This disclosure relates to the field of two-dimensional (2-D) and three-dimensional (3-D) tomographic resistivity mapping and an improvement to mapping resolution.
Two-dimensional resistance tomography utilizes a resistive elastomer sensing membrane to produce a change in resistance when contact pressure is applied. Resistance change is measured through periphery contact electrodes to generate a tomographic image of low resolution. To increase the tomographic image resolution, a large number of periphery contact electrodes are required to generate a large amount of data that is needed to feed computation intensive mesh algorithms. The amount of data and computational complexity does not assure that the measurements will converge to a solution, which wastes computing resources. In short, traditional algorithms suffer from wasted resources or suffer from low resolution that comes with failing to provide the required amount of data due to reliance on an ill-defined mesh problem in the algorithm, to poorly placed contact electrodes and to non-optimal electrode measurement pairs.
The disclosure is better understood with reference to the following drawings and description. The elements in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure. Moreover, in the figures, like-referenced numerals may designate to corresponding parts throughout the different views.
The measured voltage VCD may be converted to digital format (e.g., digital data) through an analog to digital converter ADC 312. A respective tetra-polar resistance (rABCD)i corresponding to a respective voltage and current ratio (rABCD)i=VCD/IAB may be stored in a memory to be processed by a microcontroller MCU 314. Different electrode contact pairs such as EF and GH may also be simultaneously monitored as current leads and voltage probes until some or all N possible combination of electrode pairs are tested to measure the remaining tetra-polar resistances (rABCD)i to (rABCD)N.
Accordingly, a 2-D tomographic image 304 over a surface 302 may be mapped by a computer implemented method by executing the following steps or operation. The first step defines a surface area 302 of a resistive sensing membrane 301 having Q periphery contact electrodes “A to H” that are attached along the periphery of the surface area of the resistive sensing membrane 301. In this step, Q is an integer (eight are illustrated in
The method further includes the step of mapping a 2-D resistance tomographic image 304 over the defined surface area 302 of the resistive sensing membrane 301. The mapping renders a plurality of local area resistance values (rABCD)i to (rABCD)N that reflect the applied contact pressure “F” to the surface area of the resistive sensing membrane.
The 2-D resistance tomographic image mapping further includes measuring the plurality of local area resistances (rABCD)i to (rABCD)N sequentially, over each and every N maximum combinations of two periphery contact electrode pairs from among the Q periphery contact electrodes “A to H”. The result is a respective tetra-polar resistance (rABCD)i, wherein i=1 to N, and
wherein each respective tetra-polar resistance (rABCD)i corresponds to a respective voltage and current ratio (rABCD)i=VCD/IAB, such that a respective voltage VCD is established across a first periphery contact electrode pair CD when a respective current IAB is simultaneously passed across a second periphery contact electrode pair AB. The first periphery contact electrode pair CD is different from the second periphery contact electrode pair AB, wherein the respective tetra-polar resistance (rABCD)i reflects a local area resistance variation in a resistivity map ρ(r) of the 2-D resistance tomographic image. The resistivity map ρ(r) is related to the orthogonal basis polynomial functions ϕi(r) by ρ(r)=Σi ai ϕi(r), and the resistivity map ρ(r) is formed by superimposing the orthogonal basis polynomial functions ϕi(r). The orthogonal basis polynomial functions ϕi(r) have a resolution that increases with a degree of freedom set at an upper limit that is the same as the maximum combinations of N measurements. Here “a” is comprised of “a1, a2, . . . ai, . . . ” that represent ordered vector coefficients. The 2-D resistance tomographic image is displayed through the resistivity map ρ(r) on the defined surface 302.
The computer implemented algorithm is modified to map a tomographic image 360 across a volume 350 beneath a surface 362. The method includes defining a resistive volume 350 having Q surface contact electrodes A to J attached on the defined surface area 362 of the resistive volume 350. Q is an integer, such as nine in this example (e.g., preferably greater than or equal to five), where a plurality of local volume resistances (rABCD)i to (rABCD)N are defined. The local volume resistances vary with depth and material compositions (e.g., the tissue types and densities) beneath the defined surface area 362 of the resistive volume 350. The variations cause a three-dimensional (3-D) resistance variation. The method further includes mapping a 3-D resistance tomographic image over the defined resistive volume 350 according to the plurality of local volume resistances (rABCD)i to (rABCD)N beneath the defined surface area 362 of the resistive volume 350.
