High-rate interpolation or decimation filter in integrated circuit device

Information

  • Patent Grant
  • 8650236
  • Patent Number
    8,650,236
  • Date Filed
    Tuesday, August 4, 2009
    14 years ago
  • Date Issued
    Tuesday, February 11, 2014
    10 years ago
Abstract
On a device having a maximum data rate, an interpolation filter can be configured in stages, with each stage may be broken into subfilters, which divides the output into phases. The ratio of the number of subfilters or phases in the final stage to the number of subfilters or phases in the initial stage is equal to the factor by which the data rate would otherwise increase. Thus for an interpolation factor of M, the output data rate can be kept the same as the input data rate by providing M subfilters, yielding M output phases each having an output rate equal to the input rate. The effective, or synthesized, output rate is M times the input rate. A decimation filter can be provided in the same way, with the effective input rate M times the output rate, even where the effective input rate would exceed the maximum data rate.
Description
BACKGROUND OF THE INVENTION

This invention relates to the implementation of high-rate interpolation or decimation filters on integrated circuit devices, especially programmable integrated circuit devices such as programmable logic devices (PLDs).


Finite impulse response (FIR) filters are commonly used in digital signal processing. FIR filters include interpolation and decimation filters, in which, in order to add or remove samples, respectively, by a certain factor N, each input sample has to be held while calculations for the N−1 interpolated samples are made, or each output sample has to be held while calculations for the N−1 decimated samples are made. If the filter is to operate in real time, the portion of the filter that performs those calculations has to run at N times the input sample rate (in the interpolation case) or the output sample rate (in the decimation case).


However, the filter cannot run faster than the clock rate of the device on which the filter is built. This becomes more of an issue as data rates of signals to be processed increase. If the filter is built in fixed logic, it may be possible to design the device speed to take the data rate into account. But on a programmable device, such as a PLD, one cannot know, when designing the programmable device itself, what kind of logic a user may want to program onto the device, so the device clock rate cannot be designed with a particular data rate in mind. And even with a fixed device, the ability to design to any clock rate may be limited.


In addition, the number of filter taps is directly proportional to the ratio of sample rate to transition bandwidth. Each filter tap requires at least one multiplier. Again, on a fixed device, one may be able to provide whatever number of multipliers one needs (although again, there may be reasons why there are limits to the number of multipliers), but on a programmable device, a certain number of multipliers will be provided but it is not possible to predict how many a user may need. One solution that a user may resort to is to break the filter down into stages, thereby limiting the number of multipliers required. However, the data rate increases with each stage, so the problem of the input rate for later stages (in the interpolation case), or the output rate for earlier stages (in the decimation case), exceeding the device rate may arise for this reason as well.


SUMMARY OF THE INVENTION

In accordance with the present invention, an interpolation filter not only may be broken into stages, but each stage may be broken into subfilters, which divides the output into phases. The number of subfilters or phases in the final stage is equal to the factor by which the data rate would otherwise increase. Thus, in one example, for an interpolation factor of M, the output data rate can be kept within the device rate by providing M subfilters, yielding M output phases each having an output rate equal to the input rate. The effective, or synthesized, output rate in such a case is M times the input rate.


Moreover, the number of input phases will increase with each stage. For stages after the first stage, the number of input phases would be the number of output phases of the previous stage. However, even for the first stage, the number of input phases may be greater than one. To generalize, for each stage, there may be any number of input phases (Pi), and a stage interpolation factor (Ms ), yielding a number of output phases (Po), where Po=Pi Ms. Each output phase is produced by a subfilter, so there are Po subfilters. Each subfilter has Pi branches to accept the Pi input phases.


For the filter as a whole, having n stages, the overall effective interpolation factor is:






M
=




j
=
1

n







M
sj







However, while the effective output data rate is M times the input data rate Ri, the actual data rate of each output phase is only MRi/Pof where Pof is the number of final output phases.


The case of a decimation filter is similar. For an overall decimation factor of M, there can be more than one stage. Because in decimation, the number of samples is decreased by the filter, the number of input phases exceeds the number of output phases. Thus the earlier stages have the larger number of subfilters sampling the respective input phases. The output phases of the subfilters in the earlier stage are combined for input to corresponding taps of the subfilters in the later stage. While the effective input data rate is M times the output data rate Ro, the actual data rate of each input phase is only MRo/Pif where Pif is the number of initial input phases.


Therefore, in accordance with the present invention, there is provided a FIR filter structure on an integrated circuit device for processing data samples and a set of a number of coefficients at an effective data rate that exceeds a maximum data rate of said device by a factor. The FIR filter structure includes a plurality of FIR filter stages including at a least an initial filter stage and a final filter stage. Each of the filter stages has one or more subfilters. A first one of the initial and final filter stages has a number of subfilters that exceeds a number of subfilters in a second of the initial and final filter stages by the aforementioned factor. Each subfilter in each respective filter stage convolves input data with a subset of coefficients whose number is related to a number of subfilters in an adjacent filter stage.


A method of configuring such circuitry on a programmable device, a programmable device so configurable, and a machine-readable data storage medium encoded with software for performing the method, are also provided.





BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the invention, its nature and various advantages will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:



FIG. 1 is a representation of a conventional polyphase 1:M interpolation filter;



FIG. 2 is a representation of a conventional interpolation filter broken into stages;



FIG. 3 is a representation of an interpolation filter according to an embodiment of the present invention;



FIGS. 4 and 5 are representations of one of the stages of the embodiment of FIG. 3;



FIG. 6 is a representation of an interpolation filter according to another embodiment of the present invention;



FIG. 7 is a representation of an decimation filter according to still another embodiment of the present invention;



FIG. 8 is a simplified block diagram of an illustrative system employing a programmable logic device incorporating the present invention;



FIG. 9 is a cross-sectional view of a magnetic data storage medium encoded with a set of machine-executable instructions for performing the method according to the present invention; and



FIG. 10 is a cross-sectional view of an optically readable data storage medium encoded with a set of machine executable instructions for performing the method according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

A FIR filter calculates a weighted sum of a finite number of inputs, summing a number of multiplication results, where each multiplication is between a sample and a coefficient. Each such multiplication may be referred to as a “tap.” Mathematically, a FIR filter may be described as:







Y
k

=





i
=
0


Taps
-
1




ci




·




Sk


-
i






where Yk is the kth output term, ci is the ith coefficient, sk-i is the (k−i)th sample, and Taps is the number of taps in the filter.


One example of a digital signal processing block for a programmable device, that may be configured as different types of filters, including an interpolation FIR filter and a decimation FIR filter, is shown in copending, commonly-assigned U.S. patent application Ser. No. 11/447,370, filed Jun. 5, 2006, which is hereby incorporated by reference herein in its entirety, although the present invention may be used with other types of devices.


In the case of interpolation, one inserts outputs between the outputs that are generated based on input samples. In the case, for example, of interpolation by two, one must create one output between each output based on an input sample. Therefore, the FIR filter circuitry must generate two outputs in the time interval occupied by one input—i.e., it must run at twice the input clock rate. For interpolation by a higher factor M, the circuitry must generate M−1 outputs between the outputs that are generated based on input samples, or a total of M outputs in the time interval occupied by one input—i.e., in a conventional interpolation filter, the circuitry must run at M times the input clock rate.


Similarly in the case of decimation, only one output is generated for every M inputs. In the case, for example, of decimation by two, one must accept two inputs for each output sample generated per output clock. Therefore, the FIR filter circuitry must generate an output in the time interval occupied by two inputs—i.e., it must run at twice the output clock rate. For decimation by a higher factor M, the circuitry must generate an output in the time interval occupied by M inputs—i.e., in a conventional interpolation filter, the circuitry must run at M times the output clock rate.



FIG. 1 shows an example of a conventional polyphase 1:M interpolation filter 101. In this example, interpolation filter 101 is configured on a programmable logic device 100 which may be an FPGA. Filter 101 is decomposed into M subfilters 102, where M is the interpolation factor. Both the input 103 and the M output legs 104 run at the device clock rate (“ClockRate”). Each leg represents every Mth sample and is shifted by one sample from the previous leg. An LVDS serializer 105 may be used to multiplex the M legs into a single signal at a synthesized higher output sample rate MxClockRate for further processing by digital-to-analog converter 106 and beyond.


The invention will now be described with reference to FIGS. 2-4, using interpolation as an example.


