High radiation efficient dual band feed horn

Information

  • Patent Grant
  • 6642900
  • Patent Number
    6,642,900
  • Date Filed
    Friday, September 21, 2001
    23 years ago
  • Date Issued
    Tuesday, November 4, 2003
    21 years ago
Abstract
A multiple mode feed horn is provided for transmitting and receiving signals. The feed horn includes a transverse electric throat section, a transverse electric profile section, and a transverse electric aperture section. The transverse electric profile section propagates a first transverse electric (TE) mode. The transverse electric aperture section propagates a second TE mode. The multiple mode feed horn prevents propagation of traverse magnetic modes from said throat section to said aperture section.
Description




TECHNICAL FIELD




The present invention relates generally to satellite communication systems, and more particularly to a high radiation efficient dual band feed horn for transmitting and receiving signals that are excited by multiple transverse electric modes.




BACKGROUND OF THE INVENTION




Conventional high efficiency feed horns are very useful as elements in phased array antenna and also as feed elements in a multi-beam reflector, in satellite communication systems. A multiple beam reflector has several feed elements that are used for receiving and transmitting multiple beams. Feed horn size is restricted because of the number of feed elements and required beam spacing. A phased array antenna with high efficiency feed horn elements requires 20% less elements, for a desired gain requirement, than that of corrugated feed horns or potter horns that usually have aperture efficiencies of about 70%. The reduction in feed horn elements reduces manufacturing costs, size, and weight of the phased array antenna.




A low efficiency feed horn yields less amplitude taper to a reflector edge for a given feed horn aperture size, which causes high side lobes and spill over loss. High side lobes are not desirable as they cause signal interference between beams. A conventional high efficiency feed horn minimizes spillover loss and interference problems due to its improved edge taper.




Corrugated horns have a disadvantage of a rim, which reduces usable aperture in cases where horn size is limited as with multi-beam antenna. The traditional corrugated horns are therefore not suitable for multi-beam antenna. Antenna packaging is a large driver in designing of multi-spot beam antennas.




Although the high efficiency horns are useful for many applications, they suffer from a limited bandwidth problem. The bandwidth of such feed horns is generally less than 10%. Therefore, separate transmit and receive antennas are required which take up more space and increase costs. Two different phased arrays are used in a phased array antenna, one for a transmitting band and one for a receiving band.




Since feed horn bandwidth decreases as aperture size increases, traditional reflector antennas must limit the horn size. This forces the main reflector aperture to be large in order to minimize spillover loss. Also, large focal lengths are needed to improve scanning performance, which further drives the reflector size to be large.




The above-described problems associated with traditional feed horns result in a trade-off between generally three alternatives; using two single band feed horns, using a dual band feed horn that is large in size relative to single band feed horns, or using a smaller sized dual band feed horn that suffers from interference problems and large spillover loss, which results in poor efficiency.




Additionally, all of the above mentioned feed horns also propagate both transverse electric (TE) modes and transverse magnetic (TM) modes. The propagation of both TE and TM modes further reduces the efficiency of a feed horn.




Therefore, it would be desirable to provide an improved feed horn design that supports dual bands, is smaller in size relative to conventional dual band feed horns, and operates at efficiency levels at least as high as that of conventional high efficiency feed horns with good cross-polarization level.




SUMMARY OF THE INVENTION




The foregoing and other advantages are provided by an apparatus for transmitting and receiving signals that are excited by multiple transverse electric modes. A multiple mode feed horn is provided for transmitting and receiving signals. The feed horn includes a transverse electric throat section, a transverse electric profile section, and a transverse electric aperture section. The transverse electric profile section propagates a first transverse electric (TE) mode. The transverse electric aperture section propagates a second TE mode. The multiple mode feed horn prevents propagation of traverse magnetic (TM) modes from said throat section to said aperture section.




One of several advantages of the present invention is that it is relatively small compared to traditional dual band corrugated feed horns. The decrease in size decreases the amount of material used to manufacture the feed horn, which decreases costs and weight of the feed horn.




Another advantage of the present invention is that it propagates transverse electric modes and minimizes propagation of TM modes, thereby providing a feed horn with an operating efficiency greater than that of traditional potter horns.




