This application is based on and claims the benefit of priority from European Patent Application No. 19382979, filed on Nov. 8, 2019, the contents of which are expressly incorporated by reference herein.
The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 820378.
The present invention generally relates to a superconducting transition-edge thermal sensor, and more particularly to a sensor comprising a superconducting film made of a superconductor exhibiting an ultra-low electronic heat capacity.
The detection of quanta, and particularly of single photons, with a high sensitivity is nowadays desired and thus a key enabling technology in many research areas including quantum sensing, quantum key distribution, information processing and radio astronomy. Due to the scientific need and the technical feasibility, single photon detectors (SPDs) for wavelengths ranging from the visible to the telecommunication wavelengths, including near infrared (NIR), have already been developed and even commercialized.
State-of-the-art SPD technologies rely on heat-induced breaking of the superconducting state in nano-structured superconductors (SCs). Here, superconducting transition-edge sensors (TES) and superconducting nanowire single photon detectors (SNSPDs) have developed into the SPDs with the highest detection efficiencies and lowest dark count rates. State-of-the-art SNSPDs and TESs present by far the most advanced SPD technology in the visible to near infrared (IR) wavelengths, with highest sensitivity and lowest dark count rates.
However, while both SNSPDs and TESs operate with a high efficiency in the visible to near infrared (IR) wavelengths, the detection of lower energy photons in the mid-IR and terahertz (THz) wavelengths is not performed with a high efficiency with the detectors known in the prior art, and to this day such detectors are notoriously underdeveloped. In other words, extending the broadband detection of single photons from the nIR to the infrared or even the terahertz (THz), has yet to be demonstrated for SNSPDs and TESs. The performance of single photon detectors at these wavelengths is currently limited by the material properties of the used SC thin films, which are disordered, bulky and have high electronic heat capacity.
Specifically, with respect to TESs, those kind of sensors exploit the steepness of the temperature dependent resistance at the superconducting transition edge, which enables the generation of detectable voltages pulses upon heating electrons by absorbed light quanta. Because the energy of an absorbed photon is transferred to the whole ensemble of electrons, the performance of TESs is determined by the heat capacity of the calorimetric materials used. This currently limits the SPD operation of TESs to wavelengths below 8 μm, temperatures below 100 mK, and detection times above ˜10 μs. Strategies to reduce the heat capacity have led to a targeted development of ever-thinner nano-structured SC thin films and the use of low carrier density SCs so that absorbed heat is shared among fewer electrons. However, traditional material fabrication approaches have set these developments a limit. The SC thin films are strongly disordered, polycrystalline, and have thicknesses exceeding several nanometers because they are obtained from high-electron-density SCs by sputtering and etching.
It is, therefore, necessary to provide an alternative to the state of the art which covers the gaps found therein, by providing a TES, particularly a superconducting transition-edge thermal sensor, which does not have the above mentioned drawbacks associated to those already known in the art, and which dramatically breaks through the above mentioned limits in operation wavelengths, temperatures and detection times.
To that end, the present invention relates to a superconducting transition-edge thermal sensor, comprising a superconducting film defining an active area for incidence of quanta thereon.
In contrast to the superconducting transition-edge thermal sensors known in the prior art, in the one of the present invention, the superconducting film is made of a superconductor exhibiting a charge carrier density below 1013 cm−2 and an electronic heat capacity below 103 kb at the critical temperature Tc of said superconductor, wherein the superconductor is formed by at least two layers of two-dimensional crystals stacked on top of another.
The present inventors have tested and perform detailed mathematic calculations (some of which will be set forth below in this document) of many superconducting materials and arrangements, to find out which are the ones which fit the above indicated requirements, in order to make the above mentioned at least two layers with the appropriate superconducting materials according to the appropriate arrangement.
The appropriate superconducting materials and arrangements are listed below, for some embodiments. Further embodiments including alternative superconducting materials and arrangements which meet the above mentioned requirements of charge carrier density and electronic heat capacity are also embraced by the present invention.
The use of the superconducting materials and arrangements listed below to make superconducting transition-edge thermal sensors is not known in the art, and their suitability for the here intended purpose is not either known or expected in the art. Indeed, to discover that those materials have a so low electronic heat capacity the present inventors had to carry out detailed tests and mathematic calculations, which had not been done in the state of the art.
