Reservoir completion systems installed in production, injection, and storage wells often incorporate screens positioned across the reservoir sections to prevent sand and other solids particles over a certain size from entering the reservoir completion. Conventional sand screen joints are typically assembled by wrapping a filter media around a perforated basepipe so fluids entering the sand screen from the wellbore must first pass through the filter media. Solid particles over a certain size will not pass through the filter media and will be prevented from entering the reservoir completion.
For example, a reservoir completion system 10 in
In addition to open hole, the screen joints 20 can also be used in cased holes. Additionally, the screen joints 20 can be used for gravel pack operations in which gravel (e.g., sand) is disposed in the annulus of the borehole around the screen joint 20 to support the unconsolidated formation of the open borehole 12.
Screen joints having selectable sleeves, inflow control devices, valves, and the like have been designed in the past. As with other screen joints, these types of screen joints are used for filtering the flow of production fluid into the screen joints and to prevent flow of fluid out of the screen joints to the borehole.
In contrast to the screen joints of the prior art, there is a need for a screen assembly that can be used for “frac pack” operations and can then withstand high rate injections without flowback.
A screen assembly disclosed herein can be used for “gravel pack” or “frac pack” operations and can then withstand high rate injections. The disclosed screen assembly is able to withstand the flow of the packing operation by not allowing fluid passage from the annulus to inside the screen assembly. Then, the disclosed screen assembly can be opened and facilitate high rate injection for the life of the well. To achieve this, the disclosed screen assembly does not allow slurry flow to enter the screen assembly during the pack operation. Then, after the pack is completed, the screen assembly provides enough open flow area so that a high injection rate with solid content can be introduced into the annulus without eroding the screen.
In one embodiment disclosed herein, an apparatus is used for controlling fluid flow in a borehole. Method are also disclosed herein for controlling the fluid flow in the borehole. The apparatus includes a basepipe, at least one first outflow valve, and a first filter. The basepipe has an interior and defines at least one first orifice. The interior conveying the fluid flow, and the at least one first orifice communicates the interior with the borehole.
The at least one first outflow valve is disposed at the at least one first orifice. During operations, the at least one first outflow valve permits communication of the fluid flow in an outflow direction from the interior to the borehole and prevents communication of the fluid flow in an inflow direction from the borehole into the interior. For its part, the first filter is disposed on the basepipe adjacent the at least one first outflow valve. During operations, the first filter filters the fluid flow communicated between the interior and the borehole.
The at least one first outflow valve can include a ball movable between engaged and disengaged conditions relative to a portion of the at least one first orifice, which may or may not have an insert affixed therein. The first filter disposed on the basepipe external to the at least one orifice can then hold the ball adjacent the at least one first orifice.
For instance, the first filter can comprise a plurality of rings stacked adjacent one another on the exterior of the basepipe. To facilitate assembly, the rings can have alignment features aligning the adjacent ones of the rings with one another. To hold the check ball, however, at least some of the rings define a pocket that can capturing the ball of the at least one first inflow valve.
Overall, during gravel pack, frac pack, and production operations, the first filter filters the fluid flow communicated in the inflow direction from the borehole to the interior and prevents particulate from passing therethrough. During fluid loss operations, however, the first filter can bridge off with particulate in the fluid flow of weighted fluid communicated in the outflow direction from the interior to the borehole. Alternatively, a second filter can be disposed adjacent the at least one first orifice to bridge off with particulate in the fluid flow of weighted fluid communicated in the outflow direction from the interior to the borehole. Moreover, the at least one first outflow valve can bridge off with particulate in the fluid flow of weighted fluid communicated in the outflow direction from the interior to the borehole. For example, the particulate can collect around the ball of the outflow valve captured in the first orifice by the pocket of the first filter.
In a further embodiment disclosed herein, the first filter and the basepipe define a gap therebetween communicating the fluid flow, and a flow device in fluid communication with the gap communicates the gap with the interior of the basepipe. The flow device can have a flow restriction restricting the fluid flow from the gap into the interior of the basepipe. In addition or as an alternative, the flow device can have at least one inflow valve permitting communication of the fluid flow in the inflow direction from the gap to the interior and preventing communication of the fluid flow in the outflow direction from the interior to the gap.