Furthermore, the present invention provides a dual band feed horn that has good return loss, good cross-polarization, and a desirable radiation pattern.




The present invention itself, together with further objects and attendant advantages, will be best understood by reference to the following detailed description, taken in conjunction with the accompanying figures.











BRIEF DESCRIPTION OF THE DRAWING




For a more complete understanding of this invention reference should now be had to the embodiments illustrated in greater detail in the accompanying figures and described below by way of examples of the invention wherein:





FIG. 1

is a perspective view of a satellite communication system implementing a multiple mode feed horn in accordance with an embodiment of the present invention;





FIG. 2

is a cross-sectional view of the feed horn in accordance with an embodiment of the present invention;





FIG. 3

is a graph of feed horn efficiency for both transmit and receive signals of the feed horn according to an embodiment of the present invention;





FIG. 4

is a graph of return loss and cross-polarization performance of the feed horn according to an embodiment of the present invention;





FIG. 5A

is a graph of a radiation pattern illustrating co-polarization and cross-polarization levels for the transmit band of the feed horn according to an embodiment of the present invention; and





FIG. 5B

is a graph of a radiation pattern illustrating co-polarization and cross-polarization levels for the receive band of the feed horn according to an embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




In the following description, various operating parameters and components are described for one constructed embodiment. These specific parameters and components are included as examples and are not meant to be limiting.




While the present invention is described with respect to an apparatus for transmitting and receiving signals that are excited by multiple transverse electric modes, the present invention may be adapted to be used for various purposes including: a ground based terminal, a satellite, or any other communication device that uses feed horns.




Now referring to

FIG. 1

, a perspective view of a satellite communication system


10


implementing a multiple mode feed horn


12


in accordance with an embodiment of the present invention is shown. The satellite communication system


10


includes a ground-based station


14


and one or more satellite(s)


16


. The satellite(s)


16


have a reflector


18


and one or more feed horn(s)


12


. The feed horn


12


of the present invention feeds receive and transmit signals to and from the reflector


16


to the ground-based station


14


at various frequency bands including X, Ka, K, and Ku.




Now referring to

FIG. 2

, a cross-sectional view of the feed horn


12


in accordance with an embodiment of the present invention is shown. The feed horn


12


has three main sections a traverse electric throat section


20


, a traverse electric profile section


22


, and a traverse electric aperture section


24


. Although the throat section


20


, profile section


22


, and apertures section


24


are preferably part of a unitary integrated body forming the feed horn


12


, as shown, they may be separate individual components that are fastened together using attachment mechanisms known in the art. The size and dimensions of the throat section


20


, profile section


22


, and apertures section


24


may vary depending upon application specific requirements. The feed horn


12


may be of various styles including circular, rectangular, both circular and rectangular, or square.




The throat section


20


input matches received signals as to prevent power loss and signal reflection. The throat section


20


includes an input end


26


, first cylindrical section


28


, and a first flared section


30


. The first cylindrical section


28


has a first fore end


32


and a first aft end


34


. The first flared section


30


has a first tapered end


36


and a first expanded end


38


. The first tapered end


36


has the same inner diameter D


1


as the first aft end


34


. The inner diameter of the first flared section


30


gradually expands at a certain angle relative to an axis of symmetry A. The long narrow shape of the first cylindrical section


28


in combination with the gradually expanding first flared section


30


provides directional signal propagation without reflection.




The profile section


22


has a structure as to excite a TE


12


mode, thereby allowing reception of signals in an approximate frequency band range from 14.0 GHz to 14.5 GHz. A TE mode is produced by introducing a step discontinuity at a cross-section of the feed horn


12


at which cutoff frequency is below the operating frequency of a desired signal. For example in a circular feed horn a first step discontinuity should be at a place where the diameter of the circular feed horn is about 1.7λ, where λ is the wavelength of the desired signal. For a rectangular feed horn, the first step should be at a location in the feed horn


12


where an H-plane dimension is about 1.5λ.