Many gigabit serial data standards now support synthesized output sample rates at or exceeding one billion samples per second (1 Gsps), but device clock rates have not kept pace, resulting in ever-higher interpolation factors M. Because the input data rate cannot exceed the device clock rate, sampling is performed with a narrow transition bandwidth. According to the filter design theory, the number of filter taps is proportional to the ratio of sample frequency to transition bandwidth. The use of ever-higher interpolation factors increases this ratio by both increasing the numerator and decreasing the denominator, thereby greatly increasing the number of filter taps. Each filter tap requires at least one multiplier, and if the number of multipliers on the device is limited, as it would be on a programmable device such as an FPGA that is not manufactured with a particular filter implementation in mind (and as might be the case even in a fixed logic device for other manufacturing reasons) the required number of taps could exceed the available number of multipliers on the device.


One known solution is to break down the 1:M interpolation into a number of cascaded filter stages to reduce the total number of multipliers. FIG. 2 shows an example of such a cascaded interpolation filter 200, in which M=16. As shown, the input data rate is 256 Msps, while the output data rate is 4096 Msps (i.e., 4 Gsps). Low-pass filtering may be used to preserve the input bandwidth while preventing aliasing due to the up-sampling process. In this design, the interpolation-by-16 filter is broken down into four stages 201-204, each of which may be an interpolation-by-2 filter. The output rate of each stage 201-204 is twice that stage's input rate, and that output rate becomes the input rate for the next one of stages 202-204. However, at some point in the cascade, the output rate of one of the stages may exceed the device clock rate, requiring the subsequent stage to have an input clock rate higher than the device clock rate, which is not permitted.


Therefore, in accordance with an embodiment of the present invention, filter 300 may be provided, as shown in FIG. 3. Filter 300 is broken down into stages 301-304, similar to stages 201-204 of filter 200, except that each stage 301-304 is broken down into subfilters 305, each of which provides a separate phase of the output of stage 301-304. In this way, the output rate of each subfilter 305 can be designed so that it does not exceed the input rate of the next subfilter 305 (i.e., does not exceed the device clock rate). The synthesized output rate of the stage 301-304 is the sum of the output rates of the individual subfilters 305 in the final stage 304.


The output rate of each subfilter 305 may be the same as the original input rate of the first stage 301, and the full multiplication of the input rate by M to achieve the final output rate is accomplished by having M subfilters 305 in the final stage 304. Alternatively, the output rate of each subfilter 305 may be the more or less than the original input rate of the first stage 301, as long as it does not exceed the device rate, and the number of subfilters 305 in final stage 304 can be adjusted accordingly.



FIG. 4 shows an embodiment 400 of the implementation of the subfilters bs0 (401), bs1 (402), bs2 (402), and bs3 (404) of filter stage 302. Filter stage 302 has a set of coefficients b(n), (n=0, . . . , N−1), where N equals the number of taps, which preferably is a multiple of the number of output phases Po (i.e., 4, in this example). To create the Po subfilters, b(n) is decomposed into Po decomposed filters (b0, b1, b2, b3 in this example), each of which starts at the nth coefficient and takes every Poth coefficient. The decomposed filters can them be combined according to the needs of the particular situation, including delaying and rotating the decomposed filters.


Thus, as seen in FIG. 4, and in more detail in FIG. 5, subfilters bs0 (401) and bs2 (403) both include decomposed filters b0 and b2, but in bs2 (403), the subfilters are rotated as compared to bs0 (401). Moreover, as seen in FIG. 5, while in subfilter bs2 (403), the b2′ inputs are taken starting after the first delay 501 of input0, in subfilter bs0 (401), the b2 inputs are taken starting after the second delay 502 of input1. These rotations and delays are exemplary only, and will be determined by the user as a function of the particular application when the filter is designed.


More generally, each of n subfilters picks a consistent pattern of coefficients—e.g., every nth coefficient, with the starting point and rotation determined by the user as a function of the particular application when the filter is designed. Over all of the subfilters, each of the coefficients is selected Ms times.


Although in the example shown in FIG. 3, the number of phases output by the final stage is equal to the overall interpolation factor M so that there is no change in data rate, the number of subfilters per stage can be arranged to provide any desired relationship of the number output phases to the interpolation factor, and therefore any desired change in data rate (within the limitations of the device).


Another example 610 of interpolation-by-6, in two filter stages, is shown in FIG. 6. The first stage 611 includes three subfilters 621, 631, 641 of a filter a, which take a single input phase 612 and provide three intermediate phases 613, 623, 633, which are input to second filter stage 604 including six subfilters 614, 624, 634, 644, 654, 664 of a filter b. Each subfilter in second stage 604 convolves the intermediate phases with either even or odd coefficients, which may be delayed or rotated.



FIG. 7 shows an example 710 of decimation-by-6 in two stages. First filter stage 711 including six subfilters 712, 713, 714, 715, 716, 717 of a filter b. Each subfilter in first stage 711 convolves the six input phases with either even or odd coefficients, which may be delayed or rotated, each providing three outputs that are combined into three intermediate phases 721, 722, 723. The second stage 731 includes three subfilters 732, 733, 734 of a filter a, which take the three intermediate phases 721, 722, 723 and provide a single output phase 740.


These arrangements can be proven mathematically. A regular interpolation-by-two filter can be represented by

y=Hx

More specifically,









[









y


(


2





i

-
2

)







y


(


2





i

-
1

)







y


(

2





i

)







y


(


2





i

+
1

)







y


(


2





i

+
2

)







y


(


2





i

+
3

)










]









y
_







=



[


































h


(

N
-
2

)



























h


(

N
-
1

)



























h


(
0
)





h


(

N
-
2

)






















h


(
1
)





h


(

N
-
1

)




















h


(
2
)





h


(
0
)





h


(

N
-
2

)


















h


(
1
)





h


(

N
-
1

)

















h


(

N
-
2

)





h


(
2
)





h


(
0
)

















h


(

N
-
1

)








h


(
1
)




















h


(

N
-
2

)





h


(
2
)






















h


(

N
-
1

)




























h


(

N
-
2

)



























h


(

N
-
1

)



































]



H





·


[









x


(

i
-
1

)







x


(
i
)







x


(

i
+
1

)










]










x
_













where N=length of the original filter, and h(0) . . . h(N−1)=the coefficients of the original filter.


Because the output data rate can not actually be faster than clock rate of the device, the interpolation-by-2 can be performed with 1-to-2 polyphase filter.







[










y


(


2





i

-
2

)







y


(

2





i

)







y


(


2





i

+
2

)



















y


(


2





i

-
1

)







y


(


2





i

+
1

)







y


(


2





i

+
3

)











]

=



[



































h


(

N
-
4

)

























h


(

N
-
2

)





h


(

N
-
4

)




















h


(
0
)





h


(

N
-
2

)





h


(

N
-
4

)















j


(
2
)





h


(
0
)





h


(

N
-
2

)















h


(
4
)





h


(
2
)





h


(
0
)




















h


(
4
)





h


(
2
)

















h


(

N
-
4

)








h


(
4
)

















h


(

N
-
2

)





h


(

N
-
4

)























h


(

N
-
2

)





h


(

N
-
4

)

























h


(

N
-
2

)





































































h


(

N
-
3

)

























h


(

N
-
1

)





h


(

N
-
3

)




















h


(
1
)





h


(

N
-
1

)





h


(

N
-
3

)

















h


(
3
)





h


(
1
)





h


(

N
-
1

)















h


(
5
)





h


(
3
)





h


(
1
)


















h


(
5
)





h


(
3
)

















h


(

N
-
3

)








h


(
5
)

















h


(

N
-
1

)





h


(

N
-
3

)























h


(

N
-
1

)





h


(

N
-
3

)

























h


(

N
-
1

)




































]









H
~











·


[









x


(

i
-
1

)







x


(
i
)







x


(

i
+
1

)










]










x
_













To simplify the notation, the above can be written as:








[


y
0



y
1

_


]

=



H
~







x
_


=


[




H
0






H
1




]

·





x
_












However, the foregoing notation assumes the input data rate is lower or equal to the clock rate in the device. When the input data rate is faster than clock rate, the input can be separated into different phases as well. For example, an interpolation-by-2 filter can be designed as a 2 phase input/4 phase output system:







[





y
0

_







y
1

_







y
2

_







y
3

_




]

=



H
~

·





x
_


=


[




H
0




H
2
*






H
1




H
3
*






H
2




H
0






H
3




H
1




]

·

[





x
0

_







x
1

_




]







Hp is the filter matrix of the pth phase of an M-phase polyphase decomposition of the original filter H, where M is the number of output phases. For example:







H
0

=

[


































h


(

N
-

2

M


)

























h


(

N
-
M

)





h


(

N
-

2

M


)




















h


(
0
)





h


(

N
-
M

)





h


(

N
-

2

M


)















h


(
M
)





h


(
0
)





h


(

N
-
M

)















h


(

2

M

)





h


(
M
)





h


(
0
)




















h


(

2

M

)





h


(
M
)

















h


(

N
-

2

M


)








h


(

2

M

)

















h


(

N
-
M

)





h


(

N
-

2

M


)























h


(

N
-
M

)





h


(

N
-

2

M


)

























h


(

N
-
M

)



































]





H*p is the delayed version of the pth phase of an M-phase polyphase decomposition of the original filter H. For example:







H
2
*

=

[


































h


(

N
-

3

M

+
2

)

























h


(

N
-

2

M

+
2

)





h


(

N
-

3

M

+
2

)




















h


(

N
-
M
+
2

)





h


(

N
-

2

M

+
2

)





h


(

N
-

3

M

+
2

)















h


(
2
)





h


(

N
-
M
+
2

)





h


(

N
-

2

M

+
2

)















h


(

M
+
2

)





h


(
2
)





h


(

N
-
M
+
2

)

















h


(


2

M

+
2

)





h


(

M
+
2

)





h


(
2
)




















h


(


2

M

+
2

)





h


(

M
+
2

)

















h


(

N
-

2

M

+
2

)








h


(


2

M

+
2

)




















h


(

N
-

2

M


)




























h


(

N
-

2

M


)



































]





The {tilde over (H)} matrix includes subfilter matrices (derived from polyphase decomposition) and the indices of the subfilter matrices have a regular structure and can be created by the following algorithm:

Ĥ=toeplitz(H[0:1:M−1],H*[M:−1):1]).

And {tilde over (H)}=Ĥ(:,1:f:end)


Where f is the interpolation factor and M is the number of outputs phases.


For example, the {tilde over (H)} filter for a 4-to-8 interpolator is:







H
^

=

[




H
0




H
7
*




H
6
*




H
5
*




H
4
*




H
3
*




H
2
*




H
1
*






H
1




H
0




H
7
*




H
6
*




H
5
*




H
4
*




H
3
*




H
2
*






H
2




H
1




H
0




H
7
*




H
6
*




H
5
*




H
4
*




H
3
*






H
3




H
2




H
1




H
0




H
7
*




H
6
*




H
5
*




H
4
*






H
4




H
3




H
2




H
1




H
0




H
7
*




H
6
*




H
5
*






H
5




H
4




H
3




H
2




H
1




H
0




H
7
*




H
6
*






H
6




H
5




H
4




H
3




H
2




H
1




H
0




H
7
*






H
7




H
6




H
5




H
4




H
3




H
2




H
1




H
0




]








H
~

=

[




H
0




H
6
*




H
4
*




H
2
*






H
1




H
7
*




H
5
*




H
3
*






H
2




H
0




H
6
*




H
4
*






H
3




H
1




H
7
*




H
5
*






H
4




H
2




H
0




H
6
*






H
5




H
3




H
1




H
7
*






H
6




H
4




H
2




H
0






H
7




H
5




H
3




H
1




]





Also, the output phases can be computed by:







[





y
0

_







y
1

_







y
2

_







y
3

_







y
4

_







y
5

_







y
6

_







y
7

_




]

=



H
~

·

[





x
0

_







x
1

_







x
2

_







x
3

_




]


=


[




H
0




H
6
*




H
4
*




H
2
*






H
1




H
7
*




H
5
*




H
3
*






H
2




H
0




H
6
*




H
4
*






H
3




H
1




H
7
*




H
5
*






H
4




H
2




H
0




H
6
*






H
5




H
3




H
1




H
7
*






H
6




H
4




H
2




H
0






H
7




H
5




H
3




H
1




]

·

[





x
0

_







x
1

_







x
2

_







x
3

_




]








As an example, the first output phase can be computed by the following:

y0=H0x0+H6*x1+H4*x2+H2*x3

where:








H
0




x
0

_


=


[


































h


(


N
-
1

8

)

























h


(
0
)





h


(


N
-
1

8

)


















h


(
8
)





h


(
0
)





h


(


N
-
1

8

)















h


(
16
)





h


(
8
)





h


(
0
)




















h


(
16
)





h


(
8
)

















h


(


N
-
1

8

)








h


(
16
)




















h


(


N
-
1

8

)




























h


(


N
-
1

8

)



































]

·

[









x


(

i
-
8

)







x


(

i
-
4

)







x


(
i
)







x


(

i
+
4

)







x


(

i
+
8

)










]






The invention also applies to interpolation filters with interpolation factors greater than 2. For example, a interpolate-by-3 filter can be implemented as a 3-to-9 phase interpolator:







[





y
0

_







y
1

_







y
2

_







y
3

_







y
4

_







y
5

_







y
6

_







y
7

_







y
8

_




]

=


[




H
0




H
6
*




H
3
*






H
1




H
7
*




H
4
*






H
2




H
8
*




H
5
*






H
3




H
0




H
6
*






H
4




H
1




H
7
*






H
5




H
2




H
8
*






H
6




H
3




H
0






H
7




H
4




H
1






H
8




H
5




H
2




]

·

[





x
0

_







x
1

_







x
2

_




]






From the foregoing, one can derive the following applications:


1. Single-rate filtering (n phases in and n phases out) at rates above the device rate:

Ĥ=toeplitz(H[0:1:n−1],H[n:(−1):1]*);
y=Ĥ*x;

For example: 4 phases in and 4 phases out:







[





y
0

_







y
1

_







y
2

_







y
3

_




]

=


[




H
0




H
3
*




H
2
*




H
1
*






H
1




H
0




H
3
*




H
2
*






H
2




H
1




H
0




H
3
*






H
3




H
2




H
1




H
0




]

·

[





x
0

_







x
1

_







x
2

_







x
3

_




]






2. Decimation filtering (↓M: n phases in and n/M phases out):

Ĥ=toeplitz(H[0:1:n−1],H[n:(−1):1]*);
y(1:M:end,:)*x;

For example: 4 phases in and 2 phases out (decimate-by-2):







[





y
0

_







y
1

_




]

=


[




H
0




H
3
*




H
2
*




H
1
*






H
2




H
1




H
0




H
3
*




]

·

[





x
0

_







x
1

_







x
2

_







x
3

_




]






3. Interpolation filtering (↑M: n phases in and nM phases out):

Ĥ=toeplitz(H[0:1:nM−1],H[nM:(−1):1]*);
y(:,1:M:end)*x;

For example: 2 phases in and 4 phases out (interpolate-by-2):







[





y
0

_







y
1

_







y
2

_







y
3

_




]

=


[




H
0




H
2
*






H
1




H
3
*






H
2




H
0






H
3




H
1




]

·

[





x
0

_







x
1

_




]






4. Fractional filtering (↑M/N: n phase in and nM/N phases out):


For example: 4 phase input→decimate-by-2→interpolate by 3→6 phase output







[





y
0

_







y
1

_







y
2

_







y
3

_







y
4

_







y
5

_




]

=


[




H

I





0





H

I





3







H

I





1





H

I





4







H

I





2





H

I





5







H

I





3





H

I





0







H

I





4





H

I





1







H

I





5





H

I





2





]

·

[




H

D





0





H

D





3

*




H

D





2

*




H

D





1

*






H

D





2





H

D





1





H

D





0





H

D





3

*




]

·

[





x
0

_







x
1

_







x
2

_







x
3

_




]






A PLD 280 configured according to the present invention may be used in many kinds of electronic devices. One possible use is in a data processing system 900 shown in FIG. 8. Data processing system 900 may include one or more of the following components: a processor 281; memory 282; I/O circuitry 283; and peripheral devices 284. These components are coupled together by a system bus 285 and are populated on a circuit board 286 which is contained in an end-user system 287.


System 900 can be used in a wide variety of applications, such as computer networking, data networking, instrumentation, video processing, digital signal processing, or any other application where the advantage of using programmable or reprogrammable logic is desirable. PLD 280 can be used to perform a variety of different logic functions. For example, PLD 280 can be configured as a processor or controller that works in cooperation with processor 281. PLD 280 may also be used as an arbiter for arbitrating access to a shared resources in system 900. In yet another example, PLD 280 can be configured as an interface between processor 281 and one of the other components in system 900. It should be noted that system 900 is only exemplary, and that the true scope and spirit of the invention should be indicated by the following claims.


