This invention relates generally to high security door locks and, more specifically, to multi-point door locks that can be installed in doors and that utilize standard lock cylinders and hardware.
Multi-point door locks typically include two or more locking elements that move in unison from a retracted position within a door stile to an extended position to lock the door to a door frame. In general, multi-point locks are installed in the locking edge face of sliding doors (such as patio doors) or pivoting doors (such as double French doors) and form a robust locking mechanism that improves structural performance and security.
Multi-point locks for pivoting doors generally include a single housing that includes the various components, such as gears, levers, springs and other elements. The locking housing also includes one or more locking members (in the case of a true “multi-point” lock, two or more locking members are present) that rotate from a retracted position within the housing to an extended, locked position outside of the housing. When extended, the locking members engage with one or more keepers on a door frame or mating door. The locking members alternatively may be contained in housings remote from the main housing, above and below the main housing located near the center of a door. In some cases, multi-point locks may utilize, alternatively or additionally, linear locking members, for example pins or deadbolts, that extend linearly into the top head and bottom sill or threshold of the door frame.
Due to the complexity of the locking mechanisms, multi-point locks for pivoting doors typically are actuated by rotating a cantilevered handle in an upward direction to extend the locking elements and a downward direction to retract them. A thumb turn or lock cylinder integral with the main housing can be rotated to extend the deadbolt and prevent retraction of the locking elements. The integral actuation components prevent the multi-point locks from being used with conventional latch and deadbolt systems. While conventional spring latch and deadbolt combinations can be used with pivoting doors, they can only provide a moderate level of security as compared to multi-point locks. Pivoting doors that are configured for latch and deadbolt systems typically can not accommodate multi-point locks due to the relative size and configuration of the multi-point locks. In fact, multi-point locks typically are configured such that only specific handles or actuators may be used therewith. Accordingly, there is a need to provide an enhanced security multi-point lock system for use with conventional deadbolt lock cylinders and door latch hardware utilized in pivoting doors. There is also a need to provide a universal multi-point lock system that may be used with deadbolt lock cylinders and actuators manufactured by a variety of manufacturers.
In one aspect, the invention relates to a door lock including a drive bar adapted for movement from a first position to a second position, a locking member connected to the drive bar, the locking member adapted for movement from a first position to a second position upon movement of the drive bar from the first position to the second position, a bar slide adapted for movement from a first position to a second position, upon application of a force to the bar slide, and a transmission for coupling movement of the bar slide with movement of the drive bar. In an embodiment, the drive bar moves substantially vertically, wherein the bar slide moves substantially linearly, and wherein the transmission translates the substantially linear movement of the bar slide to the substantially vertical movement of the drive bar. In another embodiment, the drive bar is oriented substantially orthogonal to the bar slide. In yet another embodiment, the locking member is adapted to move pivotally from a first, retracted position to a second, extended position. In still another embodiment, the bar slide includes a first end defining an opening for connection to an actuator, and a second end pivotally connected to the transmission, wherein, from the first position of the bar slide to the second position of the bar slide, the first end moves in a substantially arcing direction and the second end moves in a substantially linear direction.
In an embodiment of the above aspect, the door lock includes a pivot pin connecting the second end and the transmission, wherein the pivot pin moves in a substantially linear direction from the first position of the bar slide to the second position of the bar slide. In another embodiment, the door lock includes an elongate housing, wherein the drive bar is located substantially within the elongate housing. In yet another embodiment, the door lock includes a cover plate adapted to be secured to the elongate housing. In still another embodiment, the elongate housing includes a U-shaped channel defining at least one aperture. In another embodiment, the locking member extends through the aperture when in the second position.
In an embodiment of the above aspect, the locking member is pivotally connected to the elongate housing. In yet another embodiment, the locking member includes an inner pin and an outer deadbolt element. In still another embodiment, the outer deadbolt element has a leading tapered surface and a trailing tapered surface. In another embodiment, the door lock includes a bar slide housing, wherein the bar slide is located at least partially within the bar slide housing, and wherein the bar slide is adapted for sliding linear movement in the bar slide housing.