The profile section


22


includes a first step


40


, a second cylindrical section


42


, and a second flared section


44


. The first step


40


propagates a first TE mode and TM mode. The TM mode is canceled, as described below, by the aperture section


24


. The second cylindrical section


42


has a second fore end


46


, a second aft end


48


, and an inner diameter D


2


. Inner diameter D


2


is equal to the diameter of a first outer periphery


50


of the first step


40


. The second flared section


44


has a second tapered end


52


and a second expanded end


54


. The second tapered end


52


has an inner diameter that is equal to inner diameter D


2


. The second expanded end


54


has an inner diameter D


3


. The second flared section


44


expands at a certain angle from said second tapered end


52


to the second expanded end


54


relative to the longitudinal (axis of symetry) A. As with the first flared section


30


, the second flared section


44


gradual expands to prevent reflections within the profile section


22


. The gradual expansion of the second flared section


44


is also used for impedance matching of signals from the throat section


20


to the aperture section


24


, which further prevents reflections within the feed horn


12


.




The aperture section


24


has a structure as to excite a TE


12


mode, thereby allowing transmission of signals in an approximate frequency band range from 11.7 GHz to 12.2 GHz. The aperture section


24


has multiple flared steps


56


and an output end


58


. Although the aperture section


24


as illustrated has three flared steps


56


any number of flared steps may be used. Each additional flared step generally excites an additional TE mode. The additional TE modes are used to obtain the desired amplitude and phase taper for both receive and transmit bands. Each flared step


56


has a flared step section


62


that has an inner diameter that expands from a tapered end


64


to an expanded end


66


relative to the axis A. A first flared step


68


has a second step


70


and a third flared section


72


. The second step


70


has an inner diameter equal to D


3


and propagates a second TE mode. The second step


62


significantly cancels the TM mode excited by the first step


40


by exciting the same TM mode but 180° out-of-phase. Each additional flared step further cancels the TM mode. Furthermore, the flared steps


56


intensify the desired modes.




The inner periphery


74


of an expanded end


76


of a flared step


77


that is closest to the output end


58


defines a mouth


78


of the feed horn


12


. Each additional flared step further expands the mouth


78


beyond that of each preceding flared step. The diameter of the mouth


78


may vary depending upon application design requirements. By varying the diameter of the mouth


78


the dimensions of other areas of the feed horn


12


may also vary in order to provide similar performance and efficiency characteristics.




The following TE modes have been found to provide high radiation efficiency between input and output of desired signals for the following stated feed horn styles. The preferable desired modes of the present invention using a circular horn style are TE


11


, TE


12


, TE


13


, . . . and so on. The preferable desired modes using a rectangular horn style are TE


10


, TE


30


, TE


50


, . . . and so on. When using a feed horn that is both circular and rectangular, the feed horn of the present invention has improved radiation efficiency when TE modes exist on the aperture section


24


versus when other modes exist on the aperture section


24


. When TE mode amplitudes and phases are in desired proportions the feed horn of the present invention exhibits an increase in efficiency.




Now referring to

FIG. 3

, a graph of feed horn efficiency for both transmit and receive signals of the feed horn


12


according to an embodiment of the present invention is shown. Range


80


corresponds to approximate frequency levels at which transmit efficiency levels are highest. Range


82


corresponds to approximate frequency levels at which receive efficiency levels are highest. Note ranges


80


and


82


also correspond with the desired transmission frequencies. Therefore, feed horn


12


maximizes transmission of the desired signals and minimizes transmission of other signals. The feed horn


12


of the present invention potentially operates at efficiency levels above 85% as illustrated by curve


84


, which is above operating efficiencies of traditional horns.




Now referring

FIG. 4

, a graph of return loss and cross-polarization performance of the feed horn


12


according to an embodiment of the present invention is shown. Curve


86


represents the return loss for both the transmit and receive signals. Curve


88


represents the cross-polarization levels for both the transmit and receive signals. Range


90


corresponds to approximate frequency levels at which transmit return loss and cross-polarization levels are lowest. Range


92


corresponds to approximate frequency levels at which receive return loss and cross-polarization levels are lowest. By maximizing return loss and minimizing cross-polarization levels for the desired transmission frequencies the feed horn


12


provides an efficient medium for signal transmission without interference. The return loss is better than 28 db in the transmit band and better than 26 db in the receive band. The cross-polarization levels were obtained within a 15° angle from the axis A.