For an embodiment, the above mentioned at least two layers are two layers of graphene twisted by an angle of 1.1°±0.1° with respect to each other so that they form a Moiré superlattice, i.e. the material commonly known as magic-angle graphene. The superconductivity occurs at a carrier density as low as 0.5*1012 1/cm−2. In contrast to conventional superconductors, magic-angle graphene as a two-dimensional single crystal with ultra-high electronic quality exhibits several orders of magnitude lower electron density and, as will be expounded below, the present inventors have discovered that such material also exhibits several orders of magnitude lower electronic heat capacity compared to conventional superconductors used as single photon detectors. These attributes position magic-angle graphene as an absolutely exceptional material for single photon sensing applications and will enable the detection of lower energy photons in the mid-IR and terahertz (THz) wavelengths with a high resolution and a fast response time.
For another embodiment, the at least two layers are two bilayers of graphene twisted by an angle of 1.3°±0.1° with respect to each other so that they form a Moiré superlattice, wherein the graphene layers within each bilayer are aligned at 0.0° with respect to each other. The superconductivity occurs at a carrier density as low as 2.45*1012 1/cm−2.
For a further embodiment, the at least two layers are two bilayers of WSe2 twisted by an angle ranging from 1° to 4° with respect to each other so that they form a Moiré superlattice, whereas the WSe2 layers within each bilayer are aligned at 0.0° with respect to each other. In the range between 1° and 4°, flatbands can be observed which support superconductivity. The superconductivity occurs at a carrier density as low as 7*1012 1/cm−2.
According to another embodiment, the at least two layers are three layers of graphene which are aligned with a twist angle of 0° with respect to each other, with a stacking order of the graphene layers corresponding to the ABC stacking order, forming a trilayer graphene. The superconductivity occurs at a carrier density as low as 0.5*1012 1/cm2.
For any of the above described embodiments, the at least two layers are hermetically air- and water-sealed with a sealing material, so that surface degradation by oxidation is avoided. The sealing guarantees a high crystalline quality and protect the at least two layers from environmental influences.
According to an implementation of that embodiment, the at least two layers are encapsulated by the above mentioned sealing material, wherein that sealing material is an air- and water-impenetrable Van-der-Waals material, and preferably placed on a substrate (generally a flat substrate).
Alternatively, the at least two layers are not encapsulated but only covered with the sealing material, because the at least two layers are arranged on a substrate (preferably a flat substrate) which already air- and water-seals the at least two layers from their bottom side.
For an implementation of the above described embodiment referring to the trilayer graphene, the air-impenetrable Van-der-Waals material is hexagonal boron nitride, forming a heterostructure into which the trilayer graphene is embedded and which gives rise to a Moiré superlattice due to a mismatch in lattice constant.
All the superconductor materials disclosed above for different embodiments of the sensor of the present invention, are low carrier density superconductors, where the superconducting state appears at carrier densities below 101 1/cm−2. The present inventors have discovered that those materials also exhibit an ultra-low electronic heat capacity which is orders of magnitude lower than in other superconductors, and have found out as the main cause leading to such ultra-low electronic heat capacity the contribution of the electrons which are within the energetic range of 3/2 kBT from the Fermi energy.
According to an embodiment, the encapsulated at least two layers are patterned on a substrate forming nano-structures, i.e. structures with dimensions in a nanometer scale.
For an embodiment, the sensor of the present invention comprises a back gate, which allows to tune the charge carrier density of the superconductor by applying a gate voltage thereto.
For another embodiment, the application of an appropriate gate voltage to that back gate can be used to tune the wavelength detection range, making that range narrower or wider.
The superconducting transition-edge thermal sensor of the present invention further comprises, for an embodiment, at least two electrodes arranged and making electrical contact with respective locations of the active area of the superconducting film longitudinally distanced from each other, wherein the at least two electrodes are operatively connected with a control unit to current- or voltage-bias the superconducting film and/or to read-out an electrical signal caused or modified by a transition between a superconducting and a non-superconducting phase occurring in the active area upon incidence of said quanta thereon.
Although the sensor of the present invention is generally intended for photodetection purposes, for detecting light quanta, i.e. photons, the sensor is also suitable for detecting non-light quanta, as far as that non-light quanta can be absorbed by the superconductor and carries energy to raise its temperature.
For some preferred embodiments, the active area of the superconducting film is configured and arranged to undergo a transition between a superconducting and a non-superconducting phase upon incidence of quanta included in electromagnetic radiation having a wavelength of interest.
Generally, the above mentioned air-impenetrable Van-der-Waals material is transparent to at least the wavelength of interest of an electromagnetic wave associated to photons constituting the above mentioned quanta, i.e. to the photons to be detected.
According to an implementation of the above preferred embodiments, the at least two electrodes are configured and shaped to form an antenna for allowing or improving electromagnetic coupling between the active area and the electromagnetic radiation having a wavelength of interest.
