The present invention relates to a protective device for electrical equipment, particularly relates to a surge protective device.
With the development of electric power, communications and other industries, the surge protector is increasingly applied to a wider range and prone to more frequent failures during the application. However, fire and other accidents might occur if a deteriorated or overloaded surge protector is not separated from the AC or DC circuit and the equipment in a timely and safely manner, hence more and more concerns are given to the safety of such a deteriorated or overloaded surge protector.
CN102132467A disclosed an overvoltage discharge device with at least one discharge component. In the event of short circuit or immediate vicinity of the the overvoltage discharge device, its mobile isolating part will intrude into the motion circuit of the conductor section or the conducting bridge to prevent or inhibit the electric arc between the conducting element and the isolating part from being re-ignited. However, a thermal stability test in accordance with IEC61643.1-2005 shows that, the current running through the overvoltage discharge device exceeds 0.5 mA if a maximum continuous running voltage is applied, which is not compliant with the requirements of IEC61643-1:2005.
The invention is intended to overcome shortcomings of the existing technology by providing a highly safe surge protector, so as to ensure the surge protector is separated from the circuit or the equipment when it is deteriorated or overloaded, thereby eliminating fire, electric leakage and other potential safety hazards.
The high-safety surge protective device disclosed in the invention comprises a casing, at least one overvoltage protection component inside the casing, a release unit used to separate the overvoltage protection component from the AC or DC circuit or the equipment, an arc suppressing apparatus and a box used to suppress electric arc generated while separating the overvoltage protection component from the AC or DC circuit or the equipment, the overvoltage protection component is provided with a first pin connected with the first electrode and a second pin connected with or separated from the second electrode through the release unit, and is mounted on the box; the release unit comprises a compression spring, a metal dome, a slide and a soft conductor, wherein: the slide is mounted inside the slideway of the box, the compression spring is in contact with the slide at one end and fixed on the box at the other end; the metal dome is mounted on the slide, its one end is connected with the soft conductor, while the other end is welded with the second pin of the overvoltage protection component when it is in normal condition, but when the overvoltage protection component is in abnormal condition and causes this end to separate from the second pin of the overvoltage protection component, an elastic restoring force of the compression spring is applied on the slide which drives the metal dome to move to the first limit wall on the box, the soft conductor is connected with the second electrode; theThe arc suppressing apparatus comprises an arc chute assembly, a first arc striking sheet, a second arc striking sheet, a turning block and a torsional spring, wherein: the turning block is a bar-type block with an arc reflector plate provided at one end, a mounting hole at the other end and a spark chamber at the part close to the arc reflector plate, the turning block is attached to the pin roll on the box through the mounting hole at its end and is hinged with this pin roll whose position is such that: when the overvoltage protection component is in normal condition, the side at the end of the turning block with the arc reflector plate is in contact with the metal dome, but when the overvoltage protection component is in abnormal condition and causes the metal dome to separate from it, the turning block moves to the second limit wall on the box under the action of the torsional spring and the spark chamber on the turning block covers the second pin of the overvoltage protection component separated from the metal dome; the torsional spring is mounted on the turning block and is connected with the pin roll; the arc chute assembly is installed inside the arc extinguishing chamber surrounded by the box and the casing, the first arc striking sheet has one end connected with or close to the left end of the arc chute assembly and the other end positioned on the box and close to the first limit wall, the second arc striking sheet has one end connected with or close to the right end of the arc chute assembly and the other end positioned on the box and close to the second limit wall.
The high-safety surge protective device disclosed in the invention also comprises an indicating device which further comprises a green display sheet and a red label, wherein the latter is attached on the upper end face of the slide and the former is hinged on the box; a transparent window is provided at the top of the housing of the casing from where the green display sheet or the red label is revealed. The green display sheet is revealed on the slide when the overvoltage protection component is in normal condition, but when the overvoltage protection component is in abnormal condition and causes the metal dome to separate from it, the green display sheet moves to the side of the box under the action of the slide and the red label attached on the upper end face is revealed.