As part of the apparatus, a cross-over assembly can be operable in a first operation communicating the fluid flow to the borehole. This first operation can be a frack pack or gravel pack operation, for example. In the first operation, the at least one first outflow valve prevents communication of returns of the fluid flow from the operation in the inflow direction into the interior, while the flow device permits the returns in the inflow direction into the interior.
The apparatus can have at least one second outflow valve disposed at at least one second orifice on the basepipe, such as at another isolated zone of the borehole. The at least one second outflow valve permits communication of the fluid flow in the outflow direction from the interior to the borehole and prevents communication of the fluid flow in the inflow direction from the borehole into the interior. In this situation, the cross-over assembly may prevent the returns in the interior from the flow device from communicating with the at least one second outflow valve by using a packer, seals, and the like. Alternatively, a sleeve disposed on the basepipe can be used to selectively prevent the returns in the interior from the flow device from communicating with the at least one second outflow valve.
As part of the apparatus, an injection assembly can be operable in a second operation to communicate the fluid flow into the interior of the basepipe. This second operation can be an injection or treatment operation, for example, typically performed in a borehole. In this situation, the at least one first outflow valve permits communication of the fluid flow from the second operation in the outflow direction from the interior to the borehole to achieve the injection or treatment desired.
The foregoing summary is not intended to summarize each potential embodiment or every aspect of the present disclosure.
As noted previously, there is a need for a screen assembly that can be used for “frac pack” operations and can then withstand high rate injections. Frac packing is an operation that combines fracturing a formation and gravel packing the annulus. Such a screen assembly as disclosed herein is able to withstand the flow of the frac pack operation by not allowing fluid passage from the annulus to inside the screen assembly. Then, the disclosed screen assembly can be opened and facilitate high rate injection for the life of the well. To achieve this, the disclosed screen assembly does not allow slurry flow to enter the screen assembly during the frac pack operation. Then, after the frac pack is completed, the screen assembly provides enough open flow area so that a high injection rate with solid content can be introduced into the annulus without eroding the screen.
For its part, the sand control jacket 120 disposed around the outside of the basepipe 110 covers the perforations 114 and defines an annular gap or drainage layer 125 with the exterior of the basepipe 110. The jacket 120 can use any suitable type of filter medium, such as a wire-wrapped screen, a sintered metal, a perforated tubular, or the like that allows fluid to flow therethrough but prevents particulate matter of sufficient size from flowing therethrough. For example, the jacket 120 can be a wire-wrapped screen having rods or ribs (not shown) arranged longitudinally along the basepipe 110 with windings of wire (not shown) wrapped thereabout to form various slots for passage of fluid and prevention of particulate. Alternatively, the jacket 120 can have a plurality of stacked rings (not shown) with gaps therebetween for passage of fluid and prevention of particulate. Other types of filter media known in the art can be used so that reference to “jacket” or “screen” is meant to convey any suitable type of filter media.
A plurality of outflow or injection valves 130 communicate between the basepipe's bore 112 and the jacket's annular gap 125. (In general, the injection valves 130 can be one-way, check, or ball valves. In particular, the valves 130 as discussed below can use trapped check balls. Although the valves 130 disclosed herein can use such check balls, other types of check valves, poppet valves, one-way valves, or the like can be used.) The injection valves 130 allow fluid to flow from the basepipe's bore 112 to the jacket's gap 125 so the flow can pass out through the jacket 120. However, the valves 130 prevent fluid flow from the gap 125 into the basepipe's bore 112.
To begin a frac pack or gravel pack operation, an upper packer 16 and a lower packer (not shown) may be used to isolate an interval of the borehole 12. Portion of one isolated zone 30A is shown in
A cross-over assembly 60 having a washpipe 64 and a cross-over tool 62 can position adjacent to crossover ports 19, which can be disposed in the screen assembly 100 or elsewhere along the isolated interval. Fluid slurry containing gravel, proppant, particulate, or other treatment material is pumped downhole in the tubing 14 and into the isolated borehole annulus via the cross-over tool 62 and the cross-over ports 19.
