High resolution three-dimensional printing system

Information

  • Patent Grant
  • 11623399
  • Patent Number
    11,623,399
  • Date Filed
    Friday, January 7, 2022
    2 years ago
  • Date Issued
    Tuesday, April 11, 2023
    a year ago
Abstract
A three-dimensional printing system for fabricating a three-dimensional article includes a motorized build platform, a dispensing module, a pulsed light source, an imaging module, a movement mechanism, and a controller. The imaging module receives radiation from the pulsed light source and includes a two-dimensional mirror array. The movement mechanism imparts lateral motion between the imaging module and the build platform. The controller is configured to operate the motorized build platform and the dispensing module to form a layer of build material at a build plane, operate the movement mechanism to laterally scan the imaging module over the build plane, operate the pulsed light source to generate a sequence of radiation pulses that illuminate the mirror array, and operate the mirror array to selectively image the build material.
Description
FIELD OF THE INVENTION

The present disclosure concerns a three dimensional (3D) printer for manufacturing an article in a layer-by-layer process. More particularly, the 3D printer has an imaging system that selectively images layers with very high resolution.


BACKGROUND

Three dimensional (3D) printing systems are in rapidly increasing use for manufacturing three dimensional articles of varying composition. Some of these three dimensional printing systems utilize the application of energy to selectively cure or fuse materials. The energy is applied using imaging systems such as lasers. There is an ongoing need to improve both resolution and speed of the imaging systems.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic diagram of a three-dimensional printing system for fabricating a three-dimensional article.



FIG. 2 is a schematic cross-section of an embodiment of an imaging module that can be used in the system of FIG. 2.



FIG. 3 is a diagram depicting imaging a build plane with a scanning imaging module.



FIG. 4 is a timing diagram depicting a pulsed light source output (top) and mirror states for a mirror. Mirror transitions occur temporally between pulses.



FIG. 5 is a simplified diagram depicting an image of a mirror array as it is projected onto a build plane. The diagram is simplified because a typical image would be for a mirror array having more than 100,000 individual mirrors.



FIG. 6 is an illustration of images for which n (the number of mirrors lengths of travel during a dark state) equals 3.





SUMMARY

In a first aspect of the disclosure, a three-dimensional printing system for fabricating a three-dimensional article includes a motorized build platform, a dispensing module, a pulsed light source, an imaging module, a movement mechanism, and a controller. The imaging module receives radiation from the pulsed light source and includes a two-dimensional mirror array defining N rows and M columns of mirrors. The movement mechanism imparts motion between the imaging module and the build platform in one or two lateral directions. The controller is configured to operate the motorized build platform and the dispensing module to form a layer of build material at a build plane, operate the movement mechanism to scan the imaging module along an X-axis over the build plane at a velocity V, operate the pulsed light source to generate a sequence of radiation pulses that illuminate the mirror array, and operate the mirror array to selectively image the build material. The radiation pulses individually having a time duration of δT. The radiation pulses are emitted at a frequency of ν=1/T. During a single scan of the imaging module across the build plane, a location on the build plane is addressed by a plurality of different mirrors. The individual mirrors are controlled to have one of an ON state and an OFF state during the pulses. The pulsed light source can be integrated into the imaging module.


A redundancy R is a number of mirrors (or mirror images) that address a given point on the build plane. A number n equals N divided by R and therefore equals a number of mirror images that pass a given point during the time period T. A larger value of redundancy R allows more gray levels at a given location on the build plane. A larger value of R also reduces an effect of a malfunctioning mirror element. In some embodiments, at least five mirrors address a given point on the build plane. The value of R can be more than five, more than ten, more than 25, more than 50, more than 100 or any value that is optimized or preferred for a given system.


In one implementation, N and M are individually at least equal to 500. N can be at least equal to 1000 or equal to 1080. M can be at least equal to 1000 or 2000 or equal to 1920.


In another implementation, the radiation pulse period T is at least two times the pulse width δT or five times δT or ten times δT or 100 times δT or 1000 times δT. In one particular example, T is about 0.1 milliseconds (pulse frequency ν=1/T of about 10 KHz) and the pulse width δT is about 15 nanoseconds.