Various technologies can be used to implement PLDs 280 as described above and incorporating this invention.


Instructions for carrying out the method according to this invention may be encoded on a machine-readable medium, to be executed by a suitable computer or similar device to implement the method of the invention for programming PLDs. For example, a personal computer may be equipped with an interface to which a PLD can be connected, and the personal computer can be used by a user to program the PLD using a suitable software tool, such as the QUARTUS® II software available from Altera Corporation, of San Jose, Calif.



FIG. 9 presents a cross section of a magnetic data storage medium 600 which can be encoded with a machine executable program that can be carried out by systems such as the aforementioned personal computer, or other computer or similar device. Medium 600 can be a floppy diskette or hard disk, or magnetic tape, having a suitable substrate 601, which may be conventional, and a suitable coating 602, which may be conventional, on one or both sides, containing magnetic domains (not visible) whose polarity or orientation can be altered magnetically. Except in the case where it is magnetic tape, medium 600 may also have an opening (not shown) for receiving the spindle of a disk drive or other data storage device.


The magnetic domains of coating 602 of medium 600 are polarized or oriented so as to encode, in manner which may be conventional, a machine-executable program, for execution by a programming system such as a personal computer or other computer or similar system, having a socket or peripheral attachment into which the PLD to be programmed may be inserted, to configure appropriate portions of the PLD, including its specialized processing blocks, if any, as a filter in accordance with the invention.



FIG. 10 shows a cross section of an optically-readable data storage medium 700 which also can be encoded with such a machine-executable program, which can be carried out by systems such as the aforementioned personal computer, or other computer or similar device. Medium 700 can be a conventional compact disk read only memory (CD-ROM) or digital video disk read only memory (DVD-ROM) or a rewriteable medium such as a CD-R, CD-RW, DVD-R, DVD-RW, DVD+R, DVD+RW, or DVD-RAM or a magneto-optical disk which is optically readable and magneto-optically rewriteable. Medium 700 preferably has a suitable substrate 701, which may be conventional, and a suitable coating 702, which may be conventional, usually on one or both sides of substrate 701.


In the case of a CD-based or DVD-based medium, as is well known, coating 702 is reflective and is impressed with a plurality of pits 703, arranged on one or more layers, to encode the machine-executable program. The arrangement of pits is read by reflecting laser light off the surface of coating 702. A protective coating 704, which preferably is substantially transparent, is provided on top of coating 702.


In the case of magneto-optical disk, as is well known, coating 702 has no pits 703, but has a plurality of magnetic domains whose polarity or orientation can be changed magnetically when heated above a certain temperature, as by a laser (not shown). The orientation of the domains can be read by measuring the polarization of laser light reflected from coating 702. The arrangement of the domains encodes the program as described above.


It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the various elements of this invention can be provided on a PLD in any desired number and/or arrangement. One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow.