The 3-D resistance tomographic image mapping further includes measuring the plurality of local volume resistances (rABCD)i to (rABCD)N sequentially, over each and every N maximum combinations of two periphery contact electrode pairs (e.g., AB, CD, etc.) from among the Q periphery contact electrodes A to J. The result is a respective tetra-polar resistance (rABCD)I measure where i=1 to N, and
Each of the respective tetra-polar resistance (rABCD)i corresponds to a respective voltage and current ratio (rABCD)i=VCD/IAB. A respective voltage VCD is established across a first surface contact electrode pair CD when a respective current IAB is simultaneously passed between a second surface contact electrode pair AB. The first surface contact electrode pair CD is different from the second surface contact electrode pair AB. The respective tetra-polar resistance (rABCD)i reflects a local volume resistance variation in a resistivity map ρ(r) of the 3-D resistance tomographic image. The resistivity map ρ(r) is related to orthogonal basis polynomial functions ϕi(r) that is part of the expression ρ(r)=Σi ai ϕi(r). The resistivity map ρ(r) is formed by superimposing the orthogonal basis polynomial functions ϕi(r). The map has a resolution that increases with a degree of freedom set at an upper limit same as the maximum combinations ofN. The variable “a” is comprised of “a1, a2, . . . ai, . . . ”, which are the ordered vector of coefficients. The detection displays the 3-D resistance tomographic image through the resistivity map ρ(r) beneath the defined area 362.
The disclosed method improves tomographic resistance image resolution by adopting an orthogonal basis with a maximum number of elements N, which renders a maximum resolution resistivity map ρ(r). The number of elements N is determined by the number of electrodes Q. The detection defines the orthogonal basis according to any known constraints in a problem, thereby enhancing the resolution where ever it is needed. The detection positions the electrodes such that they are sensitive to these basis functions. The selection of current I and voltage V contact electrode pairs maximize the signal-to-noise ratio output.
Some standard methods for electrical impedance tomography solve the inverse mapping problem by defining thousands of mesh points to represent a resistance map that is consistent with a much smaller set of measurements that is orders of magnitude smaller in size than the disclosed detection. As such, these finite-element methods present an ill-defined problem such that the number of variables to be solved greatly exceeds the number of equations required to constrain them. Under these conditions, a large amount of computational power is wasted on calculating an unnecessarily large number of mesh points, and the resulting solution is not unique, depending on the choice of mesh or other minor boundary conditions. Subsequently, a regularization procedure must be performed to include a cost-function in the solution to artificially induce smoothness in the final result.
More specifically, the disclosed 2-D and 3-D methods devise an alternate strategy for the inverse problem in electrical impedance tomography, which improves detection resolutions and reduces computational time. The 2-D and 3-D methods takes the following approaches:
(1) Set the number of orthogonal basis functions for the resistivity map N equal to the maximum number of independent resistance measurements, thereby guaranteeing a maximum resolution. If Q is the number of contacts, then the number of independent measurements N is:
The number basis functions may be restricted to the number of degrees of freedom, which make the solution unique, rather than ill-defined.
(2) Execute a set of orthogonal basis functions ϕi(r) to describe the resistivity map ρ(r). Traditional tomographic methods may define a high-resolution mesh with thousands of points to describe the resistivity map. The mesh points are not independent of each other, as such they must be artificially correlated by adding an additional cost-function term in a regularization procedure. However, the disclosed approach executes an orthogonal basis functions ϕi(r) to describe the resistivity map ρ(r). The resistivity map ρ(r) may be described as an ordered vector of coefficients a=(a1, a2, . . . ai, . . . ) that may be expressed by equation 2.
ρ(r)=Σiaiϕi(r) (2)
Such basis functions may be proposed a priori from a set of orthogonal polynomials, or may be derived from a covariant analysis of a set of known resistivity maps.
For 2-D tomographic resistance imaging, the defined surface area 302 of the resistive sensing membrane 301 may comprise any arbitrary shape. For simplification, in a use case where the defined surface area 302 is circular, the orthogonal basis polynomial functions ϕi(r) may be a priori polynomial basis functions described by the Zernike polynomial equations, as shown in
The integer n={0, 1, 2, . . . } ranks the resolution of the polynomial from low to high, and m satisfies −n≤m≤n. The radial function is described by Rnm(ρ) and the azimuthal function is a sine or cosine function with a harmonic order m. These basis functions are all orthogonal to each other, the coefficient vector “a” in Eq. 2 represents a compact expression of the complete set of all possible resistivity maps described by the basis, where a cutoff assuming the maximum number of allowable basis states N is imposed, where in
For 3-D tomographic resistance imaging, the volume may have an arbitrary shape. For simplification in a use case when the defined volume is spherical, the orthogonal basis polynomial functions ϕi(r) are a priori polynomial basis functions may be described by spherical harmonic equations: expressed below.
S
l
m(ρ,θ,φ)=ρlYlm(θ,φ)
Y
l
m(θ,φ)=eim φPlm(cos θ)
where the functions Plm(x) are associated Legendre polynomials:
such that the integer l={0, 1, 2, . . . } ranks the resolution of the polynomial from low to high, and m satisfies −l≤m≤+l.
A second example of an a priori polynomial basis may be a constrained polynomial basis.
