Not applicable.
Not applicable.
The invention relates generally to the field of electromagnetic surveying of subsurface rock formations below bodies of water. More specifically, the invention relates to improvement of resolution of such surveys by using modified nodal sensing stations in conjunction with enhanced towed sensor streamers.
Controlled source electromagnetic (CSEM) surveying is a set of techniques for identifying electrical resistivity anomalies in subsurface rock formations. Such anomalies are known to be associated with the existence of subsurface reservoirs of hydrocarbons (oil and gas). CSEM surveys are conducted on land and in bodies of water such as lakes or the ocean (“marine surveys”) to help identify likely subsurface reservoirs in the rock formations below the water bottom.
Marine CSEM surveys are typically performed in two general methods. One method is to deploy a plurality of nodal receiver stations on the water bottom in a selected pattern. See, for example, U.S. Pat. No. 6,842,006 issued to Conti et al. for a description of an example nodal receiver station. While the receiver stations are recording, an electromagnetic (EM) transmitter antenna coupled to an electric current source is moved through the body of water. Electric current is passed through the transmitter antenna to induce an EM field in the water and in the formations below the water bottom. Responses to the induced EM fields detected by the various nodal recorders are later interpreted to estimate the presence of resistivity anomalies such as hydrocarbon reservoirs.
The other general CSEM survey method is to tow a receiver cable in the water concurrently while towing the EM transmitter antenna and periodically actuating the EM transmitter antenna. See, for example, U.S. Pat. No. 7,602,191 issued to Davidsson.
Other technology known in the art for conducting EM surveys includes ocean bottom placed cable sensor systems. See, for example, U.S. Patent Application Nos. 2008/0265895 and 2008/0265896 filed by Strack et al. Such cable systems have not yet experienced widespread commercial use due to manufacturing and maintenance costs.
Generally, EM surveying performed using a receiver node system and using a towed EM source is well suited for detection and characterization of resistive anomalies at great depths below the water bottom. However, the nature of the nodal receivers necessitates a relatively sparse placement of the receiver nodes to achieve reasonable acquisition efficiencies. A towed EM streamer system has higher spatial resolution and acquisition efficiency than a node based system, but EM streamers lack the low noise properties of the node system. Noise is principally caused by motion of the receiver streamers in the body of water. Towed EM streamer acquisition can, however, provide better lateral resolution and can enable the detection of small, shallow targets (e.g., gas pockets). On the other hand, towed EM streamers are less useful in the detection of deep targets. It should also be noted that it is preferred not to tow marine EM streamer systems near operating marine equipment and facilities such as drilling and/or production platforms.
As a practical matter, nodal acquisition and towed streamer acquisition are generally performed independently, resulting in either sparsely sampled 3D nodal data, or high-resolution, yet relatively shallow depth 2D streamer data.
There is a need for a system that combines the relatively high depth resolution of nodal EM recording systems with the spatial resolution of towed EM streamer systems.
A method according to one aspect of the invention for electromagnetic surveying below the bottom of a body of water includes deploying a plurality of nodal recording devices in a selected pattern on the water bottom. An electromagnetic transmitter is towed in the water. At least one electromagnetic sensor streamer is concurrently towed in the water. The electromagnetic transmitter is actuated at selected times and signals detected by sensors in the nodal recording devices and in the at least one streamer are recorded.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
Referring to
High resolution, three-dimensional EM survey results, according to embodiments of the invention, may utilize several possible modifications to typical techniques used in EM surveying.
The node spacing can be made more sparse, thereby saving on materials costs and improving operational efficiency. As would be understood by one of ordinary skill in the art with the benefit of this disclosure, data gathered by the nodal part of the EM survey system may focus on deep target detection. Consequently, the nodal deployment can be done on a more sparse grid (typically with an about 3 km pitch) than is ordinarily performed with nodes used on a standalone basis.
The streamers can be made shorter than typical streamers (e.g., about 1-2 km instead of the more common 5-6 km), and the streamer array may benefit from a larger lateral spread than traditionally utilized. Shorter streamers may be less expensive to produce and maintain, and operations with shorter streamers may be more efficient. Data gathered by the streamer part of the EM survey system may focus on improved lateral coverage. The long offsets achieved by long streamers will not be required as these primarily are used for deep target detection, which in the present example is performed by the nodal part of the EM survey system.
To process the signals acquired by both the nodes and the streamers, a joint inversion may be performed. Such processing may provide enhanced results in overburden characterization from the streamer data, along with an enhanced depth sensitivity due to the nodal data. A typical application of such combined nodal/streamer acquisition and processing technique would be areas with a complicated geology where a high sensitivity for both shallow and deep structures is essential for correct processing (salt domes, faults etc.). The processing may be performed on a computer (not shown separately) in the recording system (12 in
In a particular implementation of the processing, magnetotelluric (MT) signal, which may be detected by the sensors on the streamer (20 in
A combined receiver node and towed EM streamer method and system as described herein can identify both shallow and deep targets while increasing overall acquisition efficiency, because the EM transmitter only needs to be moved through the survey area once for both streamer data acquisition and receiver node data acquisition.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.