Claims
  • 1. A FIR (Finite Impulse Response) filter structure on an integrated circuit device, for processing data samples and a set of coefficients, at an effective filter data rate that exceeds an input/output data rate by a factor, said FIR filter structure comprising: a plurality of FIR filter stages including at a least an initial filter stage and a final filter stage, each of said filter stages having one or more subfilters defined by a subset of said set of coefficients, a first one of said initial and final filter stages having a number of subfilters that exceeds a number of subfilters in a second of said initial and final filter stages by said factor; wherein:each subfilter in each respective filter stage convolves input data with a respective subset of said set of coefficients; andin at least one particular stage, at least a first subfilter in said particular stage includes a plurality of decomposed filters in a first filter order representing said respective subset of said set of coefficients in a first coefficient order, and at least a second subfilter in said particular stage includes said plurality of decomposed filters in a second filter order, different from said first filter order, representing said respective subset of said set of coefficients in a second coefficient order different from said first coefficient order.
  • 2. The filter structure of claim 1 wherein: said filter structure is an interpolation filter;said first one of said initial and final filter stages is said final filter stage;said effective filter data rate is an output rate; andsaid input/output data rate is an input data rate.
  • 3. The filter structure of claim 1 wherein: said filter structure is a decimation filter;said first one of said initial and final filter stages is said initial filter stage;said effective filter data rate is an input rate; andsaid input/output data rate is an output data rate.
  • 4. The FIR filter structure of claim 1 further comprising at least one intermediate filter stage.
  • 5. The FIR filter structure of claim 1 wherein: said integrated circuit device has a maximum device data rate; andsaid effective filter data rate exceeds said maximum device data rate.
  • 6. The filter structure of claim 1 wherein a particular one of said decomposed filters in said at least a first subfilter is delayed relative to said particular one of said decomposed filters in said at least a second subfilter.
  • 7. A method of programmably configuring a programmable integrated circuit device, having a maximum device data rate, as a FIR (Finite Impulse Response) filter structure, for processing data samples and a set of a number of coefficients, at an effective filter data rate that exceeds an input/output data rate by a factor, said method comprising: programmably configuring logic of said programmable integrated circuit device as a plurality of FIR filter stages including at a least an initial filter stage and a final filter stage, each of said filter stages having one or more subfilters defined by a subset of said set of coefficients, a first one of said initial and final filter stages having a number of subfilters that exceeds a number of subfilters in a second of said initial and final filter stages by said factor;programmably configuring each subfilter in each respective filter stage to convolve input data with a respective subset of said set of coefficients; andprogrammably configuring, in at least one particular stage, at least a first subfilter in said particular stage to include a plurality of decomposed filters in a first filter order representing said respective subset of said set of coefficients in a first coefficient order, and at least a second subfilter in said particular stage to include said plurality of decomposed filters in a second filter order, different from said first filter order representing said respective subset of said set of coefficients in a second coefficient order.
  • 8. The method of claim 7 wherein said filter structure is an interpolation filter; said first one of said initial and final filter stages is said final filter stage;said effective filter data rate is an output rate; andsaid input/output data rate is an input data rate.
  • 9. The method of claim 7 wherein said filter structure is a decimation filter; said first one of said initial and final filter stages is said initial filter stage;said effective filter data rate is an input rate; andsaid input/output data rate is an output data rate.
  • 10. The method of claim 7 further comprising programmably configuring logic of said programmable integrated circuit device as at least one intermediate filter stage.
  • 11. The method of claim 7 wherein: said effective filter data rate exceeds said maximum device data rate.
  • 12. The method of claim 7 further comprising programmably configuring a particular one of said decomposed filters in said at least a first subfilter to be delayed relative to said particular one of said decomposed filters in said at least a second subfilter.
  • 13. A non-transitory machine-readable data storage medium encoded with machine-executable instructions for performing a method of programmably configuring a programmable integrated circuit device, having a maximum device data rate, as a FIR (Finite Impulse Response) filter structure, for processing data samples and a set of a number of coefficients, at an effective filter data rate that exceeds an input/output data rate by a factor, said instructions comprising: instructions for programmably configuring logic of said programmable integrated circuit device as a plurality of FIR filter stages including at a least an initial filter stage and a final filter stage, each of said filter stages having one or more subfilters defined by a subset of said set of coefficients, a first one of said initial and final filter stages having a number of subfilters that exceeds a number of subfilters in a second of said initial and final filter stages by said factor;instructions for programmably configuring each subfilter in each respective filter stage to convolve input data with a respective subset of said set of coefficients; andinstructions for programmably configuring, in at least one particular stage, at least a first subfilter in said particular stage to include a plurality of decomposed filters in a first filter order representing said respective subset of said set of coefficients in a first coefficient order, and at least a second subfilter in said particular stage to include said plurality of decomposed filters in a second filter order, different from said first filter order representing said respective subset of said set of coefficients in a second coefficient order.
  • 14. The non-transitory machine-readable data storage medium of claim 13 wherein said instructions comprise instructions to configure said filter structure as an interpolation filter in which: said first one of said initial and final filter stages is said final filter stage;said effective filter data rate is an output rate; andsaid input/output data rate is an input data rate.
  • 15. The non-transitory machine-readable data storage medium of claim 13 wherein said instructions comprise instructions to configure said initial filter stage said filter structure as a decimation filter in which: said first one of said initial and final filter stages is said initial filter stage;said effective filter data rate is an input rate; andsaid input/output data rate is an output data rate.
  • 16. The non-transitory machine-readable data storage medium of claim 13 wherein said instructions comprise instructions to configure said filter such that said effective filter data rate exceeds said maximum device data rate.
  • 17. The non-transitory machine-readable data storage medium of claim 13 further comprising instructions for programmably configuring a particular one of said decomposed filters in said at least a first subfilter to be delayed relative to said particular one of said decomposed filters in said at least a second subfilter.
US Referenced Citations (345)
Number Name Date Kind
3473160 Wahlstrom Oct 1969 A
3800130 Martinson et al. Mar 1974 A
3814924 Tate Jun 1974 A
4156927 McElroy et al. May 1979 A
4179746 Tubbs Dec 1979 A
4212076 Conners Jul 1980 A