Now referring to

FIGS. 5A and 5B

, graphs of radiation patterns illustrating co-polarization levels and cross-polarization levels for the transmit and receive bands of the feed horn


12


according to an embodiment of the present invention are shown. The co-polarization levels and the cross-polarization levels are for mid-band frequencies within the transmit and receive bands.

FIG. 5A

illustrates co-polarization and cross-polarization levels for a transmission frequency of 11.95 GHz.

FIG. 5B

illustrates co-polarization and cross-polarization levels for a transmission frequency of 14.25 GHz. The co-polarization levels are represented by curve


94


and the cross-polarization levels are represented by curves


96


. Curve


94


represents the normalized copolar pattern. The co-polarization and cross-polarization levels are plotted in relation to theta (θ) holding phi(Φ) constant at 45°. Phi and theta are spherical coordinate angles corresponding to a cross-sectional plane within the feed horn


12


and along axis A.




The feed horn


12


of the present invention has a desired radiation pattern, by focusing the transmission of signals along the axis A, where theta is equal to 0°. Side lobes are approximately 19 db and 17 db below a desired electric field polarization (co-polarization) peak for the transmit and receive bands respectively.




The feed horn of the present invention by providing a structure within a certain general shape provides a feed horn that minimizes propagation of TM modes, while at the same time propagating TE modes. Therefore, providing a feed horn that eliminates the size constraints of the prior art and has dual band functionality. The reduction in size of the feed horn also reduces the amount of material required to produce the feed horn, thereby reducing production costs and weight of the feed horn. The structured design of the present invention also provides increased efficiency by focusing propagation capabilities to TE modes.




The above-described apparatus, to one skilled in the art, is capable of being adapted for various purposes and is not limited to the following applications: a ground based terminal, a satellite, or any other communication device that uses feed horns. The above-described invention may also be varied without deviating from the spirit and scope of the invention as contemplated by the following claims.



