High security lock for door

Abstract
A high security locking system can be used in a conventional pivot door adapted for use with a latch and deadbolt lock combination. The high security system can be a multi-point lock, received in a recess formed in a locking edge side of a door stile, cooperating with a linkage or other mechanism in a conventional deadbolt/location. The lock can be actuated with a keyed cylinder and thumb turn combination.
Description
FIELD OF THE INVENTION

This invention relates generally to high security door locks and, more specifically, to multi-point door locks that can be installed in doors and that utilize standard lock cylinders and hardware.


BACKGROUND

Multi-point door locks typically include two or more locking elements that move in unison from a retracted position within a door stile to an extended position to lock the door to a door frame. In general, multi-point locks are installed in the locking edge face of sliding doors (such as patio doors) or pivoting doors (such as double French doors) and form a robust locking mechanism that improves structural performance and security.


Multi-point locks for pivoting doors generally include a single housing that includes the various components, such as gears, levers, springs and other elements. The locking housing also includes one or more locking members (in the case of a true “multi-point” lock, two or more locking members are present) that rotate from a retracted position within the housing to an extended, locked position outside of the housing. When extended, the locking members engage with one or more keepers on a door frame or mating door. The locking members alternatively may be contained in housings remote from the main housing, above and below the main housing located near the center of a door. In some cases, multi-point locks may utilize, alternatively or additionally, linear locking members, for example pins or deadbolts, that extend linearly into the top head and bottom sill or threshold of the door frame.


Due to the complexity of the locking mechanisms, multi-point locks for pivoting doors typically are actuated by rotating a cantilevered handle in an upward direction to extend the locking elements and a downward direction to retract them. A thumb turn or lock cylinder integral with the main housing can be rotated to extend the deadbolt and prevent retraction of the locking elements. The integral actuation components prevent the multi-point locks from being used with conventional latch and deadbolt systems. While conventional spring latch and deadbolt combinations can be used with pivoting doors, they can only provide a moderate level of security as compared to multi-point locks. Pivoting doors that are configured for latch and deadbolt systems typically can not accommodate multi-point locks due to the relative size and configuration of the multi-point locks. In fact, multi-point locks typically are configured such that only specific handles or actuators may be used therewith. Accordingly, there is a need to provide an enhanced security multi-point lock system for use with conventional deadbolt lock cylinders and door latch hardware utilized in pivoting doors. There is also a need to provide a universal multi-point lock system that may be used with deadbolt lock cylinders and actuators manufactured by a variety of manufacturers.


SUMMARY OF THE INVENTION

In one aspect, the invention relates to a door lock including a drive bar adapted for movement from a first position to a second position, a locking member connected to the drive bar, the locking member adapted for movement from a first position to a second position upon movement of the drive bar from the first position to the second position, a bar slide adapted for movement from a first position to a second position, upon application of a force to the bar slide, and a transmission for coupling movement of the bar slide with movement of the drive bar. In an embodiment, the drive bar moves substantially vertically, wherein the bar slide moves substantially linearly, and wherein the transmission translates the substantially linear movement of the bar slide to the substantially vertical movement of the drive bar. In another embodiment, the drive bar is oriented substantially orthogonal to the bar slide. In yet another embodiment, the locking member is adapted to move pivotally from a first, retracted position to a second, extended position. In still another embodiment, the bar slide includes a first end defining an opening for connection to an actuator, and a second end pivotally connected to the transmission, wherein, from the first position of the bar slide to the second position of the bar slide, the first end moves in a substantially arcing direction and the second end moves in a substantially linear direction.


In an embodiment of the above aspect, the door lock includes a pivot pin connecting the second end and the transmission, wherein the pivot pin moves in a substantially linear direction from the first position of the bar slide to the second position of the bar slide. In another embodiment, the door lock includes an elongate housing, wherein the drive bar is located substantially within the elongate housing. In yet another embodiment, the door lock includes a cover plate adapted to be secured to the elongate housing. In still another embodiment, the elongate housing includes a U-shaped channel defining at least one aperture. In another embodiment, the locking member extends through the aperture when in the second position.


In an embodiment of the above aspect, the locking member is pivotally connected to the elongate housing. In yet another embodiment, the locking member includes an inner pin and an outer deadbolt element. In still another embodiment, the outer deadbolt element has a leading tapered surface and a trailing tapered surface. In another embodiment, the door lock includes a bar slide housing, wherein the bar slide is located at least partially within the bar slide housing, and wherein the bar slide is adapted for sliding linear movement in the bar slide housing.


In an embodiment of the above aspect, the transmission includes at least one of a bar link, a gear, and a cable. In another embodiment, the locking member includes a plurality of locking members. In yet another embodiment, the drive bar includes a substantially vertical drive bar axis and the bar slide includes a bar slide axis at an angle to the drive bar axis, and wherein the transmission includes a bar link including a bar link axis. In still another embodiment, when the drive bar and the bar slide are in their respective first positions, the bar link axis is substantially parallel to the bar slide axis. In another embodiment, when the drive bar and the bar slide are in their respective second positions, the bar link axis is substantially perpendicular to the bar slide axis. In yet another embodiment, when the drive bar and the bar slide are in their respective second positions, the bar link axis is defined by an angle of less than about 90° from the bar slide axis. In still another embodiment, when the drive bar and the bar slide are in their respective second positions, the bar link axis is substantially parallel to the bar drive axis.