A third example of an orthogonal basis is determined by applying a principle component analysis (PCA) to a representative set of likely resistance maps “a”. The covariance matrix of the resistance maps may be expressed as:
Cov(a)=Γa
which can be diagonalized
Γa=WTΛW
where the matrix Λ is a diagonal matrix, and WWT=I.
Λ=diag(λ1,λ2, . . . ,λN)
The eigenvalues of the covariance matrix can be ordered λ1≥λ2≥ . . . ≥λN, and the largest {circumflex over (N)} eigenvalues of the covariance matrix as the principle components.
ΓaPCA=WTΛPCAW,ΛPCA=diag(λ1,λ2, . . . ,λ{circumflex over (N)},0, . . . ,0)
Here W is comprised of all eigenvectors, W=[w1 w2 . . . wN]. Thus, the orthogonal basis then can be represented by the reduced basis w1, w2, . . . w{circumflex over (N)}, and the eigenvectors W of the covariance matrix with largest eigenvalues □N are used as orthogonal basis functions with index i whose upper limit N is the same as the maximum number of independent tetra-polar measurements.
A fourth example of an orthogonal basis is a combination of the above methods (e.g., a priori, constrained, and principle component analysis basis functions). In this example, the principle component analysis of the third method may reveal only a limited number {circumflex over (N)} of basis functions before the covariance vanishes into the noise. But since the total number of independent measurements in the problem is N from Eq. 1, the disclosed method allows the remaining N−{circumflex over (N)} basis functions to be determined as a priori polynomial functions or constrained a priori polynomial functions, chosen to be orthogonal to the N members of the principle component basis.
Another approach tailors the choice of orthogonal basis functions to the highest resolution in the constrained region where the information is most critical relative to a known background or other constraint. This approach overcomes the disadvantages in uniform finite element meshes over a volume. If the region of interest in finite element meshes is local within that volume, then computational time and mathematical resolution is wasted on regions that are not useful.
If there are constraints and/or local regions of interest in the tomographic problem, then the orthogonal basis functions can be restricted to map features within only that region. Thus, the full power of the tomographic resolution is devoted to the region where information is needed.
The disclosed detections select electrode locations that have the highest resolution in discerning the orthogonal basis functions of interest. Current tomographic methods may place contacts at regular intervals around the periphery of the resistive object's volume to be mapped. This is detrimental for two reasons.
First, symmetric placement of contacts may result in a reduced number of independent measurements, reducing the maximum achievable resolution of the resistivity map. This point is illustrated in
Second, many tomographic systems may have a known background resistivity. The goal is to map only deviations from the resistivity. Strategic placement of contact electrodes may result in maximum sensitivity to these deviations. The disclosed detection applies the orthogonal basis functions to determine where contact electrodes should be placed to have maximum sensitivity in discerning independent measurements.
The detections also identify what pairs of current and voltage electrodes should be measured to provide the maximally independent set of complete measurements while maximizing signal-to-noise measurements. There are very many ways to collect a complete measurement set of N independent tetra-polar resistances, and by optimizing the choice of current-electrode pairs and voltage-electrode pairs, the disclosed detection makes it possible to choose a set that gives maximally independent measurements, and a maximal signal-to-noise ratio output. This is illustrated in
An exemplary application of a tomographic device is a pressure-sensitive polymer pad infused with carbon-nanotubes, carbon-black, or a combination of conductive particles that cause the polymer resistivity to change locally under an applied force as shown in
The resistivity pattern can be measured as shown in
In
In
The detection identifies which pairs of current and voltage electrodes are measured to provide maximal independence. In
The functions, acts or tasks illustrated in the FIGS. or described may be executed in a digital and/or analog domain and in response to one or more sets of logic or instructions stored in or on non-transitory computer readable medium or media or memory. The functions, acts or tasks are independent of the particular type of instructions set, storage media, processor or processing strategy and may be performed by software, hardware, integrated circuits, firmware, microcode and the like, operating alone or in combination. The memory may comprise a single device or multiple devices that may be disposed on one or more dedicated memory devices or disposed on a processor or other similar device. When functions, steps, etc. are said to be “responsive to” or occur “in response to” another function or step, etc., the functions or steps necessarily occur as a result of another function or step, etc. It is not sufficient that a function or act merely follow or occur subsequent to another. The term “substantially” or “about” encompasses a range that is largely (anywhere a range within or a discrete number within a range of ninety-five percent and one-hundred and five percent), but not necessarily wholly, that which is specified. It encompasses all but an insignificant amount.
Other systems, methods, features and advantages will be, or will become, apparent to one with skill in the art upon examination of the figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the disclosure, and be protected by the following claims.
This disclosure claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 62/772,369 titled “High Resolution Two-Dimensional Resistance Tomography”, filed on Nov. 28, 2018, which is incorporated by reference in its entirety.
This invention was made with government support under grant number ECCS-1912694 awarded by the National Science Foundation. The United States government has certain rights in the inventions.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/063846 | 11/29/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62772369 | Nov 2018 | US |