Embodiments of the invention are in the field of integrated circuit fabrication and, in particular, approaches for a fabricating a high resolution and reliable photomask or reticle.
For the past several decades, the scaling of features in integrated circuits has been a driving force behind an ever-growing semiconductor industry. Scaling to smaller and smaller features enables increased densities of functional units on the limited real estate of semiconductor chips. For example, shrinking transistor size allows for the incorporation of an increased number of memory devices on a chip, lending to the fabrication of products with increased capacity. The drive for ever-more capacity, however, is not without issue. It has become increasingly significant to rely heavily on innovative photolithography techniques to meet the exceedingly tight space requirements imposed by scaling.
Photolithography is commonly used in a manufacturing process to form patterns in a layer of photoresist. In the photolithography process, a photoresist layer is deposited over an underlying layer that is to be etched. Typically, the underlying layer is a semiconductor layer, but may be any type of hardmask or dielectric material. The photoresist layer is then selectively exposed to radiation through a photomask or reticle. The photoresist is then developed and those portions of the photoresist that are exposed to the radiation are removed, in the case of “positive” photoresist.
The photomask or reticle used to pattern the wafer is placed within a photolithography exposure tool, commonly known as a “stepper.” In the stepper machine, the photomask or reticle is placed between a radiation source and a wafer. The photomask or reticle is typically formed from patterned chrome (absorber layer) placed on a quartz substrate. The radiation passes substantially unattenuated through the quartz sections of the photomask or reticle in locations where there is no chrome. In contrast, the radiation does not pass through the chrome portions of the mask. Because radiation incident on the mask either completely passes through the quartz sections or is completely blocked by the chrome sections, this type of mask is referred to as a binary mask. After the radiation selectively passes through the mask, the pattern on the mask is transferred into the photoresist by projecting an image of the mask into the photoresist through a series of lenses.
As features on the photomask or reticle become closer and closer together, diffraction effects begin to take effect when the size of the features on the mask are comparable to the wavelength of the light source. Diffraction blurs the image projected onto the photoresist, resulting in poor resolution.
One state of the art method of preventing diffraction patterns from interfering with the desired patterning of the photoresist is to cover selected openings in the photomask or reticle with a transparent layer known as a shifter. The shifter shifts one of the sets of exposing rays out of phase with another adjacent set, which nullifies the interference pattern from diffraction. This approach is referred to as a phase shift mask (PSM) approach. Nevertheless, alternative mask fabrication schemes that reduce defects and increase throughput in mask production are important focus areas of lithography process development.
Approaches for fabricating a lithographic mask are described. In the following description, numerous specific details are set forth, such as novel structural schemes and detailed fabrication methods in order to provide a thorough understanding of embodiments of the present invention. It will be apparent to one skilled in the art that embodiments of the present invention may be practiced without these specific details. In other instances, well-known features, such as details of phase shift mask operation, are not described in detail in order to not unnecessarily obscure embodiments of the present invention. Furthermore, it is to be understood that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale.
One or more embodiments of the present invention are directed to methods for fabricating lithographic masks and the resulting lithographic masks.
To provide context, the requirement to meet aggressive device scaling goals set forth by the semiconductor industry harbors on the ability of lithographic masks to pattern smaller features with high fidelity. However, approaches to pattern smaller and smaller features present formidable challenges for mask fabrication. In this regard, lithographic masks widely in use today rely on the concept of phase shift mask (PSM) technology to pattern features. However, reducing defects while creating smaller and smaller patterns remains one of the biggest obstacles in mask fabrication. Use of the phase shift mask may have several disadvantages. First, the design of a phase shift mask is a relatively complicated procedure that requires significant resources. Second, because of the nature of a phase shift mask, it is difficult to check whether or not defects are present in the phase shift mask. Such defects in phase shift masks arise out of the current integration schemes employed to produce the mask itself. Conventional phase shift masks adopt a cumbersome and somewhat defect prone approach to pattern thick light absorbing materials and then transfer the pattern to a secondary layer that aids in the phase shifting. To complicate matters, the absorber layer is subjected to plasma etch twice and, consequently, unwanted effects of plasma etch such as loading effects, reactive ion etch lag, charging and reproducible effects leads to defects in mask production.