In an embodiment of the above aspect, the door lock further includes an insert housing, wherein the bar slide is located at least partially within the insert housing, and a connection pin coupling the transmission and the bar slide. In an embodiment, the insert housing defines a slot having a first travel portion and a detent, and wherein the connection pin slides along the slot. In another embodiment, the connection pin is located in the detent when the drive bar is in the second position.


In another aspect, the invention relates to a method of installing a lock in a door having an locking edge face and opposing sides defining a bore therethrough, the method including the steps of providing a lock including a drive bar adapted for vertical movement, a locking member connected to the drive bar, a bar slide adapted for movement upon application of a force to the bar slide, and a transmission for coupling movement of the bar slide with the drive bar, and installing the lock in a recess formed in the locking edge face of the door. In an embodiment, the method includes first forming the recess sized to accommodate the lock in the locking edge face of the door. In another embodiment, the recess intersects with the bore. In yet another embodiment, the method includes removing an existing deadbolt from the door. In still another embodiment, the method includes installing at least one of a lock cylinder and a thumb turn in the door, so as to apply the force to the bar slide through the bore.





BRIEF DESCRIPTION OF THE FIGURES

Other features and advantages of the present invention, as well as the invention itself, can be more fully understood from the following description of the various embodiments, when read together with the accompanying drawings, in which:



FIG. 1 is a schematic perspective view of a door stile having installed therein a multi-point door lock in accordance with one embodiment of the invention;



FIG. 2 is a schematic perspective view of the multi-point door lock of FIG. 1;



FIG. 3A is an exploded schematic perspective view of the multi-point door lock of FIG. 2;



FIG. 3B is an exploded schematic perspective view of a multi-point door lock in accordance with another embodiment of the invention;



FIG. 4A is an enlarged partial schematic perspective view of the multi-point lock of FIG. 2 in the unlocked position;



FIG. 4B is an enlarged partial schematic perspective view of the multi-point lock of FIG. 4A in the locked position;



FIG. 5A is an enlarged partial schematic perspective view of the multi-point lock of FIG. 2 in the unlocked position with housing portions removed;



FIG. 5B is an enlarged partial schematic perspective view of the multi-point lock of FIG. 5A in the locked position;



FIGS. 6A-6C are schematic side views of components and assembled versions of three variants of bar slide and deadbolt inserts in accordance with three embodiments of the invention;



FIG. 7A is an enlarged partial schematic side view of the multi-point lock of FIG. 3B in the locked position;



FIG. 7B is an opposite-side enlarged partial schematic section view of the multi-point lock of FIG. 7A in the locked position;



FIGS. 8A-8C are enlarged partial schematic side views of a multi-point lock in accordance with another embodiment of the invention, in the unlocked, intermediate, and locked positions, respectively;



FIG. 8D is an enlarged partial schematic side view of the bar slide and lever arm of the multi-point lock of FIGS. 8A-8C;



FIG. 9 is a schematic perspective view of a locking member in accordance with one embodiment of the present invention;



FIGS. 10A-10C depict a kinematic linkage representation of a multi-point lock in accordance with one embodiment of the present invention, in the unlocked, operating, and locked positions, respectively; and



FIG. 11 is a flowchart depicting a method for installing a multi-point lock in accordance with one embodiment of the invention.





DETAILED DESCRIPTION


FIG. 1 depicts a schematic perspective view of a two-bore door stile 10 having installed therein a multi-point door lock 12 in accordance with one embodiment of the invention. The door stile 10 includes one or more openings or bores 14a, 14b extending between the opposing sides (i.e., inside and outside) of the door stile 10. Alternatively, these bores may extend only partially though the door stile 10, being defined only by one side thereof. The multi-point lock 12, in the depicted embodiment, is installed in a channel 16 formed in the locking edge side 18 of the door stile 10. Additionally, certain components of the multi-point lock 12 extend at least partially into at least one of the bores. In FIG. 1, the components, described in more detail below, extend into the upper bore 14a. In a conventional arrangement, the upper bore 14a is adapted to receive a deadbolt activated by a thumb turn, a cylinder lock, or both. The lower bore 14b is adapted to receive a spring loaded latch and handle assembly. While FIG. 1 depicts a two bore door stile 10, the multi-point lock described herein may be used on any door or closure, regardless of application or number of bores. For example, the multi-point lock may be used in cabinet, locker, or other doors that lack a second opening for a spring-loaded latch. In such configuration, a pull handle may be used to open and/or close the door.


The multi-point lock 12 includes two spaced locking members 20. A base 22 of a U-shaped channel 40 (described in more detail below in FIG. 2) is recessed into the locking edge side of the door stile 10. A cover plate 12a may be secured to the base through the various screw holes 24 to cover the lock 12 for aesthetic purposes. The screw holes 24 can additionally be used with screws to secure the channel 40 to the door stile 10. The cover plate 12a may extend beyond a bottom portion of the multi-point lock 12 to cover an upper opening 26a in the door stile 10 in which a conventional deadbolt is disposed. Typically, the spring loaded latch and handle assembly may still be utilized with the depicted multi-point lock 12, with the spring loaded latch projecting out of a lower opening 26b.



