 Jan 2013 JP
2013510910 Mar 2013 JP
2013189322 Sep 2013 JP
2014040502 Mar 2014 JP
2015094091 May 2015 JP
2016169897 Sep 2016 JP
1019960008754 Oct 1996 KR
19990017156 May 1999 KR
1019990054426 Jul 1999 KR
20000042375 Jul 2000 KR
100296700 Oct 2001 KR
20030012458 Feb 2003 KR
1020040020883 Mar 2004 KR
20040107204 Dec 2004 KR
20050053861 Jun 2005 KR
20060132336 Dec 2006 KR
100737393 Jul 2007 KR
100797852 Jan 2008 KR
20080069170 Jul 2008 KR
20110010452 Feb 2011 KR
101314288 Apr 2011 KR
20120033091 Apr 2012 KR
20130050807 May 2013 KR
101318388 Oct 2013 KR
20140042526 Apr 2014 KR
20150011084 Jan 2015 KR
20170038102 Apr 2017 KR
20170058808 May 2017 KR
20170103857 Sep 2017 KR
101862491 May 2018 KR
2083532 Jul 1997 RU
2441898 Feb 2012 RU
2493233 Sep 2013 RU
1535880 Jan 1990 SU
201241166 Oct 2012 TW
201245431 Nov 2012 TW
50580 Oct 2002 UA
WO9012074 Oct 1990 WO
WO9945083 Sep 1999 WO
WO02062922 Aug 2002 WO
WO2005023649 Mar 2005 WO
WO2005031297 Apr 2005 WO
WO2005115583 Dec 2005 WO
WO2007103649 Sep 2007 WO
WO2008034424 Mar 2008 WO
WO2008105269 Sep 2008 WO
WO2011000447 Jan 2011 WO
WO2011126043 Oct 2011 WO
WO2012029979 Mar 2012 WO
WO2012031726 Mar 2012 WO
WO2013023872 Feb 2013 WO
WO2010107513 Sep 2013 WO
WO2014021909 Feb 2014 WO
WO2014043667 Mar 2014 WO
WO2014105064 Jul 2014 WO
WO2014153050 Sep 2014 WO
WO2016004106 Jan 2016 WO
WO2016033511 Mar 2016 WO
WO2016086322 Jun 2016 WO
Non-Patent Literature Citations (147)
Entry
U.S. Appl. No. 17/584,672, filed Jan. 26, 2022, Quanci et al.
U.S. Appl. No. 17/521,061, filed Nov. 8, 2021, Crum et al.
U.S. Appl. No. 17/526,477, filed Nov. 15, 2021, Quanci et al.
U.S. Appl. No. 17/532,058, filed Nov. 22, 2021, Quanci et al.
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, Mar. 3, 2021, Quanci et al.
U.S. Appl. No. 17/190,720, filed Mar. 3, 2021, Mar. 3, 2021, West et al.
U.S. Appl. No. 17/222,886, filed Apr. 5, 2021, Apr. 5, 2021, Quanci et al.
U.S. Appl. No. 17/228,469, filed Apr. 12, 2021, Apr. 12, 2021, Quanci et al.
U.S. Appl. No. 17/228,501, filed Apr. 12, 2021, Apr. 12, 2021, Quanci et al.
U.S. Appl. No. 17/320,343, filed May 14, 2021, May 14, 2021, Quanci et al.
U.S. Appl. No. 17/321,857, filed May 17, 2021, May 17, 2021, Quanci et al.
U.S. Appl. No. 17/363,701, filed Jun. 30, 2021, Jun. 30, 2021, Quanci et al.
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, Jul. 29, 2021, Quanci et al.
U.S. Appl. No. 17/459,380, filed Aug. 27, 2021, Aug. 27, 2021, Quanci et al.
U.S. Appl. No. 17/471,491, filed Sep. 10, 2021, Sep. 10, 2021, West et al.
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010.
Astrom, et al., “Feedback Systems: An Introduction for Scientists and Engineers,” Sep. 16, 2006, available on line at http://people/duke.edu/-hpgavin/SystemID/References/Astrom-Feedback-2006.pdf; 404 pages.
Basset et al., “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Instn Meeh Engrs., vol. 215, Part C, p. 861-881 IMechIE 2001.
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67.
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64.
Boyes, Walt. (2003), Instrumentation Reference Book (3rd Edition)—34.7.4.6 Infrared and Thermal Cameras, Elsevier. Online version available at: https://app.knovel.com/hotlink/pdf/id:kt004QMGV6/instrumentation-reference-2/ditigal-video.