4215406 Gomola et al. Jul 1980 A
4215407 Gomola et al. Jul 1980 A
4422155 Amir et al. Dec 1983 A
4484259 Palmer et al. Nov 1984 A
4521907 Amir et al. Jun 1985 A
4575812 Kloker et al. Mar 1986 A
4597053 Chamberlin Jun 1986 A
4616330 Betz Oct 1986 A
4623961 Mackiewicz Nov 1986 A
4682302 Williams Jul 1987 A
4718057 Venkitakrishnan et al. Jan 1988 A
4727508 Williams Feb 1988 A
4736335 Barkan Apr 1988 A
4754421 Bosshart Jun 1988 A
4791590 Ku et al. Dec 1988 A
4799004 Mori Jan 1989 A
4823295 Mader Apr 1989 A
4839847 Laprade Jun 1989 A
4871930 Wong et al. Oct 1989 A
4912345 Steele et al. Mar 1990 A
4918637 Morton Apr 1990 A
4967160 Quievy et al. Oct 1990 A
4982354 Takeuchi et al. Jan 1991 A
4991010 Hailey et al. Feb 1991 A
4994997 Martin et al. Feb 1991 A
5068813 Thoen Nov 1991 A
5073863 Zhang Dec 1991 A
5081604 Tanaka Jan 1992 A
5122685 Chan et al. Jun 1992 A
5128559 Steele Jul 1992 A
5175702 Beraud et al. Dec 1992 A
5208491 Ebeling et al. May 1993 A
RE34363 Freeman Aug 1993 E
5267187 Hsieh et al. Nov 1993 A
5296759 Sutherland et al. Mar 1994 A
5338983 Agarwala Aug 1994 A
5339263 White Aug 1994 A
5349250 New Sep 1994 A
5357152 Jennings, III et al. Oct 1994 A
5371422 Patel et al. Dec 1994 A
5375079 Uramoto et al. Dec 1994 A
5381357 Wedgwood et al. Jan 1995 A
5404324 Colon-Benet Apr 1995 A
5416799 Currivan et al. May 1995 A
5424589 Dobbelaere et al. Jun 1995 A
5446651 Moyse et al. Aug 1995 A
5451948 Jekel Sep 1995 A
5452231 Butts et al. Sep 1995 A
5452375 Rousseau et al. Sep 1995 A
5457644 McCollum Oct 1995 A
5465226 Goto Nov 1995 A
5465375 Thepaut et al. Nov 1995 A
5483178 Costello et al. Jan 1996 A
5497498 Taylor Mar 1996 A
5500812 Saishi et al. Mar 1996 A
5500828 Doddington et al. Mar 1996 A
5523963 Hsieh et al. Jun 1996 A
5528550 Pawate et al. Jun 1996 A
5537601 Kimura et al. Jul 1996 A
5541864 Van Bavel et al. Jul 1996 A
5546018 New et al. Aug 1996 A
5550993 Ehlig et al. Aug 1996 A
5559450 Ngai et al. Sep 1996 A
5563526 Hastings et al. Oct 1996 A
5563819 Nelson Oct 1996 A
5570039 Oswald et al. Oct 1996 A
5570040 Lytle et al. Oct 1996 A
5572148 Lytle et al. Nov 1996 A
5581501 Sansbury et al. Dec 1996 A
5590350 Guttag et al. Dec 1996 A
5594366 Khong et al. Jan 1997 A
5594912 Brueckmann et al. Jan 1997 A
5596763 Guttag et al. Jan 1997 A
5606266 Pedersen Feb 1997 A
5617058 Adrian et al. Apr 1997 A
5623377 Behrens et al. Apr 1997 A
5631848 Laczko et al. May 1997 A
5633601 Nagaraj May 1997 A
5636150 Okamoto Jun 1997 A
5636368 Harrison et al. Jun 1997 A
5640578 Balmer et al. Jun 1997 A
5644519 Yatim Jul 1997 A
5644522 Moyse et al. Jul 1997 A
5646545 Trimberger et al. Jul 1997 A
5646875 Taborn et al. Jul 1997 A
5648732 Duncan Jul 1997 A
5652903 Weng et al. Jul 1997 A
5655069 Ogawara et al. Aug 1997 A
5664192 Lloyd et al. Sep 1997 A
5689195 Cliff et al. Nov 1997 A
5696708 Leung Dec 1997 A
5729495 Madurawe Mar 1998 A
5740404 Baji Apr 1998 A
5744980 McGowan et al. Apr 1998 A
5744991 Jefferson et al. Apr 1998 A
5754459 Telikepalli May 1998 A
5761483 Trimberger Jun 1998 A
5764555 McPherson et al. Jun 1998 A
5768613 Asghar Jun 1998 A
5771186 Kodali et al. Jun 1998 A
5777912 Leung et al. Jul 1998 A
5784636 Rupp Jul 1998 A
5790446 Yu et al. Aug 1998 A
5794067 Kadowaki Aug 1998 A
5801546 Pierce et al. Sep 1998 A
5805477 Perner Sep 1998 A
5805913 Guttag et al. Sep 1998 A
5808926 Gorshtein et al. Sep 1998 A
5812479 Cliff et al. Sep 1998 A
5812562 Baeg Sep 1998 A
5815422 Dockser Sep 1998 A
5821776 McGowan Oct 1998 A
5825202 Tavana et al. Oct 1998 A
5838165 Chatter Nov 1998 A
5841684 Dockser Nov 1998 A
5847579 Trimberger Dec 1998 A
5847978 Ogura et al. Dec 1998 A
5847981 Kelley et al. Dec 1998 A
5859878 Phillips et al. Jan 1999 A
5869979 Bocchino Feb 1999 A
5872380 Rostoker et al. Feb 1999 A
5874834 New Feb 1999 A
5878250 LeBlanc Mar 1999 A
5880981 Kojima et al. Mar 1999 A
5892962 Cloutier Apr 1999 A
5894228 Reddy et al. Apr 1999 A
5898602 Rothman et al. Apr 1999 A
5931898 Khoury Aug 1999 A
5935197 Aldworth Aug 1999 A
5942914 Reddy et al. Aug 1999 A
5944774 Dent Aug 1999 A
5949710 Pass et al. Sep 1999 A
5951673 Miyata Sep 1999 A
5956265 Lewis Sep 1999 A
5959871 Pierzchala et al. Sep 1999 A
5960193 Guttag et al. Sep 1999 A
5961635 Guttag et al. Oct 1999 A
5963048 Harrison et al. Oct 1999 A
5963050 Young et al. Oct 1999 A
5968196 Ramamurthy et al. Oct 1999 A
5970254 Cooke et al. Oct 1999 A
5978260 Trimberger et al. Nov 1999 A
5982195 Cliff et al. Nov 1999 A
5986465 Mendel Nov 1999 A
5991788 Mintzer Nov 1999 A
5991898 Rajski et al. Nov 1999 A
5995748 Guttag et al. Nov 1999 A
5999015 Cliff et al. Dec 1999 A
5999990 Sharrit et al. Dec 1999 A
6005806 Madurawe et al. Dec 1999 A
6006321 Abbott Dec 1999 A
6009451 Burns Dec 1999 A
6018755 Gonikberg et al. Jan 2000 A
6020759 Heile Feb 2000 A
6021423 Nag et al. Feb 2000 A
6029187 Verbauwhede Feb 2000 A
6031763 Sansbury Feb 2000 A
6041339 Yu et al. Mar 2000 A
6041340 Mintzer Mar 2000 A
6052327 Reddy et al. Apr 2000 A
6052755 Terrill et al. Apr 2000 A
6055555 Boswell et al. Apr 2000 A
6064614 Khoury May 2000 A
6065131 Andrews et al. May 2000 A
6066960 Pedersen May 2000 A
6069487 Lane et al. May 2000 A
6072994 Phillips et al. Jun 2000 A
6073154 Dick Jun 2000 A
6075381 LaBerge Jun 2000 A
6084429 Trimberger Jul 2000 A
6085317 Smith Jul 2000 A
6091261 DeLange Jul 2000 A
6091765 Pietzold, III et al. Jul 2000 A
6094726 Gonion et al. Jul 2000 A
6097988 Tobias Aug 2000 A
6098163 Guttag et al. Aug 2000 A
6107820 Jefferson et al. Aug 2000 A
6107821 Kelem et al. Aug 2000 A
6107824 Reddy et al. Aug 2000 A
6130554 Kolze et al. Oct 2000 A
6140839 Kaviani et al. Oct 2000 A
6144980 Oberman Nov 2000 A
6154049 New Nov 2000 A
6157210 Zaveri et al. Dec 2000 A
6163788 Chen et al. Dec 2000 A
6167415 Fischer et al. Dec 2000 A
6175849 Smith Jan 2001 B1
6215326 Jefferson et al. Apr 2001 B1
6226735 Mirsky May 2001 B1
6242947 Trimberger Jun 2001 B1
6243729 Staszewski Jun 2001 B1
6246258 Lesea Jun 2001 B1
6260053 Maulik et al. Jul 2001 B1
6279021 Takano et al. Aug 2001 B1
6286024 Yano et al. Sep 2001 B1
6314442 Suzuki Nov 2001 B1
6314551 Borland Nov 2001 B1
6321246 Page et al. Nov 2001 B1
6323680 Pedersen et al. Nov 2001 B1
6327605 Arakawa et al. Dec 2001 B2
6351142 Abbott Feb 2002 B1
6353843 Chehrazi et al. Mar 2002 B1
6359468 Park et al. Mar 2002 B1
6360240 Takano et al. Mar 2002 B1
6362650 New et al. Mar 2002 B1
6366944 Hossain et al. Apr 2002 B1
6367003 Davis Apr 2002 B1
6369610 Cheung et al. Apr 2002 B1
6377970 Abdallah et al. Apr 2002 B1
6407576 Ngai et al. Jun 2002 B1
6407694 Cox et al. Jun 2002 B1
6427157 Webb Jul 2002 B1
6434587 Liao et al. Aug 2002 B1
6438569 Abbott Aug 2002 B1
6438570 Miller Aug 2002 B1
6446107 Knowles Sep 2002 B1
6453382 Heile Sep 2002 B1
6467017 Ngai et al. Oct 2002 B1
6480980 Koe Nov 2002 B2
6483343 Faith et al. Nov 2002 B1
6487575 Oberman Nov 2002 B1
6523055 Yu et al. Feb 2003 B1
6523057 Savo et al. Feb 2003 B1
6531888 Abbott Mar 2003 B2
6538470 Langhammer et al. Mar 2003 B1
6542000 Black et al. Apr 2003 B1
6556044 Langhammer et al. Apr 2003 B2
6557092 Callen Apr 2003 B1
6571268 Giacalone et al. May 2003 B1
6573749 New et al. Jun 2003 B2
6574762 Karimi et al. Jun 2003 B1
6591283 Conway et al. Jul 2003 B1
6591357 Mirsky Jul 2003 B2
6600495 Boland et al. Jul 2003 B1
6600788 Dick et al. Jul 2003 B1
6628140 Langhammer et al. Sep 2003 B2
6687722 Larsson et al. Feb 2004 B1
6692534 Wang et al. Feb 2004 B1
6700581 Baldwin et al. Mar 2004 B2
6725441 Keller et al. Apr 2004 B1
6728901 Rajski et al. Apr 2004 B1
6731133 Feng et al. May 2004 B1
6732134 Rosenberg et al. May 2004 B1
6744278 Liu et al. Jun 2004 B1
6745254 Boggs et al. Jun 2004 B2
6763367 Kwon et al. Jul 2004 B2
6771094 Langhammer et al. Aug 2004 B1
6774669 Liu et al. Aug 2004 B1
6781408 Langhammer Aug 2004 B1
6781410 Pani et al. Aug 2004 B2
6788104 Singh et al. Sep 2004 B2
6801924 Green et al. Oct 2004 B1
6806733 Pan et al. Oct 2004 B1
6836839 Master et al. Dec 2004 B2
6874079 Hogenauer Mar 2005 B2
6889238 Johnson May 2005 B2
6904471 Boggs et al. Jun 2005 B2
6917955 Botchev Jul 2005 B1
6924663 Masui et al. Aug 2005 B2
6959316 Parviainen Oct 2005 B2
6963890 Dutta et al. Nov 2005 B2
6971083 Farrugia et al. Nov 2005 B1
6978287 Langhammer Dec 2005 B1
6983300 Ferroussat Jan 2006 B2
7020673 Ozawa Mar 2006 B2
7047272 Giacalone et al. May 2006 B2
7062526 Hoyle Jun 2006 B1
7093204 Oktem et al. Aug 2006 B2