FIG. 2 depicts the multi-point lock 12 depicted in FIG. 1. As described above, the multi-point lock may include two locking members 20, but in certain embodiments, as few as one or more than two locking members may be utilized. When in the retracted position, as depicted in FIG. 2, the locking members 20 are retracted within the U-shaped channel 40 or housing. The base 22 of the channel 40 defines two apertures 42, through which the locking members extend when in the locked position. Pivot pins 44 pivotally secure the locking members to the sides 46 of the U-shaped channel 40. A deadbolt insert 48 is secured near one end 50 of the U-shaped channel 40. The deadbolt insert 48 is installed in a bore within a typical pivoting door normally occupied by a conventional deadbolt. In closures having only a single bore, the deadbolt insert 48 may be installed in the bore utilized for the latch. A bar slide 52 is slidably mounted within the deadbolt insert 48, to guide substantially linear movement 54 of the bar slide 52 during use. The movement 54 of the bar slide 52 is generally along a substantially horizontal axis AH. In other embodiments, such as those described with regard to FIGS. 7A-7B, the bar slide moves from a locked position to an unlocked position in a substantially linear direction. This linear direction may be at an angle from the horizontal axis AH.



FIG. 3A is an exploded schematic perspective view of the multi-point door lock 12 depicted in FIG. 2. The two sides 46 of the U-shaped channel 40 define an elongate void 70 therebetween. The elongate void 70 has a substantially vertical axis AV. Disposed in the void 70 are the locking members 20 and a drive bar 72. The drive bar 72 moves in a substantially vertical direction 74 within the U-shaped channel 40 during use, as described in more detail below. The pivot pins 44 are inserted through openings 76 defined in one or both sides 46 of the U-shaped channel. Elongate slots 78 in the drive bar provide clearance for the pivot pins 44 during vertical movement 74 of the drive bar 72.


Each locking element 20 is connected to the drive bar 72 with a drive pin 80. Each drive pin 80 engages a drive pin opening 82 in the locking member 20, as well as a drive pin recess 84 in the drive bar 72. This connection is depicted with more clarity in FIGS. 5A and 5B. During use, as the drive bar 72 moves vertically 74 relative to the channel, and the drive pins 80 cause the locking members 20 to rotate R around pivot pins 44. When the drive bar 72 is raised, this rotation R extends the locking members 20 from a first, retracted position to a second, extended position. In the retracted position, the locking members 20 are contained within the U-shaped channel 40 and the door can be opened and closed. In the extended position, the locking members 20 extend beyond the face plate 22 of the U-shaped channel 40, engaging keepers (not shown) on the doorjamb, or in certain embodiments, on the locking edge face of an opposing door, in the case of a double door configuration, locking the door in a closed position.


The bar slide 52 moves horizontally 54 during use to raise and lower the drive bar 72 to actuate the multi-point lock 12. A translation member or transmission 86 translates the horizontal movement 54 of the bar slide 52 to vertical movement 74 of the drive bar 72. In the depicted embodiment, the translation member or transmission 86 is a bar link connected to the bar slide 52 and drive bar 72 with connection pins 88. In other embodiments, a pivoting member, pivoting gear, or rack and pinion mechanism may be utilized as the translation member. In still other embodiments, a cable housed in a rigid or semi-rigid cable stay may operate as the transmission.



FIG. 3B is an exploded schematic perspective view of another embodiment of a multi-point door lock 12′. Most of the elements of the multi-point door lock 12′ are described above with regard to FIG. 3A, and perform the same or substantially the same functions, as will be readily apparent to a person of ordinary skilled in the art upon reading the following description. Additional elements particular to this embodiment are described below. It is contemplated that elements described with regard to this embodiment of the multi-point door lock 12′ may be utilized with the embodiment of the multi-point door lock 12 described in FIG. 3A. The multi-point door lock 12′ is depicted with linear locking members 20′ (as opposed to the hook-shaped locking members 20 in FIG. 3A). The locking members 20′ are described in more detail with regard to FIG. 8, below. A rivet 44a is inserted over each pivot pin 44 to secure the locking member 20′ relative to the U-shaped channel 40. A face plate extension 22′ is incorporated into the lower end of the channel 40 to cover the opening 26a (depicted in FIG. 1). The face plate extension 22′ may be secured to the deadbolt insert 48 utilizing one or more machine screws 24a. Securing the face plate extension 22′ to the deadbolt insert 48 reduces or eliminates movement of the deadbolt insert 48 during use.



FIGS. 4A and 4B depict enlarged partial schematic perspective views of the multi-point lock 12, in the unlocked and locked positions, respectively. The deadbolt insert 48 defines a longitudinal slot 100 of a constant or variable width. In the depicted embodiment, the slot 100 is narrow proximate the lock cylinder engagement end 102 of the deadbolt insert 48, and is wide proximate the drive bar engagement end 104. The narrow portion 100a of the slot 100 is sized to guide the bar slide 52 during horizontal movement, and prevent dislodgement of the slide bar 52 from the slot 100. The wide portion 100b of the slot is sized to accommodate the bar slide 52, the transmission 86, the connection pin 88 connecting those two elements, and an end of the channel 40. The lowermost screw hole 24 can accept a machine screw to attach the channel 40 to the insert 48.