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages.
“Conveyor Chain Designer Guild”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, available online at: http://www.renold/com/upload/renoldswitzerland/conveyor_chain_-_designer_guide.pdf.
Costa, et al., “Edge Effects on the Flow Characteristics in a 90 deg Tee Junction,” Transactions of the ASME, Nov. 2006, vol. 128, pp. 1204-1217.
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546.
Database WPI, Week 199115, Thomson Scientific, Lond, GB; AN 1991-107552.
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412.
Industrial Furnace Design Handbook, Editor-in-Chief: First Design Institute of First Ministry of Machinery Industry, Beijing: Mechanical Industry Press, pp. 180-183, Oct. 1981.
Joseph, B., “A tutorial on inferential control and its applications,” Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, 1999, pp. 3106-3118 vol. 5.
Kerlin, Thomas (1999), Practical Thermocouple Thermometry—1.1 The Thermocouple. ISA. Online version available at https:app.knovel.com/pdf/id:kt007XPTM3/practical-thermocouple/the-thermocouple.
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32.
Knoerzer et al. “Jewell-Thompson Non-Recovery Cokemaking”, Steel Times, Fuel & Metallurgical Journals Ltd. London, GB, vol. 221, No. 4, Apr. 1, 1993, pp. 172-173, 184.
Madias, et al., “A review on stamped charging of coals” (2013). Available at https://www.researchgate.net/publication/263887759_A_review_on_stamped_charging_of_coals.
Metallurgical Coke MSDS, ArcelorMittal, May 30, 2011, available online at http://dofasco.arcelormittal.com/-/media/Files/A/Arcelormittal-Canada/material-safety/metallurgical-coke.pdf.
“Middletown Coke Company HRSG Maintenance BACT Analysis Option 1—Individual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case #1—24.5 VM”, (Sep. 1, 2009), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplication/mcc/new/262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 * p. 7 * * pp. 8-11 *.
Practical Technical Manual of Refractories, Baoyu Hu, etc., Beijing: Metallurgical Industry Press, Chapter 6; 2004, 6-30.
Refractories for Ironmaking and Steelmaking: A History of Battles over High Temperatures; Kyoshi Sugita (Japan, Shaolin Zhang), 1995, p. 160, 2004, 2-29.
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages.
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25.
Walker D N et al., “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental impact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue De Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23.
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28.
“What is dead-band control,” forum post by user “wireaddict” on AllAboutCircuits.com message board, Feb. 8, 2007, accessed Oct. 24, 2018 at https:/forum.allaboutcircuits.com/threads/what-is-dead-band-control.4728/; 8 pages.
Yu et al., “Coke Oven Production Technology,” Lianoning Science and Technology Press, first edition, Apr. 2014, pp. 356-358.
“Resources and Utilization of Coking Coal in China,” Mingxin Shen ed., Chemical Industry Press, first edition, Jan. 2007, pp. 242-243, 247.
International Search Report and Written Opinion for PCT/US2021/030520; dated Sep. 16, 2021; 15 pages.
U.S. Appl. No. 17/843,164, filed Jun. 17, 2022, Quanci et al.
U.S. Appl. No. 17/947,520, filed Sep. 19, 2022, Quanci et al.
U.S. Appl. No. 17/967,615, filed Oct. 17, 2022, Quanci et al.
U.S. Appl. No. 18/047,916, filed Oct. 19, 2022, Quanci et al.
U.S. Appl. No. 18/052,739, filed Nov. 4, 2022, Quanci et al.
U.S. Appl. No. 18/052,760, filed Nov. 4, 2022, Quanci et al.
“High Alumina Cement-Manufacture, Characteristics and Uses,” TheConstructor.org, https://theconstructor.org/concrete/high-alumina-cement/23686/; 12 pages.
“Refractory Castables,” Victas.com, Dec. 28, 2011 (date obtained from WayBack Machine), https://www/vitcas.com/refactory-castables; 5 pages.
U.S. Appl. No. 07/587,742, filed Sep. 25, 1990, now U.S. Pat. No. 5,114,542, titled Nonrecovery Coke Oven Battery and Method of Operation.
U.S. Appl. No. 07/878,904, filed May 6, 1992, now U.S. Pat. No. 5,318,671, titled Method of Operation of Nonrecovery Coke Oven Battery.
U.S. Appl. No. 09/783,195, filed Feb. 14, 2001, now U.S. Pat. No. 6,596,128, titled Coke Oven Flue Gas Sharing.