Conventional techniques for fabrication of a phase shift mask (PSM) employ patterning of an etch un-friendly absorber layer to define finer features in a shifter layer disposed directly below the absorber layer, as is illustrated in
Hence, innovation in materials and novel integration techniques to fabricate defect free lithographic masks remains a high priority to enable device scaling. Accordingly, in order to exploit the full benefits of a phase shift mask technology, a novel integration scheme that employs (i) patterning a shifter layer with high fidelity and (ii) patterning an absorber only once and during the final stages of fabrication may be needed. Additionally, such a fabrication scheme may also offer other advantages such as flexibility in material choices, decreased substrate damage during fabrication, and increased throughput in mask fabrication.
The die-frame interface region 130, disposed on substrate 100, includes a dual layer stack 140. The dual layer stack 140 includes an upper layer 104, disposed on the lower patterned shifter layer 106. The upper layer 104 of the dual layer stack 140 is composed of a same material as the patterned absorber layer 102 of the frame region 120.
In an embodiment, an uppermost surface 108 of the features of the patterned shifter layer 106 have a height that is different than an uppermost surface 112 of features of the die-frame interface region and different than an uppermost surface 114 of the features in the frame region. Furthermore, in an embodiment the height of the uppermost surface 112 of the features of the die-frame interface region is different than the height of the uppermost surface 114 of the features of the frame region. Typical thickness of the phase shifter layer 106 ranges from 40-100 nm, while a typical thickness of the absorber layer ranges from 30-100 nm. In an embodiment, the thickness of the absorber layer 102 in the frame region 120 is 50 nm, the combined thickness of the absorber layer 104 which is disposed on the shifter layer 106 in the die-frame interface region 130 is 120 nm and the thickness of the absorber in the frame region is 70 nm. In an embodiment, the substrate 100 is quartz, the patterned shifter layer includes a material such as but not limited to molybdenum-silicide, molybdenum-silicon oxynitride, molybdenum-silicon nitride, silicon oxynitride, or silicon nitride, and the absorber material is chrome.
Referring again to
Referring to again to
Referring again to
In an embodiment, a plasma etch process is used to pattern a chrome absorber layer and utilizes etchants including Cl2, O2, N2 and Ar. In an embodiment, the absorber layer is removed everywhere from the regions other than those covered by photoresist. Subsequently, in one such embodiment, due to the conformal nature of the absorber layer 208, two different material surfaces are exposed simultaneously while etching absorber layer 208: (i) the uppermost surface of the shifter layer 206 in the die region 210 and (ii) the uppermost surface of the substrate 200 in the frame region as well as the uppermost surface of the substrate 200 in the patterned features of the patterned shifter layer 206 in the die region 210. Given that interference and diffraction effects drive the performance of a lithographic mask, thickness and edge related defects are important patterned shifter layer features required to be controlled. In an embodiment, the patterning of the absorber layer 208 is performed with high selectivity to the uppermost surface and the sidewalls of features of the patterned shifter layer 206. In one embodiment, patterning a chrome absorber layer 208 selectively to a MoSi shifter layer 206 involves use of multi-faceted recipes that control the flow of O2 and Ar in the Cl2 mixture to create an energetically favorable chrome etch, but a significantly gentler chrome over etch to preserve features in the patterned shifter layer 206. Selectivity to underlying substrate 200 may be equally important. The regions of the substrate 200 not covered by patterned shifter layer 206 and patterned absorber layer 212 may be exposed to an onslaught of the bombarding plasma ions for a second time. In this regard, in an embodiment, the last 2-3 nm of a chrome containing absorber layer may be removed by wet etch in a mixture including acetic acid, water and ammonium cerium nitrate.