In yet another implementation, individual mirrors have a lateral dimension of S. The imaging module includes expansion or reduction optics that project an image of individual mirrors onto the build plane with a lateral dimensions of s in which s=S*r or in which s=S times r. If the factor r is less than one, then an image of a mirror in the build plane has a lateral dimension s that is less than the actual mirror dimension S. If the factor r equals one, then an image of a mirror in the build plane has a lateral dimension s that is equal to the actual mirror dimension S. If the factor r is greater than one, then an image of a mirror in the build plane has a lateral dimension s that is greater than the actual mirror dimension S. The velocity V equals (n times s) divided by T.


In a further implementation, mirror transitions between the ON and OFF state occur during a dark state of the pulsed light source between pulses. As a result, the mirror states are static during a light pulse. This eliminates transitions during pulses which improves a contrast ratio for the imaging module.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 is a schematic diagram of a three-dimensional printing system 2 for fabricating a three-dimensional article 4. In describing system 2, mutually perpendicular axes X, Y, and Z can be used. The X-axis and the Y-axis are lateral axes that are generally horizontal. The Z-axis is a vertical axis that is generally aligned with a gravitational reference. The use of the word “generally” indicates to within manufacturing tolerances. For example, generally aligned means aligned to within manufacturing tolerances with an intent to be aligned. As another example, generally equal means equal to within manufacturing tolerances.


System 2 includes a motorized build platform 6, a dispensing module 8, an imaging module 10, and a movement mechanism 12. In the illustrated embodiment, system 2 also includes a housing 14 containing a photocurable resin or build material 16. The motorized build platform 6 is operable to raise and lower an upper surface 18 of the build platform 6 so that a desired upper face 20 of the article 4 can be positioned at a build plane 22 defined by the imaging module 10. The movement mechanism 12 is configured to impart relative lateral motion between the imaging module 10 and the build platform 6 in either one or two lateral directions. In the illustrated embodiment, the dispensing module 8 includes a roller and/or wiper to provide a thin layer of the build material 16 at the build plane 22. In an alternative embodiment, the dispensing module 8 can be a piezo inkjet printhead that selectively dispenses the build material 16 at the build plane 22. When the dispensing module 8 is an inkjet printhead, it can also dispense a sacrificial support material that supports the build material 16.


System 2 also includes a controller 24 coupled to the motorized build platform 6, the dispensing module 8, the imaging module 10, and the movement mechanism 12. Controller 24 includes a processor coupled to an information storage device. The information storage device includes a non-transient or non-volatile storage device storing software instructions. When executed by the processor, the software instructions control portions of the system 2.


To fabricate the article 4, the controller is configured to: (1) operate the motorized build platform 6 to position the upper surface 18 (or upper face 20) at the build plane 22; (2) operate the dispensing module 8 to form a layer of build material 16 over the top surface 18 (or upper face 20); (3) operate the movement mechanism 12 to scan the imaging module 10 over the build plane 22; (4) while the imaging module 10 is scanning, operate the imaging module 10 to selectively harden the layer of build material 16 at the build plane 22; and (5) repeat steps (1)-(4) to compete fabrication of article 4.



FIG. 2 is a schematic cross-section of an embodiment of the imaging module 10. Imaging module 10 includes a pulsed light source 26 and a spatial light modulator 28 controllably coupled to a driver board 30. The driver board 30 is coupled to the controller 24 via a trailing cable 32. The trailing cable 32 allows the imaging module to scan over the build plane 22. In some embodiments, signals can be wirelessly transmitted between controller 24 and driver board 30.


The pulsed light source 26 includes an array of blue or ultraviolet lasers or LEDs (light emitting diodes). The spatial light modulator 28 includes a rectangular array of controllable mirrors (mirror array 34). Radiation from the pulsed light source 36 impinges upon and illuminates the mirror array 34 which then reflects the radiation into optics 36. Optics 36 projects an image 38 of the illuminated mirror array 34 onto the build plane 22. In one embodiment optics 36 are reduction optics whereby the image 38 is smaller in extent than the mirror array 34. In another embodiment, optics 36 project an image 38 with the same extent as the mirror array 34. In yet another embodiment, optics 36 are expansion optics whereby the image 38 is larger in extent than the mirror array 34. In some embodiments, optics 34 can enlarge and/or reduce the image 38 along one axis differently than the other.