FIGS. 5A and 5B depict enlarged partial schematic perspective views of the multi-point lock 12 of FIGS. 4A and 4B, respectively, with the deadbolt insert 48 and U-shaped channel 40 removed to facilitate depiction of the cooperation of the internal linkage mechanism of the lock 12. Additional detail regarding the bar slide 52 is depicted in these figures. Notably, the bar slide 52 includes one or more horizontal slots 110, sized to engage projections within the deadbolt insert 48. These slots 110 guide the bar slide 52 horizontally 54 during use. When the multi-point lock 12 is in the unlocked position, as depicted in FIG. 5A, a longitudinal axis 112 of the bar link 86, as defined by the connection pins 88, is at an acute angle α above a line 114 substantially parallel to the horizontal movement 54 of the bar slide 52 along the horizontal axis AH. As the bar slide 52 is moved horizontally 54 to the left, the bar link 86 rotates (i.e., the angle α of the bar link 86 increases), which in turn forces vertical movement 74 of the drive bar 72 in the upward direction extending the locking members 20. As the bar slide 52 is moved horizontally 54 to the right, the translation member 86 counter-rotates (i.e., the angle α of the bar link 86 decreases), which in turn forces vertical movement 74 of the drive bar 72 in the downward direction retracting the locking members 20.



FIGS. 6A-6C depict schematic side views of bar slides and deadbolt inserts in accordance with three embodiments of the invention. These bar slides and deadbolt inserts may be utilized, generally, with the embodiment of the multi-point lock 12 depicted in FIG. 2. Other embodiments of the bar slides and deadbolt inserts to be utilized with the embodiment of the multi-point lock 12′ depicted in FIG. 3B, are described below and depicted in FIGS. 7A and 7B. It is, however, contemplated to use any of the embodiments of the bar slides and deadbolt inserts depicted herein with any embodiments of the multi-point door locks depicted herein, as the structure and operation of the various elements are substantially similar.


With regard to FIG. 6A, the bar slide 52a is configured so as to slide within the slot of the deadbolt insert 48a. An end of the bar slide 52a defines an opening 130a sized to receive the connection pin 88. An opposite end of the bar slide defines a slot 132a configured to engage a cylinder pin 134a during movement of a lever arm 136a. A guide pin 138a, located within the slot of the deadbolt insert 48a, mates with the slot 110a to guide movement of the bar slide 52a within the deadbolt insert 48a. A number of openings 140a, 142a are defined by an end portion of the deadbolt insert 48a. The opening 140a is configured and located to accommodate a base 146a of the lever arm 136a. The openings 142a are configured and located to accommodate screws (not shown) that secure the thumb turn/lock cylinder combination to the door stile. Additionally, the bar slide 52a further defines a relief or mating curvature 144a to prevent interference with the securing screws. The base 146a of the lever arm 136a is configured to receive, in one side, a flat or X-shaped tailpiece of a lock cylinder (not shown). A tailpiece of a thumb turn (not shown) is received in the opposite side.


When in a combined configuration 148a, the lever arm 136a has driven the bar slide 52a to the left, which places the locking members (not shown) of the multi-point lock in the locked position. From the depicted position, rotating the lock cylinder or thumb turn in the direction depicted by A will force the lever arm 136a to rotate clockwise, which will slide the bar slide 52a to the right. In turn, this will retract the locking members. Rotating the lock cylinder or thumb turn in a counter-clockwise direction A′ forces the lever arm 136a to slide the bar slide 52a to the left, thus extending the locking members. The components depicted in this combined configuration 148a may be utilized with a number of lock cylinder/thumb turn lock sets, including those made by MASTER, TRUBOLT, and DEFIANT, as well as DEXTER BY SCHLAGE, and others similarly configured. The configuration and location of the tailpiece and screws of the lock set can at least partially define the configuration and location of the base 146a of the lever arm 136a and the openings 140a, 142a.


In the combined configuration 148b depicted in FIG. 6B, the components utilized in the combined combination 148a of FIG. 6A are utilized for a lock cylinder/thumb turn lock set manufactured by KWIKSET, and others similarly configured. The base 146b is configured to accommodate a D-shaped tailpiece.



FIG. 6C depicts components utilized for a lock cylinder/thumb turn lock set manufactured by SCHLAGE. Similar to the configurations depicted in FIGS. 6A and 6B, the bar slide 52c is configured so as to slide within the slot of the deadbolt insert 48c. An end of the bar slide 52c defines an opening 130c sized to receive the connection pin 88. An opposite end of the bar slide defines a deep slot 132c configured to engage a cylinder pin (not shown) during movement of a lever arm (not shown). Two guide pins 138c, located within the slot of the deadbolt insert 48c, mate with a corresponding number of slots 110c to guide movement of the bar slide 52c within the deadbolt insert 48c. A number of openings 140c, 142c are defined by an end portion of the deadbolt insert 48c. The opening 140c is a relief along one edge and is configured and located to accommodate a base (not shown) of the lever arm (not shown). The openings 142c are configured and located to accommodate screws (not shown) that secure the thumb turn/lock cylinder combination to the door stile. Notably, the opening 140c is at least partially defined by the deadbolt insert. As can be seen from the figures, the openings 140c, 142c are located lower on the deadbolt insert than the openings 140a, 142a, depicted in FIGS. 6A and 6B. This is to accommodate the particular configuration of the lock cylinder/thumb turn lock set manufactured by SCHLAGE. Additionally, the bar slide 52c further defines a mating curvature 144c to prevent interference with the securing screws. The base (not shown) of the lever arm (not shown) is configured to receive, on one side, a tailpiece of a lock cylinder (not shown). A tailpiece of a thumb turn (not shown) is received in the opposite side. With regard to FIGS. 6A-6C, other lever arm configurations are contemplated to allow use of the multi-point lock in conjunction with deadbolt hardware (e.g., lock cylinders and actuators) manufactured by other hardware manufacturers. Further details regarding operation of the multi-point lock are described with regard to FIGS. 10A-10C.