While patterning a shifter layer using a resist mask may offer process advantages over patterning a shifter using a chrome mask, an alternative embodiment may include use of a hardmask to pattern a shifter layer. Such an embodiment may offer benefits for further improving line edge roughness as a hardmask, typically, can withstand the erosive effects of plasma ion bombardment to a greater extent than a thin patterned photoresist. In light of aggressive scaling of feature sizes to accommodate the onslaught of Moore's law, an implementation of a hardmask serves to decrease the overall percentage of line edge roughness compared to the critical dimension of a given feature.
In this regard,
Referring again to
Following formation of the patterned shifter layer 309, in an embodiment, patterned hardmask layer 308 is removed selectively to the shifter layer 302 and substrate 300 using plasma etch or wet etch methods well known in the art. In another embodiment, if the patterned hardmask layer 308 is an ultra-thin 3 nm layer of chrome, the hardmask layer may remain on the patterned shifter layer 309.
As is known in the art, patterning of photoresist to define features greater than 100 nm is typically carried out using a flood exposure technique. It is to be further appreciated that that the uppermost surface of the absorber layer over which the second resist layer 316 is formed is not a topographically flat substrate. Hence, additional fine tuning of the thickness of the absorber layer 311 as well as fine tuning lithographic parameters such as, but not limited to, resist thickness, depth of focus and patterning dose may be required to form features in the frame area to conform to specifications of the present invention. It is to be appreciated that in further embodiments of the present invention, misalignment between resist layer 316 and a vertical sidewall 318 of the patterned shifter layer 309 may lead to additional masking effects in the frame area. In one such embodiment, the enhancement of the feature size due to masking effects may be compensated for during the patterning of the shifter layer.
In an embodiment, a plasma etch process is used to pattern a chrome absorber layer and utilizes etchants including Cl2, O2, N2 and Ar. In an embodiment, the absorber layer is removed everywhere from the regions other than those covered by photoresist. Subsequently, in one such embodiment, due to the conformal nature of the absorber layer 311, two different material surfaces are exposed simultaneously while etching absorber layer 208: (i) the uppermost surface of the patterned shifter layer 309 in the die region 310 and (ii) the uppermost surface of the substrate 300 in the frame region as well as the uppermost surface of the substrate 300 in the patterned features of the patterned shifter layer 309 in the die region 310. Given that interference and diffraction effects drive the performance of a lithographic mask, thickness and edge related defects are important patterned shifter layer features required to be controlled. In an embodiment, the patterning of the absorber layer 311 is performed with high selectivity to the uppermost surface and the sidewalls of features of the patterned shifter layer 309. In one embodiment, patterning a chrome absorber layer 311 selectively to a MoSi shifter layer 309 involves use of multi-faceted recipes that control the flow of O2 and Ar in the Cl2 mixture to create an energetically favorable chrome etch, but a significantly gentler chrome over etch to preserve features in the patterned shifter layer 309. Selectivity to underlying substrate 300 may be equally important. The regions of the substrate 300 not covered by patterned shifter layer 309 and patterned absorber layer 312 may be exposed to an onslaught of the bombarding plasma ions for a second time. In this regard, in an embodiment, the last 2-3 nm of a chrome containing absorber layer may be removed by wet etch in a mixture including acetic acid, water and ammonium cerium nitrate.
In contrast to the structure depicted in
Referring to
While etching a layer of absorber layer 414 presents challenges, the removal of sidewall spacers 416 from the sidewalls of a patterned shifter layer 406 may present more formidable challenges. However, in one embodiment, the absorber layer is a chrome material and may be removed by a wet etch that is non-corrosive to the underlying substrate. In another embodiment, the absorber spacer 416 is removed via a plasma etch. In accordance with one such embodiment,
In another embodiment of the present invention, the concept of an idealized absorber layer is presented.