Exiting the cross-over ports 19, the fluid slurry treats the surrounding formation of the isolated zone 30A. For example, the fluid slurry may be pumped at an elevated, fracture pressure to create fractures 17 (
During this process, fluid returns are not allowed to pass through the jacket 120 and the injection valves 130 back into the assembly 100. In this way, the slurry pumped at the fracture pressure can build up in the annulus and against the surrounding formation.
It may be desirable to eventually allow fluid returns to enter the screen assembly 100 at some point during the process. Therefore, the screen assembly 100 may have one or more return ports 140 for passage of fluid returns into the basepipe's bore 112. The return ports 140 may be open ports or may have inflow valves, movable sleeves, rupture disks, or the like. Once opened or activated, such return ports 140 may allow fluid in the gap 125 between the jacket 120 and the basepipe 110 to enter the basepipe's bore 112 so it can travel into the washpipe's inlet 65 and up the washpipe 64 to the surface. Opening of the return ports 140 can be selectively operated so that fracture treatment can first be achieved and then gravel packing with fluid returns can be initiated once the return ports 140 open. The return ports 140 may even be used for later production operations once the cross-over assembly 60 is removed so that the tubing string 14 with the screen assembly 100 can be used as a production screen during later operations.
In some cases, it may be necessary to isolate the flow of fluid returns from the return ports 140 to the washpipe 64 so that the fluid returns do not open the injection valves 130 on this screen assembly 100 or any other screen assembly (100) along the tubing string 14. Therefore, flow of the fluid returns may be isolated into the washpipe 64 by isolating the washpipe's inlet 65 from the assembly's injection valves 130 using a straddle packer (not shown) on the washpipe 64, using a sleeve (not shown) inside the basepipe 110, using seals and seats (not shown) between the washpipe 64 and the bore 112 inside the basepipe 110, or using some other form of isolation. Further details related to isolation for these purposes are discussed below in relation to
As shown in
While the treatment is pumped, the injection valves 130 permit the treatment to pass from the basepipe's bore 112, into the drainage layer 125, out through the jacket 120, and into the borehole 12 to treat the formation. The treatment can pass through any packed gravel in the annulus and can enter the propped fractures 17 of the formation. Flow back is typically not permitted during the treatment operation. Therefore, the return ports 140 (if present) may be closed or sealed, e.g., by using a straddle packer (not shown) on the workstring 70, using a movable sleeve (not shown) inside the basepipe 110 at the return ports, using seals and seats (not shown) between the workstring 70 and the bore 112 inside the basepipe 110, or using some other form of isolation. Alternatively, the return ports 140 may simply remain open without much detriment to the treatment operation depending on the type of treatment performed and other circumstances.
In some implementations, several screen assemblies 100 may be used along the tubing string 14 for multiple zones. Fluid communication of fracture pressure during operations may be able to communicate inside the tubing string 14 between adjacent assemblies 100, which could cause the injection valves 130 on adjacent assemblies 100 to open and wash out any previous gravel packing. Therefore, in these implementations, it may be necessary to isolate the injection valves 130 on the screen assembly 100 of one zone 30A when frac packing another zone 30B.
As shown in
Various forms of isolation can be used. As shown here, for example, the washpipe 64 can have an inlet port 65 to receive the fluid returns from the return port 140 or the like of the upper assembly 100B in the upper zone 30B. However, the washpipe 64 may have a straddle packer, an inflatable packer, or other isolation element 66 to close off the lower assembly 100A in the lower zone 30A. In this way, fluid returns inside the upper zone's assembly 100B can be prevented from affecting the lower zone 30A.
Rather than using an isolation element 66 on the washpipe 62 as shown in
Having an understanding of the screen assembly 100 and how it is used, discussion now turns to particular embodiments of the jacket 120 and injection valves 130 of the disclosed screen assembly 100.