In an embodiment of the above aspect, the transmission includes at least one of a bar link, a gear, and a cable. In another embodiment, the locking member includes a plurality of locking members. In yet another embodiment, the drive bar includes a substantially vertical drive bar axis and the bar slide includes a bar slide axis at an angle to the drive bar axis, and wherein the transmission includes a bar link including a bar link axis. In still another embodiment, when the drive bar and the bar slide are in their respective first positions, the bar link axis is substantially parallel to the bar slide axis. In another embodiment, when the drive bar and the bar slide are in their respective second positions, the bar link axis is substantially perpendicular to the bar slide axis. In yet another embodiment, when the drive bar and the bar slide are in their respective second positions, the bar link axis is defined by an angle of less than about 90° from the bar slide axis. In still another embodiment, when the drive bar and the bar slide are in their respective second positions, the bar link axis is substantially parallel to the bar drive axis.
In an embodiment of the above aspect, the door lock further includes an insert housing, wherein the bar slide is located at least partially within the insert housing, and a connection pin coupling the transmission and the bar slide. In an embodiment, the insert housing defines a slot having a first travel portion and a detent, and wherein the connection pin slides along the slot. In another embodiment, the connection pin is located in the detent when the drive bar is in the second position.
In another aspect, the invention relates to a method of installing a lock in a door having an locking edge face and opposing sides defining a bore therethrough, the method including the steps of providing a lock including a drive bar adapted for vertical movement, a locking member connected to the drive bar, a bar slide adapted for movement upon application of a force to the bar slide, and a transmission for coupling movement of the bar slide with the drive bar, and installing the lock in a recess formed in the locking edge face of the door. In an embodiment, the method includes first forming the recess sized to accommodate the lock in the locking edge face of the door. In another embodiment, the recess intersects with the bore. In yet another embodiment, the method includes removing an existing deadbolt from the door. In still another embodiment, the method includes installing at least one of a lock cylinder and a thumb turn in the door, so as to apply the force to the bar slide through the bore.
Other features and advantages of the present invention, as well as the invention itself, can be more fully understood from the following description of the various embodiments, when read together with the accompanying drawings, in which:
The multi-point lock 12 includes two spaced locking members 20. A base 22 of a U-shaped channel 40 (described in more detail below in
Each locking element 20 is connected to the drive bar 72 with a drive pin 80. Each drive pin 80 engages a drive pin opening 82 in the locking member 20, as well as a drive pin recess 84 in the drive bar 72. This connection is depicted with more clarity in
The bar slide 52 moves horizontally 54 during use to raise and lower the drive bar 72 to actuate the multi-point lock 12. A translation member or transmission 86 translates the horizontal movement 54 of the bar slide 52 to vertical movement 74 of the drive bar 72. In the depicted embodiment, the translation member or transmission 86 is a bar link connected to the bar slide 52 and drive bar 72 with connection pins 88. In other embodiments, a pivoting member, pivoting gear, or rack and pinion mechanism may be utilized as the translation member. In still other embodiments, a cable housed in a rigid or semi-rigid cable stay may operate as the transmission.
With regard to
When in a combined configuration 148a, the lever arm 136a has driven the bar slide 52a to the left, which places the locking members (not shown) of the multi-point lock in the locked position. From the depicted position, rotating the lock cylinder or thumb turn in the direction depicted by A will force the lever arm 136a to rotate clockwise, which will slide the bar slide 52a to the right. In turn, this will retract the locking members. Rotating the lock cylinder or thumb turn in a counter-clockwise direction A′ forces the lever arm 136a to slide the bar slide 52a to the left, thus extending the locking members. The components depicted in this combined configuration 148a may be utilized with a number of lock cylinder/thumb turn lock sets, including those made by MASTER, TRUBOLT, and DEFIANT, as well as DEXTER BY SCHLAGE, and others similarly configured. The configuration and location of the tailpiece and screws of the lock set can at least partially define the configuration and location of the base 146a of the lever arm 136a and the openings 140a, 142a.