Lithographic mask 101 in connection with
Referring to Figure, a transistor 730 is formed on a substrate 705. A memory element 740, such as a magnetic random access memory (MRAM) or dynamic random access memory (DRAM memory element), is coupled to the transistor 730.
In an embodiment, an underlying semiconductor substrate 705 represents a general workpiece object used to manufacture integrated circuits. The semiconductor substrate often includes a wafer or other piece of silicon or another semiconductor material. Suitable semiconductor substrates include, but are not limited to, single crystal silicon, polycrystalline silicon and silicon on insulator (SOI), as well as similar substrates formed of other semiconductor materials. The substrate may also include semiconductor materials, metals, dielectrics, dopants, and other materials commonly found in semiconductor substrates. In one implementation, the semiconductor substrate may be a crystalline substrate formed using a bulk silicon or a silicon-on-insulator substructure. In other implementations, the semiconductor substrate may be formed using alternate materials, which may or may not be combined with silicon, that include but are not limited to germanium, indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide, indium gallium arsenide, gallium antimonide, or other combinations of group III-V or group IV materials. Although a few examples of materials from which the substrate may be formed are described here, any material that may serve as a foundation upon which a semiconductor device may be built falls within the spirit and scope of the present invention.
In an embodiment, transistors associated with substrate 705 are metal-oxide-semiconductor field-effect transistors (MOSFET or simply MOS transistors), fabricated on the substrate 705. In various implementations of the invention, the MOS transistors may be planar transistors, nonplanar transistors, or a combination of both. Nonplanar transistors include FinFET transistors such as double-gate transistors and tri-gate transistors, and wrap-around or all-around gate transistors such as nanoribbon and nanowire transistors.
In an embodiment, each MOS transistor 730 of substrate 705 includes a gate stack formed of at least two layers, a gate dielectric layer and a gate electrode layer. The gate dielectric layer may include one layer or a stack of layers. The one or more layers may include silicon oxide, silicon dioxide (SiO2) and/or a high-k dielectric material. The high-k dielectric material may include elements such as hafnium, silicon, oxygen, titanium, tantalum, lanthanum, aluminum, zirconium, barium, strontium, yttrium, lead, scandium, niobium, and zinc. Examples of high-k materials that may be used in the gate dielectric layer include, but are not limited to, hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate. In some embodiments, an annealing process may be carried out on the gate dielectric layer to improve its quality when a high-k material is used. In some implementations, a portion of the gate dielectric is a “U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate.
The gate electrode layer of each MOS transistor of substrate 705 is formed on the gate dielectric layer and may consist of at least one P-type workfunction metal or N-type workfunction metal, depending on whether the transistor is to be a PMOS or an NMOS transistor. In some implementations, the gate electrode layer may consist of a stack of two or more metal layers, where one or more metal layers are workfunction metal layers and at least one metal layer is a conductive fill layer.
For a PMOS transistor, metals that may be used for the gate electrode include, but are not limited to, ruthenium, palladium, platinum, cobalt, nickel, and conductive metal oxides, e.g., ruthenium oxide. A P-type metal layer will enable the formation of a PMOS gate electrode with a workfunction that is between about 4.9 eV and about 5.2 eV. For an NMOS transistor, metals that may be used for the gate electrode include, but are not limited to, hafnium, zirconium, titanium, tantalum, aluminum, alloys of these metals, and carbides of these metals such as hafnium carbide, zirconium carbide, titanium carbide, tantalum carbide, and aluminum carbide. An N-type metal layer will enable the formation of an NMOS gate electrode with a workfunction that is between about 3.9 eV and about 4.2 eV.