FIG. 7A is an enlarged partial schematic side view of the multi-point lock 12′ of FIG. 3B in the locked position. FIG. 7B depicts lock 12′, in section, viewed from the opposite side depicted in FIG. 7A. Most elements depicted in the figures are described above with regard to preceding figures, and perform the same or substantially the same functions, as apparent to a person of ordinary skilled in the art. Addition elements particular to this embodiment are described below. It is contemplated that elements described with regard to this embodiment of the multi-point door lock 12′ may be utilized with the embodiment of the multi-point door lock 12 described in FIG. 3A. The lock 12′ includes a deadbolt insert 48 and a bar slide 52, adapted to slide therein. As described above, pin 88a is secured to the deadbolt insert 48 and defines a maximum travel of the bar slide 52 due to interference with the extreme ends of the slot 110.


The deadbolt insert 48 defines an elongate slot 150 and is secured to the cover plate extension 22′. The slot 150 includes a first linear travel portion 150a that guides the motion of pin 88b as the bar slide 52 moves horizontally 54 along the horizontal axis AH. The slot 150 terminates at a second locking portion or detent 150b oriented at an angle to the first travel portion 150a. In this position of the pin 88b depicted in FIGS. 7A and 7B, a force applied to the deadbolt 20′ will be unable to back the pin 88b out of the detent 150b, thus preventing forced manipulation of the deadbolt 20′ in an effort to defeat the lock 12′. A number of slots 132x, 132y (e.g., two vertically disposed closed end slots) are defined by the bar slide 52 to engage a lever arm connected to a cylinder pin. The slot 132x is configured to accommodate lock cylinder pins and actuators having 2⅜″ backsets; the slot 132y is configured to accommodate lock cylinder pins and actuators having 2¾″ backsets. The 2⅜″ and 2¾″ backsets are common across a wide range of manufacturers; slots configured to accommodate different backsets are contemplated. The configuration of the bar slide 52 and deadbolt insert 48 depicted in FIG. 7A allows the multi-point lock 12′ to be used with a variety of lock cylinder configurations available in the market. Other bar slide configurations to accommodate different lock cylinder and/or actuator configurations are also contemplated.


As depicted in FIG. 7B, the locking member 20′ defines a hollow central bore, into which a hardened steel or other metal pin 160 is inserted. During assembly of the lock 12′ the hardened pin 160 is inserted via an access channel 162, after which the locking member 20′ is secured via the rivet 44a to the U-shaped channel 40. Both the hardened pin 160 and rivet 44a are a slight clearance fit within the locking member 20′. The clearance fit between the hardened pin 160 and the locking member 20′ prevents the locking member 20′ from being cut through in an effort to defeat the lock 12′. To the extent a person could access and begin to saw through the locking member 20′, the hardened pin 160 has sufficient clearance within the locking member 20′ to rotate circumferentially when contacted by the saw blade, thus preventing cutting of the pin 160 and complete cutting through of the locking member 20′.



FIGS. 8A-8C are enlarged partial schematic side views of another embodiment of a multi-point lock 212 in the unlocked, intermediate, and locked positions, respectively. Structure and operation of many of the components of the lock 212 are described above with regard to the locks 12 and 12′. The lock 212 includes a bar slide 252. This bar slide 252 is configured so as to operate with a large variety of locking cylinder and deadbolt hardware manufactured by a variety of manufacturers. The structural and operational aspects of this bar slide 252 are described below. The bar slide 252 defines two round openings 232, although openings having other shapes are contemplated. During operation, one of the openings 232 engages a cylindrical pin 234a, which is driven by pivotal movement of a lever arm 236. Movement of the lever arm 236 is driven by rotational movement of a tailpiece from a lock cylinder or thumb turn that engages with an opening 246 defined by the lever arm 236. Pivoting of the lever arm 236 forces a distal end of the bar slide 252 to move 54 linearly along an axis AL from the unlocked to the locked position, via an intermediate position. In the depicted embodiment, the linear axis AL is oriented at an acute angle θ to the horizontal axis AH. In other embodiments, the linear axis AL may be parallel to or collinear with the horizontal axis AH.


The configuration of the bar slide 252 prevents binding of the mechanism or interference of the various moving parts. During movement 54 of the bar slide 252 from the locked to the unlocked position, the two ends of the bar slide 252 move respectively along linear and arcuate paths to prevent binding of the lock mechanism. FIG. 8D illustrates this movement of the two ends. In FIG. 8D, the bar slide 252a in solid line depicts the bar slide in the locked position, the bar slide 252b in dashed line depicts that element in an intermediate position, and the bar slide 252c in dotted line depicts that element in the unlocked position. The line types also correspond to the positions of the pin 88b, opening 232, and lever arm 236 in the three depicted positions.