In the combined configuration 148b depicted in
The deadbolt insert 48 defines an elongate slot 150 and is secured to the cover plate extension 22′. The slot 150 includes a first linear travel portion 150a that guides the motion of pin 88b as the bar slide 52 moves horizontally 54 along the horizontal axis AH. The slot 150 terminates at a second locking portion or detent 150b oriented at an angle to the first travel portion 150a. In this position of the pin 88b depicted in
As depicted in
The configuration of the bar slide 252 prevents binding of the mechanism or interference of the various moving parts. During movement 54 of the bar slide 252 from the locked to the unlocked position, the two ends of the bar slide 252 move respectively along linear and arcuate paths to prevent binding of the lock mechanism.
The distal end of the bar slide 252 is connected to the transmission bar link (not shown in
Once rotation A′ of the lever arm 136 is complete, the multi-point lock 12 reaches its locked position, as depicted in
The configuration and sizes of the various elements of the lock 12 may determine the locked positions of the elements, such that the angle α′ exceeds 90 degrees, in which case, an angle β supplementary thereto is less than 90 degrees. In other embodiments, the locked position may include an angle α′ less than 90 degrees, and an angle β in excess of 90 degrees. This latter embodiment, where the angle α′ is less than 90 degrees, is depicted in
Thereafter, the new multi-point door lock is installed in the groove formed in the door 306 and secured with screws. This step may include installing the cover plate, as well, if desired. Finally, the lock cylinder and related hardware (e.g., escutcheon plates, interior thumb turns, etc.) are installed 308. In certain embodiments, the same locking cylinder/thumb turn lock set that operated the deadbolt may be utilized with the multi-point lock. This will be dependent on the cooperation between the tailpieces of the lock set and the base 146 of the lever arm 136. In particular, it may be relevant to consider the shape of the tailpiece, the shape of the base 146 of the lever arm 136, the location of the one or more of the openings (identified, e.g., as 140a, 142a, etc.) within the deadbolt insert 48, or other factors. If the existing lock set can not be used, a new set having a configuration that mates properly with the components of the multi-point lock may be used. As a final step of the method, the opposing doorjamb or locking edge side of an opposing door is modified 310 to include a number of keepers matching the number and location of locking elements present in the multi-point lock.
In addition to the single-housing, dual-multi-point lock described herein, other configurations of the multi-point lock described herein are also contemplated. For example, the multi-point lock may include fewer than or greater than two locking members. For a particular multi-point lock, the locking member, drive bar, and drive pin may be configured to allow the locking members to rotate clockwise or counter-clockwise to reach an extended position. Additionally, the same multi-point lock may utilize locking members that rotate in opposite directions as they extend during use. The locking members may be a substantially uniform shape or any shape desired. It is contemplated that the various components and configurations depicted with regard to the multi-point locks disclosed herein, as well as modifications thereof envisioned by a person of ordinary skill in the art, are interchangeable. By way of example, and without limitation, the various bar slide configurations, deadbolt configurations, etc., may be selected based on factors such as application, cost, expected locking force requirements, etc.
The embodiment depicted in the figures is installed in an upright position (i.e., the multi-point lock extends upward from the deadbolt insert). Multi-point locks such as those described herein may also be installed in a downward configuration, which may be desirable for certain doors. For example, for additional security on a set of double pivoting doors, the one door may have a multi-point lock installed in an upright configuration, and the opposite door may have a multi-point lock installed in a downward configuration. Alternatively, one bar slide may be configured to drive a multi-point lock having multiple transmissions and multiple drive bars. For example, the insert deadbolt may be configured to accommodate two transmissions, one configured to drive an upright drive bar (as depicted in the attached figures), the other configured to drive a downward drive bar.
Additionally, the multi-point lock described herein that is used in conjunction with standard lock cylinders and hardware may also include locking members that extend above the top of the door and below the bottom of the door. In this case, the end of the drive bar may be configured to mate with an associated keeper on the top or bottom of the door frame. This top or bottom locking capability may be used with or without the rotating locking elements described herein.