As the imaging module 10 scans over build plane 22, the pulsed light source 26 is pulsed while individual mirrors of the mirror array 34 are actuated between ON and OFF states. Pulsed means that the light source is outputting a sequence of light pulses individually having a pulse width δT and spaced by a time period T. In some embodiments, T is at least two times δT. The frequency ν of pulsing is equal to 1/T. Between pulses is a “dark” state of the pulsed light source 26. An ON state of a mirror is a state in which light is reflected from the light source 26 to the build plane 22. An OFF state is a state in which light from the light source 26 is not reflected into the build plane 22. Preferably transitions between the ON and OFF states are performed during the dark state of the pulsed light source so that a contrast ratio between ON and OFF states of the imaging module is maximized.



FIG. 3 is a diagram depicting imaging the build plane 22. Element 38 depicts a projection of the mirror array 34 onto the build plane. Image 38 may be actual size, reduced, or enlarged relative to the original dimensions of the mirror array 34. The image 38 scans along the scan axis X. In an embodiment, the image 38 is a rectangular image of at least one hundred thousand mirrors. The image 38 is defined by N rows that are arranged along X and M columns that are arranged along Y. In one embodiment, N=1080 rows of mirrors and M=1920 columns of mirrors for a total of more than 2 million individually controllable mirrors. Other embodiments are possible.


In the illustrated embodiment, the image 38 is: (1) scanned from left to right along X, (2) shifted in Y (−Y direction in the illustration), (3) scanned from right to left in X, and so on according to the figure. This is but one example. In another embodiment, the image 38 is wide enough along Y to span the entire build plane 22. Then the image 38 only needs to scan along X once to image the entire build plane 22. In some embodiments, the scans can overlap to allow different portions of the image 38 to cover the same scanned positions in Y.


The image 38 is a pulsed image because the light source 26 is pulsed. This is illustrated in FIG. 4. The top portion of FIG. 4 illustrates the pulsed light source 26 output versus time during a scan. Individual pulses have a pulse width of δT with a pulse frequency ν defining a time period T from the start of one pulse to the start of the next pulse. In some embodiments, time period T is at least 5 times δT. More particularly, T is at least 10, at least 100, or at least 1000 times δT. In one particular embodiment, δT is about 15 nanoseconds and T is about 0.1 milliseconds but such parameters can vary. The lower graph of FIG. 4 depicts a mirror transition timing diagram for a single mirror. The mirrors that are selectively ON (to image the build material) have an ON state that overlaps and temporally contains a pulse. Thus, the mirror transitions from ON to OFF or OFF to ON occur during the dark state of the pulsed light source between the pulses. This improves the contrast ratio of the imaging module 10, because there are no intermediate mirror states during light pulses.



FIG. 5 depicts an enlarged but simplified view of the image 38 of the mirror array 34. It is simplified since N and M are individually greater than 500. At the top of each column is a mirror with row number 1. At the bottom of each column is a mirror with row number N. As the image 38 scans over the build plane 22 a light pulse causes row 1 to image a certain row r=1 of locations of the build plane 22. Then the mirrors “go dark” until the next pulse at which row 1 images a row 1+n. The number n is a measure of how far the image 38 translates or scans along X between pulses. In summary, we can have the following definitions:


N=number of rows of mirrors (or mirror images) along X.


M=number of columns of mirrors along Y.


S=Actual mirror pitch across mirror array 34.


r=Expansion/Reduction Factor. For example, when r=0.2, the size of the image 38 is reduced by a factor of 5 (reduced by 80%) along the axis X and the axis Y. In some embodiments, r can be different for X and Y.


s=S*r=Pixel pitch for the image 38. If r is different for X and Y, then s will also be different along X and Y.