The distal end of the bar slide 252 is connected to the transmission bar link (not shown in FIG. 8D) with the pin 88b. Due to the location of the pin 88b within the slot 150, this end of the bar link is constrained to move substantially linearly 54 in the travel slot 150a, in this case, along the linear axis AL. At the end of travel slot 150a, the pin drops into a detent 150b, which locks the lock 212 against forced opening. One round opening 232 is depicted in FIG. 8D for clarity and engages with the cylindrical pin 234a during operation. As the lever arm 236 rotates, the cylinder pin 234a exerts a force against the bar slide 252. Due to the round openings 232, the proximal end of the bar slide 252 moves along an arcuate path 262 to match the movement of the cylindrical pin 234a. In the lock 12′ depicted in FIGS. 7A and 7B, the pin 88a constrains movement of the proximal end of the bar slide 52, preventing arcuate movement of that end, thus necessitating the oblong openings 132′. Due to the absence of any movement-restricting pin in the lock of FIG. 8D, however, the bar slide 252 is able to translate with reduced friction and without binding, so that the lock 212 operates smoothly.



FIG. 9 is a schematic perspective view of the linear locking member 20′ in accordance with one embodiment of the present invention. The locking member 20′ includes a base section 170 and a bolt section 172. The base section 170 defines a drive pin opening 82 for receipt of a drive pin and a pivot pin opening 174 for receipt of a pivot pin and, if utilized, a pin sheath. The bolt section 172 includes tapered surfaces 176 to improve performance of the lock, especially when the lock is installed in a warped panel door, or in a door where the associated frame settles or shifts over time. The tapered leading surfaces 176a provide a lead-in to the strike located on the door jamb. The tapered trailing surfaces 176b reduce potential surface contact between the bolt section 172 and the strike, this reducing operational forces on the lock.



FIGS. 10A, 10B, and 10C depict a kinematic linkage representation of the multi-point lock 12 in the unlocked, operating, and locked positions, respectively. During lock operation (unlocked, transition, and locked), there are three fixed points of the multi-point lock 12: the axes of rotation about the locking member pivot pins 44 and of the lever arm 136 (depicted at pivot point 146). All other elements depicted in FIGS. 10A-10C move relative to those fixed points. FIG. 10A depicts a first, or unlocked position of the multi-point lock 12. In this position, the bar slide 52 is in a first, right position. A transmission axis AT is positioned at the angle α above the horizontal axis AH. The transmission axis AT may be defined, in one embodiment, by the two points of connection of the transmission 86 to the drive bar 72 and the bar slide 52. In certain embodiments, angle α is substantially zero, such that transmission axis AT and the horizontal axis AH are at or near parallel or collinear. Drive bar 72 is in a first, down position. Locking members 20 are in a first, retracted position.



FIG. 10B depicts the multi-point lock 12 during operation (as the lock 12 is being transitioned to the locked position of FIG. 10C). Upon rotation A′ of the lock cylinder or thumb turn (not shown) at the lever arm pivot point 146, the lever arm 136 forces horizontal movement 54 of the bar slide 52 from the right to the left. Due to the drive bar 72 being constrained against horizontal movement by pivot pins 44, the end of transmission 86 in connection with the drive bar 72 is similarly constrained. As a result, that end of the transmission 86 is forced upward, thereby increasing the angle Δα between the transmission axis AT and the horizontal axis AH. Rotational movement of the transmission 86 forces the drive bar 72 in a vertical direction 74. As described above, this vertical movement 74 of the drive bar 72 forces (via the drive pins 80) the locking members 20 to rotate R outwardly.


Once rotation A′ of the lever arm 136 is complete, the multi-point lock 12 reaches its locked position, as depicted in FIG. 10C. In this position, the locking members 20 are fully extended to engage keepers on an opposing doorjamb or locking edge face of another door. Also, angle α′ reaches or exceeds approximately 90 degrees, although other angles are contemplated. In this position, transmission axis AT is substantially collinear or parallel with the substantially vertical axis AV. This orientation prevents the drive bar 72 from being driven in a downward position due to manipulation of the locking members 20 in an effort to defeat the lock 12.


The configuration and sizes of the various elements of the lock 12 may determine the locked positions of the elements, such that the angle α′ exceeds 90 degrees, in which case, an angle β supplementary thereto is less than 90 degrees. In other embodiments, the locked position may include an angle α′ less than 90 degrees, and an angle β in excess of 90 degrees. This latter embodiment, where the angle α′ is less than 90 degrees, is depicted in FIGS. 7A and 7B. In embodiments where the angle α′ is less than 90 degrees (and where a locking slot portion 150b is not utilized), if the locking members 20 are forced downward from their extended positions with sufficient force, the corresponding downward movement of the drive bar 72 will force the transmission 86 against the bar slide 52 and transmit load to the lock cylinder pin and lever arm. It may therefore be desirable to reinforce the lock cylinder pin and lever arm to prevent an aggressive attack from forcing the slide 52 to move to the right in FIGS. 7A and 10C, thus unlocking the lock 12. In embodiments of the lock 12 having an angle α′ greater than 90 degrees (and therefore, an angle β less than 90 degrees), downward movement of the bar drive 72 due to forced rotation of the locking members 20 will force movement of the bar slide 52 to the left (in FIGS. 7A and 10C). As the bar slide 52 is already at the limit of its horizontal movement 54, this will prevent the lock 12 from being defeated.