In some implementations, the gate electrode may consist of a “U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate. In another implementation, at least one of the metal layers that form the gate electrode may simply be a planar layer that is substantially parallel to the top surface of the substrate and does not include sidewall portions substantially perpendicular to the top surface of the substrate. In further implementations of the invention, the gate electrode may consist of a combination of U-shaped structures and planar, non-U-shaped structures. For example, the gate electrode may consist of one or more U-shaped metal layers formed atop one or more planar, non-U-shaped layers.
In some implementations of the invention, a pair of sidewall spacers may be formed on opposing sides of the gate stack that bracket the gate stack. The sidewall spacers may be formed from a material such as silicon nitride, silicon oxide, silicon carbide, silicon nitride doped with carbon, and silicon oxynitride. Processes for forming sidewall spacers are well known in the art and generally include deposition and etching process operations. In an alternate implementation, a plurality of spacer pairs may be used, for instance, two pairs, three pairs, or four pairs of sidewall spacers may be formed on opposing sides of the gate stack.
As is well known in the art, source and drain regions are formed within the substrate adjacent to the gate stack of each MOS transistor. The source and drain regions are generally formed using either an implantation/diffusion process or an etching/deposition process. In the former process, dopants such as boron, aluminum, antimony, phosphorous, or arsenic may be ion-implanted into the substrate to form the source and drain regions. An annealing process that activates the dopants and causes them to diffuse further into the substrate typically follows the ion implantation process. In the latter process, the substrate may first be etched to form recesses at the locations of the source and drain regions. An epitaxial deposition process may then be carried out to fill the recesses with material that is used to fabricate the source and drain regions. In some implementations, the source and drain regions may be fabricated using a silicon alloy such as silicon germanium or silicon carbide. In some implementations the epitaxially deposited silicon alloy may be doped in situ with dopants such as boron, arsenic, or phosphorous. In further embodiments, the source and drain regions may be formed using one or more alternate semiconductor materials such as germanium or a group III-V material or alloy. And in further embodiments, one or more layers of metal and/or metal alloys may be used to form the source and drain regions.
Depending on its applications, computing device 900 may include other components that may or may not be physically and electrically coupled to the board 902. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
The communication chip 906 enables wireless communications for the transfer of data to and from the computing device 900. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 906 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 900 may include a plurality of communication chips 906. For instance, a first communication chip 906 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 906 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor 904 of the computing device 900 includes an integrated circuit die packaged within the processor 904. In some implementations of embodiments of the invention, the integrated circuit die of the processor includes one or more arrays, such a logic processor is fabricated using a lithographic mask as described and/or fabricated herein, in accordance with embodiments of the present invention. The term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
The communication chip 906 also includes an integrated circuit die packaged within the communication chip 906. In accordance with another implementation of an embodiment of the invention, the integrated circuit die of the communication chip is fabricated using a lithographic mask as described and/or fabricated herein, in accordance with embodiments of the present invention.
In further implementations, another component housed within the computing device 900 may contain a stand-alone integrated circuit memory die that is fabricated using a lithographic mask as described and/or fabricated herein, in accordance with embodiments of the present invention.
In various implementations, the computing device 900 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra-mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 900 may be any other electronic device that processes data.
Accordingly, one or more embodiments of the present invention relate generally to the fabrication of embedded microelectronic memory. The microelectronic memory may be non-volatile, wherein the memory can retain stored information even when not powered. One or more embodiments of the present invention relate to the fabrication of a logic processor fabricated using a lithographic mask as described and/or fabricated herein, in accordance with embodiments of the present invention.
The interposer 1000 may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, a ceramic material, or a polymer material such as polyimide. In further implementations, the interposer may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials.
The interposer may include metal interconnects 1008 and vias 1010, including but not limited to through-silicon vias (TSVs) 1012. The interposer 1000 may further include embedded devices 1014, including both passive and active devices. Such devices include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, and electrostatic discharge (ESD) devices. More complex devices such as radio-frequency (RF) devices, power amplifiers, power management devices, antennas, arrays, sensors, and MEMS devices may also be formed on the interposer 1000. In accordance with embodiments of the invention, apparatuses or processes disclosed herein may be used in the fabrication of interposer 1000. In an embodiment, interposer 1000 or portions thereof are fabricated using a lithographic mask as described and/or fabricated herein.