The various elements of the locks depicted herein may be manufactured of any materials typically used in door hardware/lock manufacture. Such materials include, but are not limited to, cast or machined steel, stainless steel, brass, titanium, etc. Material selection may be based, in part, on the environment in which the lock is expected to operate, material compatibility, manufacturing costs, product costs, etc. Additionally, some elements of the lock may be manufactured from high-impact strength plastics. Such materials may be acceptable for applications where robust security is less critical, or when a secondary, stronger material is utilized in conjunction with the plastic part (for example, a plastic locking member used in conjunction with a hardened pin manufactured of metal).
While there have been described herein what are to be considered exemplary and preferred embodiments of the present invention, other modifications of the invention will become apparent to those skilled in the art from the teachings herein. The particular methods of manufacture and geometries disclosed herein are exemplary in nature and are not to be considered limiting. It is therefore desired to be secured in the appended claims all such modifications as fall within the spirit and scope of the invention. Accordingly, what is desired to be secured by Letters Patent is the invention as defined and differentiated in the following claims, and all equivalents.
This application is a continuation application of U.S. patent application Ser. No. 13/752,594, filed on Jan. 29, 2013, now U.S. Pat. No. 8,628,126; which is a continuation of U.S. patent application Ser. No. 13/093,739 filed on Apr. 25, 2011, now U.S. Pat. No. 8,382,166; which is a continuation of U.S. patent application Ser. No. 12/641,632 filed on Dec. 18, 2009, now U.S. Pat. No. 8,348,308; which claims priority to and the benefit of U.S. Provisional Application Ser. No. 61/139,127, filed Dec. 19, 2008, the disclosures of which are hereby incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
419384 | Towne | Jan 1890 | A |
651947 | Johnson | Jun 1900 | A |
738280 | Bell et al. | Sep 1903 | A |
972769 | Lark | Oct 1910 | A |
1094143 | Hagstrom | Apr 1914 | A |
1142463 | Sheperd | Jun 1915 | A |
1251467 | Blixt et al. | Jan 1918 | A |
1277174 | Bakst | Aug 1918 | A |
1359347 | Fleisher | Nov 1920 | A |
1366909 | Frommer | Feb 1921 | A |
1596992 | Ognowicz | Aug 1926 | A |
1646674 | Angelillo | Oct 1927 | A |
1666654 | Hiering | Apr 1928 | A |
1716113 | Carlson | Jun 1929 | A |
2535947 | Newell | Dec 1950 | A |
2739002 | Johnson | Mar 1956 | A |
2862750 | Minke | Dec 1958 | A |
3064462 | Ng et al. | Nov 1962 | A |
3162472 | Rust | Dec 1964 | A |
3250100 | Cornaro | May 1966 | A |
3332182 | Mark | Jul 1967 | A |
3413025 | Sperry | Nov 1968 | A |
3437364 | Walters | Apr 1969 | A |
RE26677 | Russell et al. | Oct 1969 | E |
3586360 | Perrotta | Jun 1971 | A |
3806171 | Fernandez | Apr 1974 | A |