The metal dome within the release unit of the high-safety surge protective device disclosed in the invention successively comprises an arc guide end, a welding contact face, a connecting arm, and a fixed end. The metal dome can be made of elastic copper, silver or alloy of these two, wherein elastic copper is preferred.
Braided annealed copper wire is preferred for the soft conductor within the release unit of the high-safety surge protective device disclosed in the invention.
An air outlet of the arc extinguishing chamber is made on the box of the high-safety surge protective device disclosed in the invention, and an exhaust port is made at the part on the housing of the casing corresponding to the air outlet of the arc extinguishing chamber.
The turning block within the arc suppressing apparatus of the high-safety surge protective device disclosed in the invention has a guide track groove between the spark chamber and the mounting hole, and a guide track matching the guide track groove is mounted at the corresponding part on the box.
The second arc striking sheet within the arc suppressing apparatus of the high-safety surge protective device disclosed in the invention is V-bulged at the part close to the second pin of the overvoltage protection component, in order to accelerate the arc striking speed.
The casing, box, slide and turning block of the high-safety surge protective device disclosed in the invention are made of gassing or non-gassing insulating material, wherein the former category is preferred as gas generated from such material can cool down the arc on the one hand and can, on the other hand, enhance the air-blowing function of the arc and accelerate the speed to move the arc to the arc chute assembly on the other hand. The gassing insulating material might be polyformaldehyde, nylon, or melamine.
The box of the high-safety surge protective device disclosed in the invention has two concrete structures as follows:
Firstly, on one facet of the box there is a chamber for the voltage protection component, while on the other facet there is an air outlet of the arc extinguishing chamber at the upper right top or on the side, a first limit wall at the upper left and a second limit wall at the lower right, wherein: a slideway for the slide is provided on the left of the first limit wall, a guide track for guiding the turning block to turn is provided on the left of the second limit wall together with a pin roll at its lower left.
Secondly, on one facet of the box there is a chamber for the voltage protection component, while on the other facet there is an air outlet of the arc extinguishing chamber on the upper right side, a first limit wall at the upper left, a third limit wall at the lower left and a second limit wall at the lower right, wherein: a slideway for the slide is provided on the left of the first limit wall, a guide track for guiding the turning block to turn is provided on the left of the second limit wall together with a pin roll beneath the guide track.
The high-safety surge protective device disclosed in the invention follows the operating principle as follows:
After long-time service or repeated impact, the overvoltage protection component (piezoresistor) is gradually deteriorated and its temperature rises little by little, or its temperature rises quickly when a tremendous overload current runs through. When the temperature at the weld between the second pin of the overvoltage protection component and the metal dome within the release unit reaches the melting or fusion point of the welding flux, the metal dome is separated from the second pin of the overvoltage protection component, thereby reliving the acting force applied on the turning block within the arc suppressing apparatus and on the compression spring within the release unit. In this way, the turning block within the arc suppressing apparatus turns towards the direction of the second limit wall on the box under the action of the elastic restoring force of the compression spring, while the slide within the release unit carries the metal dome to move towards the direction of the first limit wall on the box under the action of the elastic restoring force of the compression spring. As the turning block turns, the metal dome and the second pin of the overvoltage protection component which have been separated from each other are hence electrically isolated. Meanwhile, the arc generated while separating the metal dome from the second pin of the overvoltage protection component is cooled down and the impact wave moving backwards generated by the arc is reflected. The arc is made able to access the arc chute assembly as quickly as possible since the reflected wave and the impact wave move in the same direction towards the arc chute assembly. The first and the second arc striking sheet also play a part to lead the arc into the arc chute assembly. When the turning block reaches the second limit wall on the box, the spark chamber on the turning block covers the second pin of the overvoltage protection component. The distance between the metal dome and the second pin of the overvoltage protection component is continuously enlarged as the slide moves upward, and electrical isolation between the metal dome and the second pin of the overvoltage protection is completed when the slide carrying the metal dome reaches the first limit wall on the box.