An end ring or other component can be disposed on the basepipe 110 at one or both ends of the jacket 120 to secure the rings 122 in place on the basepipe 110. For example, one such end ring 128 is shown disposed on the basepipe 110 in
As best shown in the detail of
As best shown in
The captured check balls 134 serve as one-way check valves for the perforations 114 during frac-pack or flow-back processes, as discussed previously. Accordingly, flow out of the basepipe 110 is allowed through the perforations 114, past the check balls 134, and out the screen of stacked rings 122 during injection operations. However, during frac-pack or flow-back operations, the check balls 134 seat in the perforations 114 and prevent fluid flowing through the stacked rings 122 and into the basepipe 110 through the perforations 114.
Thus, depending on the direction of flow, the check balls 134 can be moved in the space defined by the pocket features 126 and the seats 116. The annular gap of the drainage layer 125 around the inside circumference of the jacket 120 allows fluid to flow along the outside of the basepipe 110. When the check ball 134 is unseated and moved against the pocket features 126 of the adjacent rings 122 during injection, fluid can flow along the layer 125 and also through the slots (S) between the rings 122.
By contrast, when the check ball 134 is seated and moved against the seat 116 of the adjacent perforation 114 during frac-pack or flow back, at least most of the fluid cannot pass into the basepipe 110. Flow may be allowed to pass through the slots (S) between the rings 122, and the screened fluid can then flow along the annular gap of the drainage layer 125. As noted above, the flow of screened fluid along the annular layer 125 may eventually be allowed to enter the basepipe 110 through a return port, a valve, sleeve, rupture disk, or other feature (140:
Another embodiment of a screen assembly 100 is illustrated in
As best shown in
Rather than engaging against a seat formed in the perforations 114 as in the previous arrangement, the check balls 134 engage against inserts 118 affixed inside the perforations 114. For example, the inserts 118 can be composed of an erosion resistant material and can thread, tack weld, or otherwise affix in the perforations 114 of the basepipe 110. The captured balls 134 can move open or closed relative to the inserts 118 to serve as check valves during frac-pack or flow-back operations. Accordingly, flow out of the basepipe 110 is allowed through the perforations 112 and the inserts 118, past the check balls 134, and out the screen of stacked rings 122 during injection operations. However, during frac-pack or flow-back operations, the check balls 134 prevent fluid flowing into the basepipe 110 through the perforations 114 and the inserts 118.
Using the inserts 118 can have a number of advantages. For instance, the order of manufacture can be altered. In this case, instead of installing the check balls 134 in the perforations 114 as the jacket 120 is formed, the check balls 134 can be inserted from inside the basepipe's bore 112 after the jacket 120 is positioned outside the basepipe 110. Then, the inserts 118 can be installed to capture the check balls 118.
In another advantage, the inserts 118 can be configured with a particular orifice size—as can the balls 134—so that a standard basepipe 110 with uniform sizes of perforations 114 can be selectively configured with inserts 118 and check balls 134 of one or more sizes. Additionally, the inserts 118 can prevent or reduce the erosion that may occur during injection so that the check balls 134 are less likely to escape their entrapment if the perforations 114 were subject to erosion.
As disclosed herein, the screen assembly 100 can be used on its own as an injection screen. In other arrangements, the assembly 100 can be used with a return port, a valve, a sleeve, a rupture disk, or other such feature (140:
Again as shown in
The inflow control device 150 includes an outer housing or sleeve 152 and has one or more nozzles or flow restrictions 154 inside that create a pressure drop in the flow of fluid from the annular gap 125 to additional ports or perforations 115 in the basepipe 110. The purpose of the inflow control device 150 is to control flow of fluid into the screen assembly 100—particularly to control the flow of production fluid during production operations.
During production, for example, reservoir fluids travel through the jacket 120 and into the drainage layer 125 between the jacket 120 and the basepipe 110. The injection valves 130 prevent the flow from entering directly into the basepipe 110 through the perforations 114. Instead, the produced fluid passes along the drainage layer 125 to the inflow control device 150. Entering the housing 152, the flow passes through the flow restrictions 154 (e.g., tungsten carbide nozzles) before passing through the ports 115 in the basepipe 110. The flow restrictions 154 produce a pressure drop in the fluid, and the size and/or number of the restrictions 154 can be configured for a given implementation.