Complementarily or alternatively, at least the active region is embedded in a ring resonator, Fabry-Perot cavity, photonic crystal cavity or other type of optical cavity, for optical coupling with the electromagnetic radiation having a wavelength of interest.
The shape and dimensions of the active area, i.e. of the at least two layers forming the superconductor, can be adjusted in order allow easy integration with different antenna and cavity designs in order to match the desired detection wavelength.
Preferably, the wavelength of interest ranges from the visible spectrum to THz radiation, although other wavelengths are also embraced by the present invention, such as those of ultraviolet radiation.
According to an embodiment, the superconducting transition-edge thermal sensor constitutes a calorimeter configured and arranged for measuring the energy of single quanta incident on the active area of the superconducting film, implemented according to any of the embodiments and implementations of the superconducting transition-edge thermal sensor of the present invention described in the present document, unless explicitly described as referring to another kind of device which is not a calorimeter.
According to another embodiment, the superconducting transition-edge thermal sensor constitutes a bolometer configured and arranged for measuring the energy flux of quanta incident on the active area of the superconducting film, implemented according to any of the embodiments and implementations of the superconducting transition-edge thermal sensor of the present invention described in the present document, unless explicitly described as referring to another kind of device which is not a bolometer.
Among the different sensors/detectors, some confusion might exist regarding how different authors name their devices. Expressions such as bolometer, calorimeter, thermal detector or photon (or quantum) detector are used. In addition, coherent detectors, e.g. heterodyne receivers, could also be discussed in the context of superconductive bolometers. All of those expressions are valid for defining the sensor of the present invention, for some embodiments.
Since the exploitation of heating effects from single photons absorbed in a superconductor represents a main detection principle in modern single photon detectors, the sensor of the present invention, which includes a superconductor material with such a low electronic heat capacity, can be used to advance the single photon detection technology towards low energy photons.
The present invention constitutes both the first use of a two-dimensional material in an energy resolving superconducting calorimeter, and, at the same time, the first use of a two-dimensional, crystalline moiré superlattice in any practical application.
The present invention has many different and possible applications. Namely, it can be used for quantum communication protocols, such as quantum key distribution and the Bells inequality test, for quantum information, and for quantum sensing. Observational astronomy, particularly radioastronomy, is also a possible application, where the interest is in detecting the energy of long wavelength single photons (mid-IR to THz wavelengths). Here there is no competing technology, so the sensor of the present invention could be an enabling technology. Further applications are thermal imaging, such as nano-calorimeter based image arrays, and cameras for low-energy light microscopy. The orders of magnitude better energy resolution of the sensor of the present invention will revolutionize the applicability of nano-calorimeter to even more advanced technologies.
Combinations of two or more of any of all the embodiments and implementations described in the present document are embraced by the present invention, in case those combinations are feasible and lead to a working embodiment.
In the following some preferred embodiments of the invention will be described with reference to the enclosed figures. They are provided only for illustration purposes without however limiting the scope of the invention.
In the present section some working embodiments of the sensor of the present invention will be described in detail, particularly for implementations of the invention for which the sensor is a nano-calorimeter which superconducting film is made from superconducting magic-angle twisted bilayer graphene, also called magic-angle graphene, which will be used for energy resolved high speed single photon detection.
In the MATBG calorimeter here analyzed, by stacking two graphene layers one on top of one another with a relative twist-angle between the layers, a “Moiré” pattern gives rise to a long wavelength periodic potential. It was shown that for a well-defined twist-angle of 1.1°, the so-called “magic” angle, flat bands with ultra-high density of states (DOS) (as compared to normal graphene) are formed and give rise to interaction driven correlated insulating and dome shaped superconducting phases with a Tc>3K.
In contrast to conventional SCs, magic-angle graphene as a two-dimensional single crystal with ultra-high electronic quality exhibits several orders of magnitude lower electron density and, as will be expounded below, the present inventors have discovered that such material also exhibits several orders of magnitude lower electronic heat capacity compared to conventional superconductors used as single photon detectors. These attributes position magic-angle graphene as an absolutely exceptional material for single photon sensing applications and will enable the detection of lower energy photons in the mid-IR and terahertz (THz) wavelengths with a high resolution and a fast response time.
In the present section, the present inventors demonstrate, by means of electronic transport experiments, that the superconductor material (magic-angle graphene), used for making a calorimeter according to an embodiment of the sensor of the present invention, exhibits the material properties necessary for single photon detection. Particularly, to demonstrate its ultra-low electronic heat capacity, a single photon calorimeter from magic-angle twisted bilayer graphene (MATBG) is presented. A full detailed theoretical analysis of the theoretically achievable single photon detection performance of the calorimeter is also provided.