The invention will render beneficial effects as follows:
Firstly, the arc suppressing apparatus of the high-safety surge protective device disclosed in the invention is constructed such that it can extinguish hard arc. The release unit of the high-safety surge protective device disclosed in the invention, on the other hand, can quickly release the metal dome from the second pin of the overvoltage protection component so as to complete quick electrical isolation between them. Therefore, the combination of the release unit and the arc suppressing apparatus ensures secure separation of the surge protector from the circuit or the equipment in the event of a failure, thereby solving the technical problem of small-current thermally-stabilized isolation and large-current overloaded isolation of the surge protector when it is used in an AC/DC system. The secure level is very high particularly when it is used in AC/DC circuit or equipment of high system voltage and large short circuit current (e.g. wind or photovoltaic power generating installation).
Secondly, the experiment shows that, when the slide carries the metal dome to reach the first limit wall on the box and completes separation of the metal dome from the second pin of the overvoltage protection component, the surge protector is completely isolated from the AC/DC circuit or the equipment and, when a maximum continuous running voltage is applied at its two ends, no current greater than 0.5 mA will run through, hence the high secure level.
Thirdly, as the high-safety surge protective device disclosed in the invention is provided with an indicating device, the operator can easily monitor the state of the overvoltage protection component, timely identify any failure and replace, so as to ensure the safety of the protected circuit or equipment.
Where: 1. casing; 11. housing; 111. exhaust port; 12. transparent window; 2. box; 201. air outlet of arc-extinguishing chamber; 202. first limit wall; 203. second limit wall; 204. pin roll; 205. guide track; 206. third limit wall; 3. overvoltage protection component; 311. first pin of overvoltage protection component; 312. second pin of overvoltage protection component; 4. release unit; 41. compression spring; 42. metal dome; 421. arc guide end; 422. welding contact face; 423. connecting arm; 424. fixed end; 43. slide; 44. soft conductor; 5. arc suppressing apparatus; 51. arc chute assembly; 511. mounting plate; 512. first arc chute; 513. second arc chute; 52. first arc striking sheet; 53. second arc striking sheet; 54. turning block; 541. arc reflector plate; 542. spark chamber; 543. guide track groove; 544. mounting hole; 55. compression spring; 6. indicating device; 61. green display sheet; 62. red label; 7. second electrode; 8. first electrode.
The following text further specifies the construction of the high-safety surge protective device disclosed in the invention in detail in consideration of the embodiments and accompanying drawings.
In this embodiment, the high-safety surge protective device comprises a casing 1 (see
In this embodiment, the high-safety surge protective device comprises a casing 1, an overvoltage protection component 3 within the casing, a release unit 4, an arc suppressing apparatus 5, an indicating device 6 and a box 2. What is different from Embodiment 1 is that: the exhaust port 111 is arranged on the upper right side of the housing 11 of the casing (see
In this embodiment, the high-safety surge protective device comprises a casing 1, an overvoltage protection component 3 within the casing, a release unit 4, an arc suppressing apparatus 5, an indicating device 6 and a box 2. What is different from Embodiment 1 is that: the exhaust port 111 is arranged on the right side of the housing 11 of the casing (see
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0123306 | Apr 2013 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/073139 | 3/10/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/166322 | 10/16/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3997746 | Harper | Dec 1976 | A |
4011425 | Gryctko | Mar 1977 | A |
4375021 | Pardini | Feb 1983 | A |
4656446 | Chien | Apr 1987 | A |
5196815 | Chien | Mar 1993 | A |
5780800 | Palmieri | Jul 1998 | A |
5969314 | Rakus | Oct 1999 | A |
6248970 | DiMarco | Jun 2001 | B1 |
7417520 | Kralik | Aug 2008 | B2 |
7812276 | Maloney | Oct 2010 | B2 |
20060151437 | Rakus | Jul 2006 | A1 |
20080277382 | Chen | Nov 2008 | A1 |
20140202990 | Puhalla | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
102132467 | Jul 2011 | CN |