At times before or during production, treatment operations may be performed to treat the formation surrounding the assembly 100. For example, the screen assembly 100 of
As before, the screen assembly 100 of
During production, for example, reservoir fluids travel through the screen jacket 120 and into the drainage layer 125 between the jacket 120 and the basepipe 110. The injection valves (130) prevent the flow from entering directly into the basepipe 110 through the perforations (114). Instead, the produced fluid passes along the drainage layer 125 to the inflow control device 160. Entering the device's housing 162, the flow passes through the flow restrictions or seats 164 and passes the check balls 166 before passing through the ports 115 in the basepipe 110. (Although the valve disclosed herein uses check balls 166 and seats 164, other types of check valves, poppet valve, one-way valves, or the like can be used.) The flow restrictions 154 produce a pressure drop in the fluid, and the size and/or number of the restrictions 154 can be configured for a given implementation.
At times before or during production, treatment operations may be performed to treat the formation surrounding the assembly 100. For example, the screen assembly 100 of
As before, the screen assembly 100 of
As noted above, the assemblies 100 disclosed herein can be used for injection operations alone or used for injection and production operations. In addition, the disclosed assemblies 100 can be used for pressure control and well kill operations. For example, a reservoir section of a well is typically kept under positive pressure that acts to force reservoir fluids into the reservoir completion. During completion, work over, intervention, and other operational periods when the well is not being produced, the reservoir pressure must be controlled to prevent reservoir fluids from migrating into the reservoir completion and to surface. This is typically achieved by filling the well with a weighted fluid that will counteract the reservoir pressure. The disclosed assemblies 100 having the injection valve 130 will readily allow such weighted fluid to flow into the annulus and counteract the reservoir pressure.
At times, well kill operations may need to be performed in a reservoir completion because fluid is being lost to the formation. In the well kill operation, a loss prevention fluid is used to prevent the loss of fluid flow to the surrounding formation. For example, a situation can arise where the balance between the fluid weight and the reservoir pressure is lost, and fluid either begins to flow into or out of the reservoir in an uncontrolled manner. In these situations, it is necessary to re-gain control of the fluid balance through a process called “killing the well.”
Killing the well is typically achieved by circulating a weighted fluid into the well that places a significantly high enough pressure against the wellbore to overcome the reservoir pressure. It may also be necessary to prevent this weighted fluid from continuing to leak into the reservoir section. This is achieved by mixing a Loss Control Material (LCM) in with the weighted fluid. The material can be made up of solid particles of a specific size that are designed to rest against the area where the fluid is leaking into the reservoir section. As fluid leaks past the area, the solid particles bridge off at the area and plug off the leak temporarily.
The assemblies 100 disclosed can be used for these situations. In particular, particulate material in weighted fluid can be communicated downhole in a well kill operation. If fluid is leaking into the reservoir section adjacent the assembly 100, the particulate material in the weighted fluid can pass to the basepipe's perforations 114. If the assembly 100 is used exclusively for injection as with the assemblies 100 of
If the assembly 100 is used for injection and production as with the assemblies 100 of
Once the balance between the fluid in the wellbore and the reservoir pressure has been re-established, the fluid from the well can be produced to the surface in a controlled manner that will lift the particulate material away from the inside of the screen joint 120 and out the inflow control device 150/160 to re-establish the flow path. In any event, the basepipe's perforations 114 or the inserts 118 for these dual-purpose assemblies 100 can have filter media disposed at the openings facing the bore 112 against which the particulate material in weighted fluid can bridge.
In some embodiments, the check balls 134 can be composed of erosion resistant material, such as an erosion resistant metal. In such circumstances, the check balls 134 may be expected to remain permanently during use to block flow back. Should one of the balls 134 fail, erode, or the like, then return fluid flow back through the now open perforation 114 would at least be screened of particulate by the screen jacket 120.