FIG. 11 depicts a method of installing a multi-point door lock in a pivoting door 300 in accordance with an embodiment of the present invention. The method 300 may be practiced on an existing pivoting door currently utilizing a conventional deadbolt and lock cylinder configuration. The depicted method 300 may also be used, in part, to install a new multi-point door lock in a manufactured door that not yet been installed. For existing doors that already utilize a standard deadbolt-type lock, the existing lock cylinder and deadbolt are first removed 302. Next, a groove or recess is formed in a locking edge side of the door 304, by routing or other suitable techniques. As described above, the groove or recess should be deep enough to receive the channel 40 and extend lengthwise to at least partially intersect the bore formerly housing the deadbolt. Newly manufactured doors may have a recess formed directly in the locking edge face during manufacturing, or may be mortised as required prior to or after installation.


Thereafter, the new multi-point door lock is installed in the groove formed in the door 306 and secured with screws. This step may include installing the cover plate, as well, if desired. Finally, the lock cylinder and related hardware (e.g., escutcheon plates, interior thumb turns, etc.) are installed 308. In certain embodiments, the same locking cylinder/thumb turn lock set that operated the deadbolt may be utilized with the multi-point lock. This will be dependent on the cooperation between the tailpieces of the lock set and the base 146 of the lever arm 136. In particular, it may be relevant to consider the shape of the tailpiece, the shape of the base 146 of the lever arm 136, the location of the one or more of the openings (identified, e.g., as 140a, 142a, etc.) within the deadbolt insert 48, or other factors. If the existing lock set can not be used, a new set having a configuration that mates properly with the components of the multi-point lock may be used. As a final step of the method, the opposing doorjamb or locking edge side of an opposing door is modified 310 to include a number of keepers matching the number and location of locking elements present in the multi-point lock.


In addition to the single-housing, dual-multi-point lock described herein, other configurations of the multi-point lock described herein are also contemplated. For example, the multi-point lock may include fewer than or greater than two locking members. For a particular multi-point lock, the locking member, drive bar, and drive pin may be configured to allow the locking members to rotate clockwise or counter-clockwise to reach an extended position. Additionally, the same multi-point lock may utilize locking members that rotate in opposite directions as they extend during use. The locking members may be a substantially uniform shape or any shape desired. It is contemplated that the various components and configurations depicted with regard to the multi-point locks disclosed herein, as well as modifications thereof envisioned by a person of ordinary skill in the art, are interchangeable. By way of example, and without limitation, the various bar slide configurations, deadbolt configurations, etc., may be selected based on factors such as application, cost, expected locking force requirements, etc.


The embodiment depicted in the figures is installed in an upright position (i.e., the multi-point lock extends upward from the deadbolt insert). Multi-point locks such as those described herein may also be installed in a downward configuration, which may be desirable for certain doors. For example, for additional security on a set of double pivoting doors, the one door may have a multi-point lock installed in an upright configuration, and the opposite door may have a multi-point lock installed in a downward configuration. Alternatively, one bar slide may be configured to drive a multi-point lock having multiple transmissions and multiple drive bars. For example, the insert deadbolt may be configured to accommodate two transmissions, one configured to drive an upright drive bar (as depicted in the attached figures), the other configured to drive a downward drive bar.


Additionally, the multi-point lock described herein that is used in conjunction with standard lock cylinders and hardware may also include locking members that extend above the top of the door and below the bottom of the door. In this case, the end of the drive bar may be configured to mate with an associated keeper on the top or bottom of the door frame. This top or bottom locking capability may be used with or without the rotating locking elements described herein.


The various elements of the locks depicted herein may be manufactured of any materials typically used in door hardware/lock manufacture. Such materials include, but are not limited to, cast or machined steel, stainless steel, brass, titanium, etc. Material selection may be based, in part, on the environment in which the lock is expected to operate, material compatibility, manufacturing costs, product costs, etc. Additionally, some elements of the lock may be manufactured from high-impact strength plastics. Such materials may be acceptable for applications where robust security is less critical, or when a secondary, stronger material is utilized in conjunction with the plastic part (for example, a plastic locking member used in conjunction with a hardened pin manufactured of metal).


While there have been described herein what are to be considered exemplary and preferred embodiments of the present invention, other modifications of the invention will become apparent to those skilled in the art from the teachings herein. The particular methods of manufacture and geometries disclosed herein are exemplary in nature and are not to be considered limiting. It is therefore desired to be secured in the appended claims all such modifications as fall within the spirit and scope of the invention. Accordingly, what is desired to be secured by Letters Patent is the invention as defined and differentiated in the following claims, and all equivalents.