3899201 | Paioletti | Aug 1975 | A |
3904229 | Waldo | Sep 1975 | A |
3953061 | Hansen et al. | Apr 1976 | A |
4076289 | Fellows et al. | Feb 1978 | A |
4116479 | Poe | Sep 1978 | A |
4132438 | Guymer | Jan 1979 | A |
4236396 | Surko et al. | Dec 1980 | A |
4288944 | Donovan | Sep 1981 | A |
4372594 | Gater | Feb 1983 | A |
4476700 | King | Oct 1984 | A |
4500122 | Douglas | Feb 1985 | A |
4593542 | Rotondi | Jun 1986 | A |
4602490 | Glass | Jul 1986 | A |
4602812 | Bourner | Jul 1986 | A |
4607510 | Shanaan et al. | Aug 1986 | A |
4639025 | Fann | Jan 1987 | A |
4643005 | Logas | Feb 1987 | A |
4691543 | Watts | Sep 1987 | A |
4754624 | Fleming et al. | Jul 1988 | A |
4768817 | Fann | Sep 1988 | A |
4949563 | Gerard et al. | Aug 1990 | A |
4961602 | Pettersson | Oct 1990 | A |
4962653 | Kaup | Oct 1990 | A |
4962800 | Owiriwo | Oct 1990 | A |
4964660 | Prevot et al. | Oct 1990 | A |
4973091 | Paulson | Nov 1990 | A |
5077992 | Su | Jan 1992 | A |
5092144 | Fleming et al. | Mar 1992 | A |
5118151 | Nicholas, Jr. et al. | Jun 1992 | A |
5125703 | Clancy et al. | Jun 1992 | A |
5171050 | Mascotte | Dec 1992 | A |
5172944 | Munich et al. | Dec 1992 | A |
5197771 | Kaup et al. | Mar 1993 | A |
5265452 | Dawson et al. | Nov 1993 | A |
5290077 | Fleming | Mar 1994 | A |
5364138 | Dietrich | Nov 1994 | A |
5373716 | MacNeil et al. | Dec 1994 | A |
5382060 | O'Toole et al. | Jan 1995 | A |
5388875 | Fleming | Feb 1995 | A |
5404737 | Hotzl | Apr 1995 | A |
5456503 | Russell, IV | Oct 1995 | A |
5482334 | Hotzl | Jan 1996 | A |
5495731 | Riznik | Mar 1996 | A |
5513505 | Dancs | May 1996 | A |
5516160 | Kajuch | May 1996 | A |
5524941 | Fleming | Jun 1996 | A |
5524942 | Fleming | Jun 1996 | A |
5609372 | Ponelle | Mar 1997 | A |
5620216 | Fuller | Apr 1997 | A |
5707090 | Sedley | Jan 1998 | A |
5716154 | Miller et al. | Feb 1998 | A |
5722704 | Chaput et al. | Mar 1998 | A |
5782114 | Zeus et al. | Jul 1998 | A |
5791700 | Biro | Aug 1998 | A |
5820170 | Clancy | Oct 1998 | A |
5820173 | Fuller | Oct 1998 | A |
5865479 | Viney | Feb 1999 | A |
5878606 | Chaput et al. | Mar 1999 | A |
5890753 | Fuller | Apr 1999 | A |
5896763 | Dinkelborg et al. | Apr 1999 | A |
5901989 | Becken et al. | May 1999 | A |
5906403 | Bestler et al. | May 1999 | A |
5915764 | MacDonald | Jun 1999 | A |
5918916 | Kajuch | Jul 1999 | A |
5951068 | Strong et al. | Sep 1999 | A |
6050115 | Schroter et al. | Apr 2000 | A |
6094869 | Magoon et al. | Aug 2000 | A |
D433916 | Frey | Nov 2000 | S |
6148650 | Kibble | Nov 2000 | A |
6174004 | Picard et al. | Jan 2001 | B1 |
6196599 | D'Hooge | Mar 2001 | B1 |
6209931 | Von Stoutenborough et al. | Apr 2001 | B1 |
6217087 | Fuller | Apr 2001 | B1 |
6250842 | Kruger | Jun 2001 | B1 |
6257030 | Davis, III et al. | Jul 2001 | B1 |
6264252 | Clancy | Jul 2001 | B1 |
6266981 | von Resch et al. | Jul 2001 | B1 |
6282929 | Eller et al. | Sep 2001 | B1 |
6283516 | Viney | Sep 2001 | B1 |
6293598 | Rusiana | Sep 2001 | B1 |