The present inventors also demonstrate the feasibility of preparing energy resolved SPDs from MATBG, by estimating its thermal response due to the absorption of single photons. Due to the steep temperature-dependent resistance at its SC transition edge, photon generated voltage pulses are created which can be directly read out.
First, the thermal properties of the MATBG electrons are quantified by calculating its temperature dependent electronic heat capacity Ce(T). The present inventors first calculated the single particle band-structure of MATBG, where ultra-flat bands close to charge neutrality (bands in
By equating the energy of an incident photon with the absorption-induced increase in internal energy hω=∫T
In order to evaluate the intrinsic detector performance the present inventors extracted the photon induced voltage change ΔV across a current biased MATBG sheet (see “Calculation of detector response and energy resolution” below). This was achieved by combining the temperature dependent resistivity at the superconducting transition with the calculated temperature change due to the absorption of a single photon ΔT.
The lifetime of the voltage pulses is determined by the intrinsic thermal relaxation pathways of the thermally excited electrons in the MATBG sheet. Here, as is well established for single layer graphene devices, the present inventors assumed that the dominant heat dissipation channels are via the electron-phonon interaction from acoustic gauge phonons (Ge-ph) and from heat diffusion to the electrodes via the Wiedemann-Franz law (GWF), the corresponding thermal conductivity of which is plotted in
Having established Ge-ph as the dominant heat relaxation mechanism, the present inventors obtained the thermal relaxation time T for different T, through the quasi-equilibrium relation Ge-ph·τ=Ce, as is shown in
Depending on the final detector architecture, the fast intrinsic photo-response of the MATBG can be further processed with broadband low-noise amplifiers, such as HEMTs. Another approach for processing the response is a kinetic inductance detection (KID), which is based on a change in the MATBGs kinetic inductance upon photon absorption leading to a shift of the resonance frequency in a coupled micro-resonator. Compared to a resistive read-out, the KID is applicable far below the superconducting transition possibly allowing for even higher sensitivities. In principle however, given a direct on-chip read-out, the obtained voltage response might even be large enough to be readily read-out with dedicated nano-voltmeters.
As the amplitude of the sensor/detector response increases monotonically with increasing photon frequency it is possible to resolve the energy of an absorbed photon from the transient response. On the timescale of the system's thermal relaxation time, the ultimate possible energy resolution of a calorimeter without feedback is governed by thermodynamic energy fluctuations ΔE2=kBT2C. One can understand these thermodynamic fluctuations in terms of random fluctuations of the internal energy of the electron distribution due to its statistical nature as a canonical ensemble in thermal exchange with the bath.
in MATBG, which is limited by thermodynamic fluctuations. The relative photoresponse amplitude is depicted at fph=1 THz. At optimum operation temperatures the present inventors found that the sensor of the present invention allows for an energy resolution in the 0.4 THz range, which is on par with the most sensitive calorimeters for THz applications (see
For the device/sensor/detector of the present invention, the present inventors found α˜15 which gives an energy resolution of ˜0.2 THz.
To determine heat capacity and cooling time, one starts from the kinetic equation in the absence of external fields and particle flow for the distribution function of electrons with momentum k and in band λ, fk,λ, i.e. (Principi, A. et al. Super-Planckian Electron Cooling in a van der Waals Stack. Phys. Rev. Lett. 118, 126804 (2017)):
∂tfk,λ=I[fk,λ], (1)
where the collision integral of the electron-phonon interaction reads:
Here V(q,ν) is the interaction between electrons and the phonon mode ν (e.g., longitudinal or transverse), and Dk,λ;k′,λ′ is the modulus square of the matrix element between the initial and final states k,λ and k′,λ′ of the electronic operator to which the phonon displacement is coupled. For the sake of the definiteness, the operator will be assumed to be the electronic density. Other phonon models have been addressed in the literature, but will not be discussed here where the focus is to provide an order-of-magnitude estimate for the cooling time. In Eq. (2), εk,λ and ωq,ν are respectively the electron and phonon energies, while fk,λ and nq,ν are their distribution functions. In equilibrium, fk,λ (nq,ν) is the Fermi-Dirac (Bose-Einstein) distribution.