U.S. Appl. No. 07/886,804, filed May 22, 1992, now U.S. Pat. No. 5,228,955, titled High Strength Coke Oven Wall HAving Gas Flues Therein.
U.S. Appl. No. 08/059,673, filed May 12, 1993, now U.S. Pat. No. 5,447,606, titled Method of and Apparatus for Capturing Coke Oven Charging Emissions.
U.S. Appl. No. 08/914,140, filed Aug. 19, 1997, now U.S. Pat. No. 5,928,476, titled Nonrecovery Coke Oven Door.
U.S. Appl. No. 09/680,187, filed Oct. 5, 2000, now U.S. Pat. No. 6,290,494, titled Method and Apparatus for Coal Coking.
U.S. Appl. No. 10/933,866, filed Sep. 3, 2004, now U.S. Pat. No. 7,331,298, titled Coke Oven Rotary Wedge Door Latch.
U.S. Appl. No. 11/424,566, filed Jun. 16, 2006, now U.S. Pat. No. 7,497,930, titled Method and Apparatus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 12/405,269, filed Mar. 17, 2009, now U.S. Pat. No. 7,998,316, titled Flat Push Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 13/205,960, filed Aug. 9, 2011, now U.S. Pat. No. 9,321,965, titled Flat Push Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 11/367,236, filed Mar. 3, 2006, now U.S. Pat. No. 8,152,970, titled Method and Apparatus for Producing Coke.
U.S. Appl. No. 12/403,391, filed Mar. 13, 2009, now U.S. Pat. No. 8,172,930, titled Cleanable in SITU Spark Arrestor.
U.S. Appl. No. 12/849,192, filed Aug. 3, 2010, now U.S. Pat. No. 9,200,225, titled Method and Apparatus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 13/631,215, filed Sep. 28, 2012, now U.S. Pat. No. 9,683,740, titled Methods for Handling Coal Processing Emissions and Associates Systems and Devices.
U.S. Appl. No. 13/730,692, filed Dec. 28, 2012, now U.S. Pat. No. 9,193,913, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle.
U.S. Appl. No. 14/921,723, filed Oct. 23, 2015, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle.
U.S. Appl. No. 14/655,204, now U.S. Pat. No. 10,016,714, filed Jun. 24, 2015, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 16/000,516, now U.S. Pat. No. 11,117,087, filed Jun. 5, 2018, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 17/459,380, filed Jun. 5, 2018, titled Systems and Methods for Removing Mercury from Emissions.
U.S. Appl. No. 13/830,971, filed Mar. 14, 2013, now U.S. Pat. No. 10,047,296, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods, now U.S. Pat. No. 10,047,295.
U.S. Appl. No. 16/026,363, filed Jul. 3, 2018, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods.
U.S. Appl. No. 13/730,796, filed Dec. 28, 2012, now U.S. Pat. No. 10,883,051, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 17/140,564, filed Jan. 4, 2021, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 13/730,598, filed Dec. 28, 2012, now U.S. Pat. No. 9,238,778, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, now U.S. Pat. No. 9,862,888, titled Systems and Methods for Improving Quenching Coke Recovery.
U.S. Appl. No. 15/830,320, filed Dec. 4, 2017, now U.S. Pat. No. 10,323,192, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 13/730,735, filed Dec. 28, 2012, now U.S. Pat. No. 9,273,249, titled Systems and Methods for Controlling Air Distribution in a Coke Oven.
U.S. Appl. No. 14/655,013, filed Jun. 23, 2015, now U.S. Pat. No. 11,142,699, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 17/471,491, filed Sep. 10, 2021, now U.S. Pat. No. 11,142,699, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 13/843,166, now U.S. Pat. No. 9,273,250, filed Mar. 15, 2013, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, now U.S. Pat. No. 10,927,303, titled Methods for Improved Quench Tower Design.
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, titled Systems and Methods for Maintaining a Hot Car in a Coke Plant.
U.S. Appl. No. 16/897,957, filed Jun. 10, 2020, titled Systems and Methodds for Maintaining a Hot Car in a Coke Plant.
U.S. Appl. No. 13/829,588, now U.S. Pat. No. 9,193,915, filed Mar. 14, 2013, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, now U.S. Pat. No. 10,526,541, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, now U.S. Pat. No. 10/968,383, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 16/704,689, filed Dec. 5, 2019, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 17/190,720, filed Mar. 3, 2021, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 13/589,009, filed Aug. 17, 2012, titled Automatic Draft Control Systems for Coke Plants.