6318769 | Kang | Nov 2001 | B1 |
6327881 | Grundler et al. | Dec 2001 | B1 |
6389855 | Renz et al. | May 2002 | B2 |
6443506 | Su | Sep 2002 | B1 |
6454322 | Su | Sep 2002 | B1 |
6502435 | Watts et al. | Jan 2003 | B2 |
6516641 | Segawa | Feb 2003 | B1 |
6637784 | Hauber et al. | Oct 2003 | B1 |
6672632 | Speed et al. | Jan 2004 | B1 |
6688656 | Becken | Feb 2004 | B1 |
6733051 | Cowper | May 2004 | B1 |
6776441 | Liu | Aug 2004 | B2 |
6810699 | Nagy | Nov 2004 | B2 |
6871451 | Harger et al. | Mar 2005 | B2 |
6935662 | Hauber et al. | Aug 2005 | B1 |
6971686 | Becken | Dec 2005 | B2 |
6994383 | Morris | Feb 2006 | B2 |
7025394 | Hunt | Apr 2006 | B1 |
7083206 | Johnson | Aug 2006 | B1 |
7155946 | Lee et al. | Jan 2007 | B2 |
7207199 | Smith et al. | Apr 2007 | B2 |
7249791 | Johnson | Jul 2007 | B2 |
7261330 | Hauber | Aug 2007 | B1 |
7404306 | Walls et al. | Jul 2008 | B2 |
7418845 | Timothy | Sep 2008 | B2 |
7513540 | Hagemeyer et al. | Apr 2009 | B2 |
7634928 | Hunt | Dec 2009 | B2 |
7677067 | Riznik et al. | Mar 2010 | B2 |
7707862 | Walls et al. | May 2010 | B2 |
7726705 | Kim | Jun 2010 | B2 |
7735882 | Abdollahzadeh et al. | Jun 2010 | B2 |
7856856 | Shvartz | Dec 2010 | B2 |
7878034 | Alber et al. | Feb 2011 | B2 |
8182002 | Fleming | May 2012 | B2 |
8348308 | Hagemeyer et al. | Jan 2013 | B2 |
8376414 | Nakanishi et al. | Feb 2013 | B2 |
8382166 | Hagemeyer et al. | Feb 2013 | B2 |
8398126 | Nakanishi et al. | Mar 2013 | B2 |
8628126 | Hagemeyer et al. | Jan 2014 | B2 |
8840153 | Juha | Sep 2014 | B2 |
8850744 | Bauman | Oct 2014 | B2 |
20020104339 | Saner | Aug 2002 | A1 |
20030159478 | Nagy | Aug 2003 | A1 |
20040004360 | Huang | Jan 2004 | A1 |
20040107746 | Chang | Jun 2004 | A1 |
20040239121 | Morris | Dec 2004 | A1 |
20050103066 | Botha et al. | May 2005 | A1 |
20050144848 | Harger et al. | Jul 2005 | A1 |
20050229657 | Johansson | Oct 2005 | A1 |
20070068205 | Timothy | Mar 2007 | A1 |
20070080541 | Fleming | Apr 2007 | A1 |
20070113603 | Polster | May 2007 | A1 |
20070170725 | Speyer et al. | Jul 2007 | A1 |
20080087052 | Abdollahzadeh et al. | Apr 2008 | A1 |
20080092606 | Meekma | Apr 2008 | A1 |
20080141740 | Shvartz | Jun 2008 | A1 |
20080150300 | Harger et al. | Jun 2008 | A1 |
20080156048 | Topfer | Jul 2008 | A1 |
20080156049 | Topfer | Jul 2008 | A1 |
20080178530 | Ellerton et al. | Jul 2008 | A1 |
20080179893 | Johnson | Jul 2008 | A1 |
20080184749 | Alber et al. | Aug 2008 | A1 |
20090064737 | Fan | Mar 2009 | A1 |
20090078011 | Avni | Mar 2009 | A1 |
20100107707 | Viviano | May 2010 | A1 |
20100154490 | Hagemeyer | Jun 2010 | A1 |
20100213724 | Uyeda | Aug 2010 | A1 |
20100236302 | Uyeda | Sep 2010 | A1 |
20100327610 | Nakanishi | Dec 2010 | A1 |
20110289987 | Chiou et al. | Dec 2011 | A1 |
20120146346 | Hagemeyer et al. | Jun 2012 | A1 |
20120306220 | Hagemeyer et al. | Dec 2012 | A1 |
20130019643 | Tagtow et al. | Jan 2013 | A1 |
20130152647 | Terei et al. | Jun 2013 | A1 |
20130234449 | Dery et al. | Sep 2013 | A1 |