Assuming that fk,λ and nq,ν are the Fermi-Dirac and Bose-Einstein distribution at the temperature Te and TL, respectively, each of the two subsystems (electrons and lattice vibrations) are therefore in thermal equilibrium, but the system as a whole is not. To determine the rate of heat conduction between them, Eq. (1) is multiplied by εk,λ−μ, where μ is the chemical potential, and we integrate it over k and sum over λ. Expanding for Te→TL, one gets C∂tTe=Σ(Te−TL), (3)
where
is the heat capacity, and
which is obtained by assuming the density to be independent of Te (and fixed, e.g., by an external gate). In Eq. (5),
The cooling time is therefore defined by τ−1=Σ/C.
An estimate for the cooling time is now provided. The goal is to approximate Im[χ(q, ωq,ν)] in Eq. (7). To do so, it is noted that at T˜1 K only phonons with energies of the order of 4 kBT˜0.3 meV contribute to the integral, thanks to the derivative of the Bose-Einstein distribution which strongly suppresses higher energy excitations. Such energies correspond to phonon momenta of the order of q˜0.05 nm−1 (using a phonon velocity cph=104 m/s). Typical electron momenta are of the order of 2π/Lmoire˜0.1-0.4 nm−1, i.e. much larger than phonon momenta. One can therefore estimate Im[χ(q, ωq,ν)] in the limit of zero temperature and q→0. Restricting to the two flat bands, and approximating the matrix element as Dk,λ;k′,λ′=1 (which provides with an upper limit to τ−1), and assuming that the bands are nearly particle-hole symmetric, after a few manipulations one gets:
where f(x)=(ex+1)−1 is the Fermi-Dirac distribution and N(ε) is the density of states at the energy ε. N(ε) is calculated from the continuum model of Koshino, M. et al. Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene. Phys. Rev. X 8, 031087 (2018). Eq. (5) is then readily evaluated with (Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407-470 (2011):
where (see also Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530-533 (2018)) g=3.6 eV, ρ=7.6×10−7 kg/m2 and ℏ is the reduced Planck's constant. Note that, by knowing the expression for the density of states N(ε), the integrals over momenta in Eqs. (4) and (6) can be readily recast into integrals over band energies.
After calculating the electronic heat capacity Ce(T) for MATBG as a function of temperature, the photon-induced temperature increase is calculated by equating the energy of an absorbed photon Ephoton with the temperature-induced increase in internal energy
E
photon
=h·f
photon=∫T
Here h is Planck's constant, fphoton is the frequency of the absorbed photon, T0 is the temperature of the MATBG before photon absorption and Tmax is the temperature of the MATBG directly after photon absorption. Solving for Tmax as a function of fphoton and T0 allows us to calculate the photon energy-dependent thermal response of the MATBG sheet.
With the experimentally obtained R(T) and the calculated temperature increase ΔT(T0,fphoton)=Tmax(fphoton,T0)−T0, the change in the MATBG's resistance upon absorption of a photon is calculated. Using a current I just below the experimentally obtained critical current Ic, the voltage drop ΔV(T0,fphoton)=I·ΔR(T0,fphoton) is calculated.
Due to the fast ˜100-fs thermalization time (Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248-252 (2013)) after photon absorption, the rise-time of the temperature transient is assumed to be instantaneous compared to the subsequent thermal relaxation, which is modelled by an exponential decay with time constant τ as obtained from the calculations in “Calculation of heat capacity and cooling time” above. The corresponding transient voltage response is then calculated from R(T(t)).
On a timescale of the system's thermal time constant, the internal energy of a calorimeter in thermal equilibrium with the bath fluctuates by an amount ΔE2=kBT2C (Chui, T. C. P., Swanson, D. R., Adriaans, M. J., Nissen, J. A. & Lipa, J. A. Temperature fluctuations in the canonical ensemble. Phys. Rev. Lett. 69, 3005-3008 (1992)). This energy scale determines the uncertainty of any given energy measurement in a calorimeter and is such regarded as the thermodynamic limit on the energy resolution of the calorimeter. The full width at half maximum of the distribution in E is taken as the energetic discrimination threshold to distinguish the energies of two incident photons.
The sensor of the present invention object of the above described experiments and theoretical analysis, has the following characteristics:
For particular applications at low photon energies, as depicted in
Although the above described embodiments refer to a calorimeter, as described in a previous section, a bolometer (such as hot electron bolometer) is also a possible implementation of the sensor of the present invention.
Moreover, it must be noted that, in order to avoid obscuring the present invention, some well-known components (heat reservoir, thermal link, read-out electronics, cooler, etc.) of superconducting calorimeters/bolometers have not been either described in detail herein or depicted in the schematic drawings of
A person skilled in the art could introduce changes and modifications in the embodiments described without departing from the scope of the invention as it is defined in the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
19382979.3 | Nov 2019 | EP | regional |