7107305 Deng et al. Sep 2006 B2
7113969 Green et al. Sep 2006 B1
7181484 Stribaek et al. Feb 2007 B2
7313585 Winterrowd Dec 2007 B2
7395298 Debes et al. Jul 2008 B2
7401109 Koc et al. Jul 2008 B2
7409417 Lou Aug 2008 B2
7415542 Hennedy et al. Aug 2008 B2
7421465 Rarick et al. Sep 2008 B1
7428565 Fujimori Sep 2008 B2
7428566 Siu et al. Sep 2008 B2
7430578 Debes et al. Sep 2008 B2
7430656 Sperber et al. Sep 2008 B2
7447310 Koc et al. Nov 2008 B2
7472155 Simkins et al. Dec 2008 B2
7508936 Eberle et al. Mar 2009 B2
7519646 Kaul et al. Apr 2009 B2
7536430 Guevokian et al. May 2009 B2
7567997 Simkins et al. Jul 2009 B2
7587443 Langhammer Sep 2009 B1
7590676 Langhammer Sep 2009 B1
7646430 Brown Elliott et al. Jan 2010 B2
7668896 Lutz et al. Feb 2010 B2
7719446 Rosenthal et al. May 2010 B2
7769797 Cho et al. Aug 2010 B2
7822799 Langhammer et al. Oct 2010 B1
7836117 Langhammer et al. Nov 2010 B1
7930335 Gura Apr 2011 B2
7930336 Langhammer Apr 2011 B2
8041759 Langhammer et al. Oct 2011 B1
20010023425 Oberman et al. Sep 2001 A1
20010029515 Mirsky Oct 2001 A1
20010037351 Hellberg Nov 2001 A1
20010037352 Hong Nov 2001 A1
20020002573 Landers et al. Jan 2002 A1
20020038324 Page et al. Mar 2002 A1
20020049798 Wang et al. Apr 2002 A1
20020078114 Wang et al. Jun 2002 A1
20020089348 Langhammer Jul 2002 A1
20020116434 Nancekievill Aug 2002 A1
20030088757 Lindner et al. May 2003 A1
20040064770 Xin Apr 2004 A1
20040078403 Scheuermann et al. Apr 2004 A1
20040083412 Corbin et al. Apr 2004 A1
20040103133 Gurney May 2004 A1
20040122882 Zakharov et al. Jun 2004 A1
20040148321 Guevorkian et al. Jul 2004 A1
20040172439 Lin Sep 2004 A1
20040178818 Crotty et al. Sep 2004 A1
20040193981 Clark et al. Sep 2004 A1
20040267857 Abel et al. Dec 2004 A1
20040267863 Bhushan et al. Dec 2004 A1
20050038842 Stoye Feb 2005 A1
20050144212 Simkins et al. Jun 2005 A1
20050144215 Simkins et al. Jun 2005 A1
20050144216 Simkins et al. Jun 2005 A1
20050166038 Wang et al. Jul 2005 A1
20050187997 Zheng et al. Aug 2005 A1
20050187999 Zheng et al. Aug 2005 A1
20050262175 Iino et al. Nov 2005 A1
20060020655 Lin Jan 2006 A1
20070083585 St. Denis et al. Apr 2007 A1
20070185951 Lee et al. Aug 2007 A1
20070185952 Langhammer et al. Aug 2007 A1
20070241773 Hutchings et al. Oct 2007 A1
20080133627 Langhammer et al. Jun 2008 A1
20080183783 Tubbs Jul 2008 A1
20090172052 DeLaquil et al. Jul 2009 A1
20090187615 Abe et al. Jul 2009 A1
20090300088 Michaels et al. Dec 2009 A1
20100098189 Oketani Apr 2010 A1
Foreign Referenced Citations (50)
Number Date Country
0 158 430 Oct 1985 EP
0 326 415 Aug 1989 EP
0 380 456 Aug 1990 EP
0 411 491 Feb 1991 EP
0 461 798 Dec 1991 EP
0 498 066 Aug 1992 EP
0 555 092 Aug 1993 EP
0 606 653 Jul 1994 EP
0 657 803 Jun 1995 EP
0 660 227 Jun 1995 EP
0 668 659 Aug 1995 EP
0 721 159 Jul 1996 EP
0 905 906 Mar 1999 EP
0 909 028 Apr 1999 EP
0 927 393 Jul 1999 EP
0 992 885 Apr 2000 EP
1 031 934 Aug 2000 EP
1 049 025 Nov 2000 EP
1 058 185 Dec 2000 EP
1 220 108 Jul 2002 EP
2 283 602 May 1995 GB
2 286 737 Aug 1995 GB
2 318 198 Apr 1998 GB
61-237133 Oct 1986 JP
63-216131 Aug 1988 JP
4-068709 Mar 1992 JP
4-332036 Nov 1992 JP
5-134851 Jun 1993 JP
06-187129 Jul 1994 JP
7-135447 May 1995 JP
9-327000 Dec 1997 JP
11-296345 Oct 1999 JP
2000-259394 Sep 2000 JP
2002-108606 Apr 2002 JP
2002-251281 Sep 2002 JP
WO9527243 Oct 1995 WO
WO9628774 Sep 1996 WO
WO9708606 Mar 1997 WO
WO9812629 Mar 1998 WO
WO9832071 Jul 1998 WO
WO9838741 Sep 1998 WO
WO9922292 May 1999 WO
WO9931574 Jun 1999 WO
WO9956394 Nov 1999 WO
WO0051239 Aug 2000 WO
WO0052824 Sep 2000 WO
WO0113562 Feb 2001 WO
WO 2005066832 Jul 2005 WO
WO2005101190 Oct 2005 WO
WO 2010102007 Sep 2010 WO
Non-Patent Literature Citations (77)
Entry
Altera Corporation, “FIR Compiler: MegaCore® Function User Guide,” version 3.3.0, rev. 1, pp. 3 11 through 3 15 (Oct. 2005).
Govindu, G. et al., “A Library of Parameterizable Floating-Point Cores for FPGAs and Their Application to Scientific Computing,” Proc Int'l Conf. Eng. Reconfigurable Systems and Algorithms (ERSA'05) Jun. 2005.
Govindu, G. et al., “Analysis of High-performance Floating-point Arithmetic on FPGAs,” Proceedings of the 18th International Parallel and Distributed Processing Symposium (PDPS'04), pp. 149-156, Apr. 2004.
Nakasato, N., et al., “Acceleration of Hydrosynamical Simulations using a FPGA board”, The Institute of Electronics Information and Communication Technical Report CPSY2005-47, vol. 105, No. 515, Jan. 17, 2006.
Osana, Y., et al., “Hardware-resource Utilization Analysis on an FPGA-Based Biochemical Simulator ReCSiP”, The Institute of Electronics Information and Communication Technical Report CPSY2005-63, vol. 105, No. 516, Jan. 18, 2006.
Vladimirova, T. et al., “Floating-Point Mathematical Co-Processor for a Single-Chip On-Board Computer,” MAPLD'03 Conference, D5, Sep. 2003.
Altera Corporation, “Digital Signal Processing (DSP),” Stratix Device Handbook, vol. 2, Chapter 6 and Chapter 7, v1.1 (Sep. 2004).
Altera Corporation, “DSP Blocks in Stratix II and Stratix II GX Devices ” Stratix II Device Handbook, vol. 2, Chapter 6, v4.0 (Oct. 2005).
Underwood, K. “FPGAs vs. CPUs: Trends in Peak Floating-Point Performance,” Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays, pp. 171-180, Feb. 22-24, 2004.
Xilinx Inc., “XtremeDSP Design Considerations User Guide,” v 1.2, Feb. 4, 2005.
Altera Corporation, “Advanced Synthesis Cookbook: A Design Guide for Stratix II, Stratix III and Stratix IV Devices,” Document Version 3.0, 112 pgs., May 2008.
deDinechin, F. et al., “Large multipliers with less DSP blocks,” retrieved from http://hal-ens-lyon.archives-ouvertes.fr/ensl-00356421/en/, 9 pgs., available online Jan. 2009.
Wajih, E.-H.Y. et al., “Efficient Hardware Architecture of Recursive Karatsuba-Ofman Multiplier,” 3rd International Conference on Design and Technology of Integrated Systems in Nanoscale Era, 6 pgs., Mar. 2008.
Zhou, G. et al., “Efficient and High-Throughput Implementations of AES-GCM on FPGAs,” International Conference on Field-Programmable Technology, 8 pgs., Dec. 2007.
Altera Corporation, “Statix II Device Handbook, Chapter 6—DSP Blocks in Stratix II Devices,” v1.1, Jul. 2004.
Xilinx Inc., “Complex Multiplier v2.0”, DS291 Product Specification/Datasheet, Nov. 2004.
Martinson, L. et al., “Digital Matched Filtering with Pipelined Floating Point Fast Fourier Transforms (FFT's),” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-23, No. 2, pp. 222-234, Apr. 1975.
Amos, D., “PLD architectures match DSP algorithms,” Electronic Product Design, vol. 17, No. 7, Jul. 1996, pp. 30, 32.
Analog Devices, Inc., The Applications Engineering Staff of Analog Devices, DSP Division, Digital Signal Processing Applications Using the ADSP-2100 Family (edited by Amy Mar), 1990, pp. 141-192).
Andrejas, J., et al., “Reusable DSP functions in FPGAs,” Field-Programmable Logic and Applications. Roadmap to Reconfigurable Computing. 10th International Conference, FPL 2000. Proceedings (Lecture Notes in Computer Science vol. 1896), Aug. 27-30, 2000, pp. 456-461.
Aoki, T., “Signed-weight arithmetic and its application to a field-programmable digital filter architecture,” IEICE Transactions on Electronics, 1999 , vol. E82C, No. 9, Sep. 1999, pp. 1687-1698.
Ashour, M.A., et al., “An FPGA implementation guide for some different types of serial-parallel multiplier-structures,” Microelectronics Journal, vol. 31, No. 3, 2000, pp. 161-168.
Berg. B.L., et al.“Designing Power and Area Efficient Multistage FIR Decimators with Economical Low Order Filters,” ChipCenter Technical Note, Dec. 2001.
Bursky, D., “Programmable Logic Challenges Traditional ASIC SoC Designs”, Electronic Design, Apr. 15, 2002.
Chhabra, A. et al., Texas Instruments Inc., “A Block Floating Point Implementation on the TMS320C54x DSP”, Application Report SPRA610, Dec. 1999, pp. 1-10.
Colet, p., “When DSPs and FPGAs meet: Optimizing image processing architectures,” Advanced Imaging, vol. 12, No. 9, Sep. 1997, pp. 14, 16, 18.
Crookes, D., et al., “Design and implementation of a high level programming environment for FPGA-based image processing,” IEE Proceedings-Vision, Image and Signal Processing, vol. 147, No. 4, Aug. 2000, pp. 377-384.