Claims
  • 1. A multiple mode feed horn for transmitting and receiving signals comprising:a throat section having an input end, said throat section comprising: a first cylindrical section having a first fore end and a first aft end; and a first flared section having a first tapered end and a first expanded end; said first tapered end is coupled to said first aft end; a profile section comprising: a first step coupled to said first expanded end, said first step propagating a first transverse electric (TE) mode; a second cylindrical section having a second fore end and a second aft end, said second fore end is coupled to said first step; and a second flared section having a second tapered end and a second expanded end, said second tapered end coupled to said second aft end; and an aperture section having an output end, said aperture section comprising: a first flared step having a third step coupled to a third flared section, said third step is coupled to said second expanded end; said first flared step propagating a second TE mode; and a mouth defined by an inner diameter of said output end.
  • 2. A feed horn as in claim 1 wherein the feed horn minimizes the propagation of transverse magnetic modes.
  • 3. A feed horn as in claim 1 wherein said aperture section further comprises:a second flared step coupled to said first flared step; and a third flared step coupled to said second flared step; said second flared step and said third flared step propagate a third TE mode and a fourth TE mode respectively.
  • 4. A feed horn as in claim 3 wherein said second flared step and said third flared step further expand said mouth beyond that of said first flared step.
  • 5. A feed horn as in claim 1 that transmits and receives signals in bands selected from the group consisting of: Ku band, Ka band, and X band.
  • 6. A feed horn as in claim 1 wherein said throat section input matches a desired TE mode as to minimize reflection of electromagnetic waves.
  • 7. A feed horn as in claim 1 wherein said profile section minimizes reflection of electromagnetic waves.
  • 8. A multiple mode feed horn for transmitting and receiving signals comprising:a transverse electric throat section; a transverse electric profile section having a first step propagating a first transverse electric (FE) mode and a first transverse magnetic (TM) mode; and a transverse electric aperture section having a second step propagating a second transverse electric (TE) mode and a second transverse magnetic (TM) mode canceling the first (TM) mode; wherein said multiple mode feed horn minimizes the propagation of transverse magnetic modes.
  • 9. A feed horn as in claim 8 wherein said transverse electric throat section comprises:a first cylindrical section that has a first fore end and a first aft end; and a first flared section that has a first tapered end and a first expanded end; said first tapered end is coupled to said first aft end.
  • 10. A feed horn as in claim 8 wherein said transverse electric throat section input matches a desired TE mode as to minimize reflection of electromagnetic waves.
  • 11. A feed horn as in claim 8 wherein said transverse electric profile section comprises:a second cylindrical section mat has a second fore end and a second aft end, said second fore end is coupled to said first step; and a second flared section that has a second tapered end and a second expanded end, said second tapered end is coupled to said second aft end.
  • 12. A feed horn as in claim 8 wherein said transverse electric aperture section comprises:a third step coupled to a third flared section, said first flared step propagates a second TE mode; and an output end that has an inner diameter that defines a mouth.
  • 13. A multiple mode feed horn for transmitting and receiving signals comprising:a throat section having an input end, said throat section comprising: a first cylindrical section having a first fore end and a first aft end; a first flared section having a first tapered end and a first expanded end; said first tapered end is coupled to said first aft end; a profile section comprising: a first step coupled to said first expanded end, said first step propagating a first transverse electric (TE) mode; a second cylindrical section having a second fore end and second aft end, said second fore end is coupled to said first step; and a second flared section having a second tapered end and a second expanded end, said second tapered end coupled to said second aft end; and an aperture section having an output end, said aperture section comprising: a first flared step having a third step coupled to a third flared section, said third step is coupled to said second expanded end; said first flared step propagating a second TE mode; and a mouth defined by an inner diameter of said output end; said multiple mode feed horn preventing the propagation of transverse magnetic modes.
  • 14. A multiple mode feed horn for transmitting and receiving signals having an axis of symmetry, said feed horn comprising:a throat section having an input end, said throat section comprising: a first cylindrical section having a first fore end and a first aft end, said first aft end having a first inner diameter; a first flared section having a first tapered end and a first expanded end, said first tapered end having an inner diameter equal to said first inner diameter and coupled to said first aft end; said first flared section expanding at a certain angle from said first tapered end to said first expanded end relative to the axis of symmetry; a profile section comprising: a first step coupled to said first expanded end, said first step propagating a first transverse electric (TE) mode; a second cylindrical section having a second fore end, second aft end, and a second inner diameter that is equal to a diameter of a first outer periphery of said first step and is coupled to said first step; and a second flared section having a second tapered end and a second expanded end, said second tapered end having an inner diameter equal to said second inner diameter and coupled to said second aft end; said second expanded end having a third inner diameter; said second flared section expanding at a certain angle from said second tapered end to said second expanded end relative to the axis of symmetry; and an aperture section having an output end, said aperture section comprising: a first flared step having a second step coupled to a third flared section, said second step having an inner diameter equal to said third inner diameter and is coupled to said second expanded end; said third flared section expanding in diameter at a certain angle from said second step toward said output end relative to the axis of symmetry; said first flared step propagates a second TE mode; and a mouth defined by an inner diameter of said output end; said multiple mode feed horn preventing the propagation of transverse magnetic modes.
  • 15. A feed horn as in claim 14 wherein said aperture section further comprises additional flared steps coupled in series to each other and said first flared step, each additional flared step propagates an additional TE mode.
  • 16. A feed horn as in claim 15 wherein each additionally coupled flared step further expands at a specified angle from an inner diameter of an expanded end of a preceding flared step to an expanded end of said additionally coupled flared step relative to the axis of symmetry A.
  • 17. A feed horn as in claim 14 that transmits and receives signals in bands selected from the group consisting of: Ku band, Ka band, and X band.
  • 18. A feed horn as in claim 14 wherein said throat section input matches a desired TE mode as to minimize reflection of electromagnetic waves.
  • 19. A feed horn as in claim 14 wherein said profile section minimizes reflection of electromagnetic waves.
US Referenced Citations (13)
Number Name Date Kind
3510875 Beguin May 1970 A
3680145 Beguin Jul 1972 A
3821741 D'Oro et al. Jun 1974 A
4122446 Hansen Oct 1978 A
4442437 Chu et al. Apr 1984 A
4764775 Craven Aug 1988 A
4792814 Ebisui Dec 1988 A
5617108 Silinsky et al. Apr 1997 A
5907309 Anderson et al. May 1999 A
6137450 Bhattacharyya et al. Oct 2000 A
6163304 Peebles et al. Dec 2000 A
6208309 Chandler et al. Mar 2001 B1
6208310 Suleiman et al. Mar 2001 B1