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, now U.S. Pat. No. 10,947,455, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 17/176,391, filed Feb. 16, 2021, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 13/588,996, now U.S. Pat. No. 9,243,186, filed Aug. 17, 2012, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 14/959,450, filed Dec. 4, 2015, now U.S. Pat. No. 10,041,002, titled Coke Plant Including Exhaust Gas Sharing, now U.S. Pat. No. 10,041,002.
U.S. Appl. No. 16/047,198, filed Jul. 27, 2018, now U.S. Pat. No. 10,611,965, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 13/589,004, now U.S. Pat. No. 9,249,357, filed Aug. 17, 2012, titled Method and Apparatus for Volatile Matter Sharing in Stamp-Charged Coke Ovens.
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 15/281,891, filed Sep. 30, 2016, now U.S. Pat. No. 10,975,309, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 17/191,119, filed Mar. 3, 2021, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 13/598,394, now U.S. Pat. No. 9,169,439, filed Aug. 29, 2012, titled Method and Apparatus for Testing Coal Coking Properties.
U.S. Appl. No. 14/865,581, filed Sep. 25, 2015, now U.S. Pat. No. 10,053,627, titled MEthod and Apparatus for Testing Coal Coking Properties, now U.S. Pat. No. 10,053,627.
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, titled Coke Oven Charging System.
U.S. Appl. No. 15/443,246, now U.S. Pat. No. 9,976,089, filed Feb. 27, 2017, titled Coke Oven Charging System.
U.S. Appl. No. 14/587,670, filed Dec. 31, 2014, now U.S. Pat. No. 10,619,101, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, now U.S. Pat. No. 10,975,310, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/983,837, filed Dec. 30, 2015, now U.S. Pat. No. 10,968,395, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, not U.S. Pat. No. 10,975,311, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 17/222,886, filed Apr. 12, 2021, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, now U.S. Pat. No. 11,060,032, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 17/172,476, filed Feb. 10, 2021, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, now U.S. Pat. No. 10,233,392, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 16/251,352, filed Jan. 18, 2019, now U.S. Pat. No. 11,053,444, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 17/363,701, filed Jun. 30, 2021, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 14/839,551, filed Aug. 28, 2015, now U.S. Pat. No. 10,308,876, titled Burn Profiles for Coke Operations.
U.S. Appl. No. 16/428,014, filed May 31, 2019, now U.S. Pat. No. 10,920,148, titled Improved Burn Profiles for Coke Operations.
U.S. Appl. No. 17/155,219, filed Jan. 22, 2021, titled Improved Burn Profiles for Coke Operations.
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, U.S. Pat. No. 9,708,542, titled Method and Systems for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, now U.S. Pat. No. 10,526,542, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 16/735,103, now U.S. Pat. No. 11,214,739, filed Jan. 6, 2020, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 17/526,477, filed Jan. 6, 2020, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, titled Methods and Systems for Automatically Generating a Remedial Action in an Industrial Facility.
U.S. Appl. No. 15/987,860, filed May 23, 2018, now U.S. Pat. No. 10,851,306, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/076,563, filed Oct. 21, 2020, now U.S. Pat. No. 11,186,778, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/521,061, filed Nov. 8, 2021, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/135,483, filed Dec. 28, 2020, titled Oven Health Optimization Systems and Methods.
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, titled Oven Uptakes.
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, titled Systems and Methods for Treating a Surface of a Coke Plant.
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, titled Gaseous Tracer Leak Detection.
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant Treatment Systems.
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, titled Systems and Methods for Utilizing Flue Gas.
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, now U.S. Pat. No. 11,008,518, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 17/320,343, filed May 14, 2021, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 16/729,170, now U.S. Pat. No. 11,193,069, filed Dec. 27, 2019, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 17/532,058, filed Nov. 22, 2021, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 16/729,157, filed Dec. 27, 2019, now U.S. Pat. No. 11,071,935, titled Particulate Detection for Industrial Facilities, and Associated Systems and Methods.
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, now U.S. Pat. No. 11,021,655, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 17/321,857, filed May 17, 2021, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, now U.S. Pat. No. 11,261,381, titled Heat Recovery Oven Foundation.
U.S. Appl. No. 17/584,672, filed Jan. 26, 2022, titled Heat Recovery Oven Foundation.
U.S. Appl. No. 16/729,219, now U.S. Pat. No. 11,098,252, filed Dec. 27, 2019, titled Spring-Loaded Heat Recovery Oven System and Method.
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, titled Spring-Loaded Heat Recovery Oven System and Method.
Related Publications (1)
Number Date Country
20210340454 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
63019405 May 2020 US