T=Time between pulses, Frequency ν=1/T, Pulse Width is δT


V=Scan Speed


R=Redundancy=Number of mirrors that can address the same point on the build plane 22


n=N/R=Number of mirrors that pass a point on the image plane between pulses

V=(n*s)/T


An illustrative example follows.

N×M=1000×2000


S=25 microns


r=0.2 so that s=S*r=5 microns


Pulse Width is 15 nanoseconds


Pulse Frequency is 10 KHz so that T is 0.1 milliseconds


R=Redundancy=100


n=N/R=1000/100=10 mirror lengths

V=n*s/T=(10 mirror lengths*5 microns)/0.1 milliseconds=0.5 meter/second


The redundancy R allows for varying gray levels. Also, a damaged mirror will only have a 1% impact on a given pixel.



FIG. 6 is an illustration that illustrates the temporal mirror pulsing as a physical overlay. The top layer represents the first pulse. Then, the next layer down represents the next pulse, and so on. Layer to layer represents the “dark state”. This represents a value of n=3; the image 38 advances three mirror lengths between pulses for illustrative purposes since n can take on values that are much larger than 3.


In some embodiments, the period T is not “fixed” but is based upon advancement of the imaging module 10. The light pulses can be generated in response to an encoder signal that is used for motion control of the imaging module 10 along the X direction. Mirror transitions of mirror array 34 can also be synchronized based upon the encoder signal. There are varying ways in which the controller can synchronize motion of the imaging module 10, pulses generated by light source 26, and transitions of the mirrors within the mirror array 34 that do not depart from the claims.


The specific embodiments and applications thereof described above are for illustrative purposes only and do not preclude modifications and variations encompassed by the scope of the following claims.

Claims
  • 1. A method of fabricating a three-dimensional article, the method comprising: positioning a surface of a build platform with respect to a build plane defined by an imaging module;disposing a layer of photocurable build material at the build plane;imparting relative motion between the imaging module and the build plane at a velocity V, the imaging module at least including a spatial light modulator having an array of mirrors; andwhile imparting the relative motion: generating a sequence of individual radiation pulses that illuminate the mirror array so that during a single scan of the imaging module over the build plane, a given point on the build plane is addressed by a plurality of R different individual mirrors of the mirror array to reduce an effect of a single malfunctioning mirror element of the mirror array and to provide gray levels for curing the build material; andoperating the mirror array to selectively image the photocurable build material at the build plane by controlling individual mirrors of the mirror array to have one of an ON state and an OFF state during individual pulses of the sequence of radiation pulses.
  • 2. The method of claim 1 wherein R is more than five.
  • 3. The method of claim 1 wherein R is more than ten.
  • 4. The method of claim 1 wherein R is more than 25.
  • 5. The method of claim 1 wherein R is more than 50.
  • 6. The method of claim 1 wherein R is more than 100.
  • 7. The method of claim 1 wherein the sequence of radiation pulses has a period between pulses of T and a duration of individual pulses of δT, and wherein T is at least five times δT.
  • 8. The method of claim 1 wherein the sequence of radiation pulses has a period between pulses of T and a duration of individual pulses of δT, and wherein T is at least ten times δT.
  • 9. The method of claim 1 wherein the sequence of radiation pulses has a period between pulses of T and a duration of individual pulses of δT, and wherein T is at least 100 times δT.
  • 10. The method of claim 1 wherein the sequence of radiation pulses has a period between pulses of T and a duration of individual pulses of δT, and wherein T is at least 1000 times δT.
  • 11. The method of claim 1 wherein the array of mirrors includes N rows and M columns of mirrors.
  • 12. The method of claim 11 wherein V=(n*s)/T, whereby n=N/R, s=an imaged pixel pitch for the imaging module, and T equals a pulse period of the radiation pulses.
  • 13. The method of claim 12 wherein s=S*r, whereby S is a physical pitch of the mirrors and r is an optical reduction or expansion of a projection of the mirrors onto the build plane.
  • 14. The method of claim 12 wherein N is at least 500.
  • 15. The method of claim 14 wherein M is at least 500.
  • 16. The method of claim 12 wherein N is at least 1000.
  • 17. The method of claim 16 wherein M is at least 1000.
  • 18. The method of claim 1 wherein the individual mirrors transition between the OFF and ON states during a dark state between the individual pulses to maximize a contrast ratio at the build plane.
  • 19. A method of fabricating a three-dimensional article, the method comprising: positioning a surface of a build platform with respect to a build plane defined by an imaging module;disposing a layer of photocurable build material at the build plane;imparting relative motion between the imaging module and the build plane at a velocity V, the imaging module at least including a spatial light modulator having an array of N rows and M columns of mirrors, whereby N is at least 500 and M is at least 500; andwhile scanning the imaging module over the build plane: generating a sequence of individual radiation pulses that illuminate the mirror array so that during a single scan of the imaging module over the build plane, a given point on the build plane is addressed by a plurality of R different individual mirrors of the mirror array to reduce an effect of a single malfunctioning mirror element of the mirror array, whereby R is more than 5; andoperating the mirror array to selectively image the photocurable build material at the build plane by controlling individual mirrors of the mirror array to have one of an ON state and an OFF state during individual pulses of the sequence of radiation pulses.
  • 20. The method of claim 19 wherein the sequence of radiation pulses has a period between pulses of T and a duration of individual pulses of δT, and wherein T is at least five times δT.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/804,830 which was filed on Feb. 28, 2020, which claims priority to U.S. Provisional Application Ser. No. 62/811,620, Entitled “HIGH RESOLUTION THREE-DIMENSIONAL PRINTING SYSTEM” by Evgeny Korol, filed on Feb. 28, 2019, incorporated herein by reference under the benefit of U.S.C. 119(e).