20140060127 | Hemmingsen et al. | Mar 2014 | A1 |
20140125068 | Hagemeyer et al. | May 2014 | A1 |
20160108650 | Hagemeyer | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
844928 | Jan 1920 | AT |
1002656 | Feb 1957 | DE |
1584112 | Sep 1969 | DE |
2639065 | Mar 1977 | DE |
3032086 | Mar 1982 | DE |
3836693 | May 1990 | DE |
9011216 | Oct 1990 | DE |
4224909 | Feb 1993 | DE |
29807860 | Aug 1998 | DE |
10253240 | May 2004 | DE |
202012002743 | Apr 2012 | DE |
202013000920 | Apr 2013 | DE |
202013000921 | Apr 2013 | DE |
202013001328 | May 2013 | DE |
0007397 | Feb 1980 | EP |
0231042 | Aug 1987 | EP |
341173 | Nov 1989 | EP |
359284 | Mar 1990 | EP |
661409 | Jul 1995 | EP |
792987 | Sep 1997 | EP |
1106761 | Jun 2001 | EP |
1867817 | Dec 2007 | EP |
2128362 | Dec 2009 | EP |
2273046 | Jan 2011 | EP |
2339099 | Jun 2011 | EP |
2581531 | Apr 2013 | EP |
2584123 | Apr 2013 | EP |
2584124 | Apr 2013 | EP |
21883 | Apr 1921 | FR |
1142316 | Mar 1957 | FR |
1162406 | Sep 1958 | FR |
1201087 | Dec 1959 | FR |
2339723 | Sep 1977 | FR |
2342390 | Sep 1977 | FR |
2344695 | Oct 1977 | FR |
2502673 | Oct 1982 | FR |
226170 | Apr 1925 | GB |
264373 | Jan 1927 | GB |
612094 | Nov 1948 | GB |
1498849 | Jan 1978 | GB |
1575900 | Oct 1980 | GB |
2051214 | Jan 1981 | GB |
2076879 | Dec 1981 | GB |
2115055 | Sep 1983 | GB |
2122244 | Jan 1984 | GB |
2126644 | Mar 1984 | GB |
2134170 | Aug 1984 | GB |
2136045 | Sep 1984 | GB |
2168747 | Jun 1986 | GB |
2196375 | Apr 1988 | GB |
2212849 | Aug 1989 | GB |
2225052 | May 1990 | GB |
2230294 | Oct 1990 | GB |
2242702 | Oct 1991 | GB |
2244512 | Dec 1991 | GB |
2265935 | Oct 1993 | GB |
2270343 | Mar 1994 | GB |
2280474 | Feb 1995 | GB |
2318382 | Apr 1998 | GB |
2364545 | Jan 2002 | GB |
2496911 | May 2013 | GB |
614960 | Jan 1961 | IT |
309372 | Mar 1969 | SE |
9625576 | Aug 1996 | WO |
0233202 | Apr 2002 | WO |
2007104499 | Sep 2007 | WO |
Entry |
---|
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html?page=2&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html?page=3&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/Maco—multipoint—lock—2—cams—2—shootbolt—attachment.html, accessed Oct. 27, 2011, original publication date unknown, 5 pgs. |
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/upvc—Locks.html, accessed Oct. 27, 2011, original publication date unknown, 6 pgs. |
“uPVC Window Hardware and uPVC Door Hardware online”, http://www.upvc-hardware.co.uk/, accessed Oct. 27, 2011, original publication date unknown, 2 pgs. |
PCT International Search Report and Written Opinion in Application PCT/US2009/069007, mailed Dec. 19, 2008, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20140159387 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61139127 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13752594 | Jan 2013 | US |
Child | 14135252 | US | |
Parent | 13093739 | Apr 2011 | US |
Child | 13752594 | US | |
Parent | 12641632 | Dec 2009 | US |
Child | 13093739 | US |