Thus, embodiments described herein include approaches for fabricating a lithographic mask.
In an embodiment, a lithographic mask for patterning semiconductor circuits includes a substrate. An in-die region is disposed on the substrate. The in-die region includes a patterned shifter material in direct contact with the substrate. The patterned shifter material includes features having sidewalls. A frame region is disposed on the substrate and surrounding the in-die region. The frame region includes an absorber layer in direct contact with the substrate.
In one embodiment, the lithographic mask further includes a die-frame interface region disposed on the substrate. The die-frame interface regions includes adjacent portions of the in-die region and the frame region. The die-frame interface region includes an upper layer disposed on a lower layer. The upper layer includes a same material as the absorber layer of the frame region, and the lower layer includes a same material as the patterned shifter material layer of the in-die region.
In one embodiment, the substrate is recessed at locations between the features of the patterned shifter layer.
In one embodiment, the sidewalls of the features of the patterned shifter material have sidewall material thereon, wherein the sidewall material includes a same material as the absorber layer.
In one embodiment, the substrate is quartz.
In one embodiment, the absorber layer is chrome.
In one embodiment, an uppermost surface of the features of the patterned shifter layer has a height different than an uppermost surface of features of the die-frame interface region and different than an uppermost surface of the features in the frame region, and the height of the uppermost surface of the features of the die-frame interface region is different than the height of the uppermost surface of the features of the frame region.
In one embodiment, the shifter layer includes a material selected from the group consisting of MoSi, SiN, SiON, MoSiN, and MoSiON.
In an embodiment, a method of fabricating a photomask includes forming a shifter layer on a substrate. A first patterned resist layer is formed on the shifter layer. A patterned shifter layer is formed by removing regions of the shifter layer exposed by the resist layer, the patterned shifter layer including features having sidewalls. An absorber layer is formed on the patterned shifter layer and on the substrate. The absorber layer is patterned to form a patterned absorber layer having a first portion directly on the substrate and a second portion on a portion of the patterned shifter layer.
In one embodiment, the sidewalls of the features of the shifter layer are sloped.
In one embodiment, patterning the absorber layer includes etching the absorber layer, and the etching leaves sidewall spacers of absorber material adjacent the sidewalls of the features of the patterned shifter layer.
In one embodiment, the method further includes removing the sidewall spacers of the absorber material.
In one embodiment, the method further includes recessing the substrate during the removing of the sidewall spacers of the absorber material.
In one embodiment, forming the shifter layer on the substrate includes forming the shifter layer on a quartz substrate.
In an embodiment, a method of fabricating a photomask includes forming a shifter layer on a substrate. A hardmask layer is formed on the shifter layer. A first patterned resist layer is formed on the hardmask layer. A patterned hardmask layer is formed by removing regions of the hardmask layer exposed by the resist layer. A patterned shifter layer is formed by removing regions of the shifter layer exposed by the hardmask layer. The patterned hardmask layer is removed. Subsequent to removing the hardmask layer, an absorber layer is formed on the patterned shifter layer and on the substrate. The absorber layer is patterned to form a patterned absorber layer having a first portion directly on the substrate and a second portion on a portion of the patterned shifter layer.
In one embodiment, the sidewalls of the features of the shifter layer are sloped.
In one embodiment, removing the absorber layer includes etching the absorber layer, and the etching leaves sidewall spacers of absorber material adjacent sidewalls of features of the shifter layer.
In one embodiment, the method further includes removing the sidewall spacers of absorber material.
In one embodiment, the method further includes recessing the substrate during the removing of the sidewall spacers of the absorber material.
In one embodiment, the substrate is a quartz substrate.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/025269 | 3/31/2016 | WO | 00 |