As an alternative to permanent check balls 134, the balls 134 may be removable (e.g., composed of a material to eventually dissolve, erode, or break apart) from the perforations 114 so that the injection assembly 100 becomes a type of production screen after a period of time. With the check balls 134 gone, the assembly 100 would allow fluid flow into the basepipe 110 through the jacket 120 and perforations 114. In yet another alternative, the balls 134 may or may not be of a permanent type of material, but the inserts 118 as used in
The foregoing description of preferred and other embodiments is not intended to limit or restrict the scope or applicability of the inventive concepts conceived of by the Applicants. It will be appreciated with the benefit of the present disclosure that features described above in accordance with any embodiment or aspect of the disclosed subject matter can be utilized, either alone or in combination, with any other described feature, in any other embodiment or aspect of the disclosed subject matter.
In exchange for disclosing the inventive concepts contained herein, the Applicants desire all patent rights afforded by the appended claims. Therefore, it is intended that the appended claims include all modifications and alterations to the full extent that they come within the scope of the following claims or the equivalents thereof.
This application claims the benefit of U.S. Provisional Appl. 61/923,419, filed 3 Jan. 2014, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2004071 | Hannesschlager | Jun 1935 | A |
3009519 | Brown | Nov 1961 | A |
3515210 | Perkins | Jun 1970 | A |
4484625 | Barbee, Jr. | Nov 1984 | A |
5127474 | Schroeder, Jr. | Jul 1992 | A |
5249626 | Gibbins | Oct 1993 | A |
6354378 | Patel | Mar 2002 | B1 |
6631738 | Jiang | Oct 2003 | B2 |
6886634 | Richards | May 2005 | B2 |
6899176 | Hailey, Jr. | May 2005 | B2 |
7240739 | Schoonderbeek et al. | Jul 2007 | B2 |
8448659 | Veit | May 2013 | B2 |
20060027377 | Schoonderbeek et al. | Feb 2006 | A1 |
20080035330 | Richards | Feb 2008 | A1 |
20090065199 | Patel | Mar 2009 | A1 |
20100051270 | Dusterhoft et al. | Mar 2010 | A1 |
20100175895 | Metcalfe | Jul 2010 | A1 |
20100252250 | Fripp et al. | Oct 2010 | A1 |
20110220347 | Kayser | Sep 2011 | A1 |
20120227839 | Veit | Sep 2012 | A1 |
20130092394 | Holderman | Apr 2013 | A1 |
20130255952 | Hailey et al. | Oct 2013 | A1 |
20150144330 | Noblett | May 2015 | A1 |
Number | Date | Country |
---|---|---|
2631423 | Aug 2013 | EP |
9210639 | Jun 1992 | WO |
0169036 | Sep 2001 | WO |
2011106579 | Sep 2011 | WO |
Entry |
---|
First Office Action in counterpart Canadian Appl. No. 2,876,278, dated Feb. 2, 2016; pp. 1-4. |
Patent Examination Report No. 1 in counterpart Australian Appl. No. 2015200005, dated Sep. 18, 2015; pp. 1-5. |
Superior Energy Services Completion Services; Well Screens Brochure; www.superiorenergy.com; Dec. 12, 2013; pp. 1-19. |
Schlumberger; FacsRite Sand Screen; www.slb.com/completions; Copyright 2008; pp. 1-2. |
Schlumberger; LineSlot Sand Screen Data (Metric Units); www.slb.com/completions; Copyright 2007; pp. 1-2. |
Schlumberger; ResInject Well Production Management System; www.slb.com/completions; Copyright 2007; pp. 1-2. |
Schlumberger; Screens and ICDs—Largest Portfolio in the Industry; www.slb.com/transcend; Copyright 2013; pp. 1-8. |
Search Report in counterpart EP Appl. No. 15150122, dated Apr. 15, 2016, 7-pgs. |
Number | Date | Country | |
---|---|---|---|
20150192001 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61923419 | Jan 2014 | US |