US Referenced Citations (29)
Number Name Date Kind
5247180 Mitcham et al. Sep 1993 A
5260009 Penn Nov 1993 A
6051179 Hagenau Apr 2000 A
7083405 Koyagi et al. Aug 2006 B2
7088432 Zhang Aug 2006 B2
7259830 Ishi Aug 2007 B2
8139202 Henningsen Mar 2012 B2
8636496 Das et al. Jan 2014 B2
9073261 El-Siblani et al. Jul 2015 B2
9075409 El-Siblani et al. Jul 2015 B2
9403322 Das et al. Aug 2016 B2
9561622 Das et al. Feb 2017 B2
9606343 Sheblee et al. Mar 2017 B2
9632420 Allanic Apr 2017 B2
10232553 Joyce Mar 2019 B2
10336055 Das et al. Jul 2019 B2
10399179 Harding Sep 2019 B2
10884250 Chen et al. Jan 2021 B2
20030214571 Ishikawa Nov 2003 A1
20050094246 Roberts May 2005 A1
20160303797 Moran Oct 2016 A1
20160311160 Nam et al. Oct 2016 A1
20180161925 Harding Jun 2018 A1
20190091988 Das et al. Mar 2019 A1
20190126537 Saha et al. May 2019 A1
20200108464 Shibazaki Apr 2020 A1
20200122394 Sheng et al. Apr 2020 A1
20210229215 Weston Jul 2021 A1
20210331252 Chang et al. Oct 2021 A1
Foreign Referenced Citations (9)
Number Date Country
0933925 Aug 1999 EP
2312390 Dec 2015 EP
WO2016107798 Jul 2016 EP
H07-001592 Jan 1995 JP
2003-340923 Dec 2003 JP
2004-249508 Sep 2004 JP
WO2016107800 Jul 2016 WO
WO2016124634 Aug 2016 WO
WO2017055747 Apr 2017 WO
Non-Patent Literature Citations (3)
Entry
English Translation of Japanese First Office Action for Japanese Application No. 2021-547260 dated Aug. 24, 2022 (4 pages).
Zhou, Chi and Chen, Yong; Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution; Journal of Manufacturing Processes14 (2012) 107-118.
International Searching Authority; International Search Report for International Application No. PCT/US2020/0520384; dated Jun. 26, 2020.
Related Publications (1)
Number Date Country
20220126515 A1 Apr 2022 US
Provisional Applications (1)
Number Date Country
62811620 Feb 2019 US
Divisions (1)
Number Date Country
Parent 16804830 Feb 2020 US
Child 17570579 US