Debowski, L., et al., “A new flexible architecture of digital control systems based on DSP and complex CPLD technology for power conversion applications,” PCIM 2000: Europe Official Proceedings of the Thirty-Seventh International Intelligent Motion Conference, Jun. 6-8, 2000, pp. 281-286.
Dick, C., et al., “Configurable logic for digital communications: some signal processing perspectives,” IEEE Communications Magazine, vol. 37, No. 8, Aug. 1999, pp. 107-111.
Do, T.-T., et al., “A flexible implementation of high-performance FIR filters on Xilinx FPGAs,” Field-Programmable Logic and Applications: From FPGAs to Computing Paradigm. 8th International Workshop, FPL'98. Proceedings, Hartenstein, R.W., et al., eds., Aug. 31-Sep. 3, 1998, pp. 441-445.
Gaffer, A.A., et al., “Floating-Point Bitwidth Analysis via Automatic Differentiation,” IEEE Conference on Field Programmable Technology, Hong Kong, Dec. 2002.
Guccione, S.A.,“Run-time Reconfiguration at Xilinx,” Parallel and distributed processing: 15 IPDPS 2000 workshops, Rolim, J., ed., May 1-5, 2000, p. 873.
Hauck, S., “The Future of Reconfigurable Systems,” Keynote Address, 5th Canadian Conference on Field Programmable Devices, Jun. 1998, http://www.ee.washington.edu/people/faculty/hauck/publications/ReconfigFuture.PDF.
Heysters, P.M., et al., “Mapping of DSP algorithms on field programmable function arrays,” Field-Programmable Logic and Applications. Roadmap to Reconfigurable Computing. 10th International Conference, FPL 2000 Proceedings (Lecture Notes in Computer Science vol. 1896) Aug. 27-30, 2000, pp. 400-411.
Huang, J., et al., “Simulated Performance of 1000BASE-T Receiver with Different Analog Front End Designs,” Proceedings of the 35th Asilomar Conference on Signals, Systems, and Computers, Nov. 4-7, 2001.
Lattice Semiconductor Corp, ORCA® FPGA Express™ Interface Manual: ispLEVER® Version 3.0, 2002.
Lucent Technologies, Microelectronics Group,“Implementing and Optimizing Multipliers in ORCA™ FPGAs,”, Application Note.AP97-008FGPA, Feb. 1997.
“Implementing Multipliers in FLEX 10K EABs”, Altera, Mar. 1996.
“Implementing Logic with the Embedded Array in FLEX 10K Devices”, Altera, May 2001, ver. 2.1.
Jinghua Li, “Design a pocket multi-bit multiplier in FPGA,” 1996 2nd International Conference on ASIC Proceedings (IEEE Cat. No. 96TH8140) Oct. 21-24, 1996, pp. 275-279.
Jones, G., “Field-programmable digital signal conditioning,” Electronic Product Design, vol. 21, No. 6, Jun. 2000, pp. C36-C38.
Kiefer, R., et al., “Performance comparison of software/FPGA hardware partitions for a DSP application,” 14th Australian Microelectronics Conference Microelectronics: Technology Today for the Future. MICRO '97 Proceedings, Sep. 28-Oct. 1, 1997, pp. 88-93.
Kramberger, I., “DSP acceleration using a reconfigurable FPGA,” ISIE '99. Proceedings of the IEEE International Symposium on Industrial Electronics (Cat. No. 99TH8465), vol. 3 , Jul. 12-16, 1999, pp. 1522-1525.
Langhammer, M., “How to implement DSP in programmable logic,” Elettronica Oggi, No. 266 , Dec. 1998, pp. 113-115.
Langhammer, M., “Implementing a DSP in Programmable Logic,” Online EE Times, May 1998, http://www.eetimes.com/editorial/1998/coverstory9805.html.
Lazaravich, B.V., “Function block oriented field programmable logic arrays,” Motorola, Inc. Technical Developments, vol. 18, Mar. 1993, pp. 10-11.
Lund, D., et al., “A new development system for reconfigurable digital signal processing,” First International Conference on 3G Mobile Communication Technologies (Conf. Publ. No. 471), Mar. 27-29, 2000, pp. 306-310.
Miller, N.L., et al., “Reconfigurable integrated circuit for high performance computer arithmetic,” Proceedings of the 1998 IEE Colloquium on Evolvable Hardware Systems (Digest) No. 233, 1998, pp. 2/1-2/4.
Mintzer, L., “Xilinx FPGA as an FFT processor,” Electronic Engineering, vol. 69, No. 845, May 1997, pp. 81, 82, 84.
Faura et al., “A Novel Mixed Signal Programmable Device With On-Chip Microprocessor,” Custom Integrated Circuits Conference, 1997. Proceedings of the IEEE 1997 Santa Clara, CA, USA, May 5, 1997, pp. 103-106.
Nozal, L., et al., “A new vision system: programmable logic devices and digital signal processor architecture (PLD+DSP),” Proceedings IECON '91. 1991 International Conference on Industrial Electronics, Control and Instrumentation (Cat. No. 91CH2976-9) vol. 3, Oct. 28-Nov. 1, 1991, pp. 2014-2018.
Papenfuss, J.R, et al., “Implementation of a real-time, frequency selective, RF channel simulator using a hybrid DSP-FPGA architecture,” RAWCON 2000: 2000 IEEE Radio and Wireless Conference (Cat. No. 00EX404), Sep. 10-13, 2000, pp. 135-138.
Parhami, B., “Configurable arithmetic arrays with data-driven control,” 34th Asilomar Conference on Signals, Systems and Computers, vol. 1, 2000, pp. 89-93.
“The QuickDSP Design Guide”, Quicklogic, Aug. 2001, revision B.
“QuickDSP™ Family Data Sheet”, Quicklogic, Aug. 7, 2001, revision B.
Rangasayee, K., “Complex PLDs let you produce efficient arithmetic designs,” EDN (European Edition), vol. 41, No. 13, Jun. 20, 1996, pp. 109, 110, 112, 114, 116.
Rosado, A., et al., “A high-speed multiplier coprocessor unit based on FPGA,” Journal of Electrical Engineering, vol. 48, No. 11-12, 1997, pp. 298-302.
Santillan-Q., G.F., et al., “Real-time integer convolution implemented using systolic arrays and a digit-serial architecture in complex programmable logic devices,” Proceedings of the Third International Workshop on Design of Mixed-Mode Integrated Circuits and Applications (Cat. No.99EX303), Jul. 26-28, 1999, pp. 147-150.
Texas Instruments Inc., “TMS320C54x DSP Reference Set, vol. 1: CPU and Peripherals”, Literature No. SPRU131F, Apr. 1999, pp. 2-1 through 2-16 and 4-1 through 4-29.
Tisserand, A., et al., “An on-line arithmetic based FPGA for low power custom computing,” Field Programmable Logic and Applications, 9th International Workshop, FPL'99, Proceedings (Lecture Notes in Computer Science vol. 1673), Lysaght, P., et al., eds., Aug. 30-Sep. 1, 1999, pp. 264-273.
Tralka, C., “Symbiosis of DSP and PLD,” Elektronik, vol. 49, No. 14 , Jul. 11, 2000, pp. 84-96.
Valls, J., et al., “A Study About FPGA-Based Digital Filters,” Signal Processing Systems, 1998, SIPS 98, 1998 IEEE Workshop, Oct. 10, 1998, pp. 192-201.
“Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Jan. 25, 2001, module 2 of 4.
“Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Apr. 2, 2001, module 1 of 4.
“Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Apr. 2, 2001, module 2 of 4.
Walters, A.L., “A Scaleable FIR Filter Implementation Using 32-bit Floating-Point Complex Arithmetic on ,a FPGA Based Custom Computing Platform,” Allison L. Walters, Thesis Submitted to the Faculty of Virginia Polytechnic Institute and State University, Jan. 30, 1998.
Weisstein, E.W., “Karatsuba Multiplication,” MathWorld—A Wolfram Web Resource (Dec. 9, 2007), accessed Dec. 11, 2007 at http://mathworld.wolfram.com/KaratsubaMultiplication.html.
Wenzel, L., “Field programmable gate arrays (FPGAs) to replace digital signal processor integrated circuits,” Elektronik, vol. 49, No. 5, Mar. 7, 2000, pp. 78-86.
“Xilinx Unveils New FPGA Architecture to Enable High-Performance, 10 Million System Gate Designs”, Xilinx, Jun. 22, 2000.
“Xilinx Announces DSP Algorithms, Tools and Features for Virtex-II Architecture”, Xilinx, Nov. 21, 2000.
Xilinx Inc., “Virtex-II 1.5V Field-Programmable Gate Arrays”, Advance Product Specification, DS031-2 (v1.9), Nov. 29, 2001, Module 2 of 4, pp. 1-39.
Xilinx Inc., “Using Embedded Multipliers”, Virtex-II Platform FPGA Handbook, UG002 (v1.3), Dec. 3, 2001, pp. 251-257.
Xilinx, Inc., “A 1D Systolic FIR,” copyright 1994-2002, downloaded from http://www.iro.umontreal.ca/˜aboulham/F6221/Xilinx%20A%201D%20systolic%20FIR.htm.
Xilinx, Inc., “The Future of FPGA's,” White Paper, available Nov. 14, 2005 for download from http://www.xilinx.com/prs—rls,5yrwhite.htm.
Farooqui, A., et al., “General Data-Path Organization of a MAC unit for VLSI Implementation of DSP Processors,” ISCAS '98, Part 2, May 31, 1998-Jun. 3, 1998, pp. 260-263.
Haynes, S.D., et al., “Configurable multiplier blocks for embedding in FPGAs,” Electronics Letters, vol. 34, No. 7, pp. 638-639 (Apr. 2, 1998).
Kim, Y., et al., “Fast GPU Implementation for the Solution of Tridiagonal Matrix Systems,” Journal of Korean Institute of Information Scientists and Engineers, vol. 32, No. 12, pp. 692-704, Dec. 2005.