Claims
  • 1. A door lock comprising: an elongate housing;an insert housing defining a slot, wherein the insert housing is secured to the elongate housing;a bar slide adapted for movement from a first position to a second position, wherein the bar slide is adapted to be actuated by a movement of a lever arm, and wherein the bar slide is disposed at least partially in the slot;a locking member adapted for movement from a retracted position within the elongate housing to an extended position out from the elongate housing upon movement of the bar slide from the first position to the second position; anda transmission for coupling movement of the bar slide with movement of the locking member, wherein the transmission extends from the insert housing to the elongate housing.
  • 2. The door lock of claim 1, wherein the transmission comprises a bar link and a drive bar.
  • 3. The door lock of claim 2, wherein the bar link is connected to both the drive bar and the bar slide with a pin connection.
  • 4. The door lock of claim 1, wherein the elongate housing is disposed below the insert housing when the door lock is installed in a locking edge side of a door.
  • 5. The door lock of claim 1, wherein the elongate housing is connected to the insert housing.
  • 6. The door lock of claim 1, wherein the locking member is pivotably mounted in the elongate housing.
  • 7. The door lock of claim 6, wherein the transmission is connected to the locking member at a drive pin.
  • 8. The door lock of claim 7, wherein the transmission comprises a bar link and a drive bar.
  • 9. The door lock of claim 8, wherein the bar link is connected to the bar slide and the drive bar is connected to the locking member at the drive pin.
  • 10. The door lock of claim 4, wherein the elongate housing is disposed in a substantially vertical orientation when the door lock is installed in the locking edge side of the door, and the insert housing is disposed in a substantially horizontal orientation when the door lock is installed in the locking edge side of the door.
  • 11. The door lock of claim 1, wherein the insert housing defines an axis wherein the slot is disposed at an angle to the axis.
  • 12. The door lock of claim 1, wherein the slot comprises a travel slot and a detent, wherein the detent is disposed at an angle to the travel slot.
  • 13. A door lock comprising: an elongate housing comprising a channel and a base;an insert connected to the base, wherein the insert defines a pin slot;a bar slide at least partially disposed in the insert;a transmission at least partially disposed in the insert;a drive bar at least partially disposed in the channel of the elongate housing and connected to the transmission;a locking element movably engaged with the drive bar; and a pin connecting the bar slide and the transmission, wherein the pin is configured to slide in the pin slot.
  • 14. The door lock of claim 13, wherein the insert defines an axis and wherein the pin slot is disposed at an angle to the axis.
  • 15. The door lock of claim 13, wherein the drive bar is moveable between a first position and a second position, and wherein between the first position and the second position, the drive bar extends the locking element from the elongate housing.
  • 16. The door lock of claim 15, wherein the locking element is connected to the elongate housing with a pivot pin and wherein the locking element is connected to the drive bar with a drive pin.
  • 17. The door lock of claim 14, wherein the pin slot further comprises a detent.
  • 18. The door lock of claim 13, the bar slide is configured to be positioned in a first position and a second position.
  • 19. The door lock of claim 18, wherein a first end of the bar slide is configured to move in an arcing direction from the first position to the second position and wherein a second end of the bar slide is configured to move in a linear direction from the first position to the second position.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 13/752,594, filed on Jan. 29, 2013, now U.S. Pat. No. 8,628,126; which is a continuation of U.S. patent application Ser. No. 13/093,739 filed on Apr. 25, 2011, now U.S. Pat. No. 8,382,166; which is a continuation of U.S. patent application Ser. No. 12/641,632 filed on Dec. 18, 2009, now U.S. Pat. No. 8,348,308; which claims priority to and the benefit of U.S. Provisional Application Ser. No. 61/139,127, filed Dec. 19, 2008, the disclosures of which are hereby incorporated by reference herein in their entireties.

US Referenced Citations (184)
Number Name Date Kind
419384 Towne Jan 1890 A
651947 Johnson Jun 1900 A
738280 Bell et al. Sep 1903 A
972769 Lark Oct 1910 A
1094143 Hagstrom Apr 1914 A
1142463 Sheperd Jun 1915 A
1251467 Blixt et al. Jan 1918 A
1277174 Bakst Aug 1918 A
1359347 Fleisher Nov 1920 A
1366909 Frommer Feb 1921 A
1596992 Ognowicz Aug 1926 A
1646674 Angelillo Oct 1927 A
1666654 Hiering Apr 1928 A
1716113 Carlson Jun 1929 A
2535947 Newell Dec 1950 A
2739002 Johnson Mar 1956 A
2862750 Minke Dec 1958 A
3064462 Ng et al. Nov 1962 A
3162472 Rust Dec 1964 A
3250100 Cornaro May 1966 A
3332182 Mark Jul 1967 A
3413025 Sperry Nov 1968 A
3437364 Walters Apr 1969 A
RE26677 Russell et al. Oct 1969 E
3586360 Perrotta Jun 1971 A
3806171 Fernandez Apr 1974 A
3899201 Paioletti Aug 1975 A
3904229 Waldo Sep 1975 A
3953061 Hansen et al. Apr 1976 A
4076289 Fellows et al. Feb 1978 A
4116479 Poe Sep 1978 A
4132438 Guymer Jan 1979 A
4236396 Surko et al. Dec 1980 A
4288944 Donovan Sep 1981 A
4372594 Gater Feb 1983 A
4476700 King Oct 1984 A
4500122 Douglas Feb 1985 A
4593542 Rotondi Jun 1986 A
4602490 Glass Jul 1986 A
4602812 Bourner Jul 1986 A
4607510 Shanaan et al. Aug 1986 A
4639025 Fann Jan 1987 A
4643005 Logas Feb 1987 A
4691543 Watts Sep 1987 A
4754624 Fleming et al. Jul 1988 A
4768817 Fann Sep 1988 A
4949563 Gerard et al. Aug 1990 A
4961602 Pettersson Oct 1990 A
4962653 Kaup Oct 1990 A
4962800 Owiriwo Oct 1990 A
4964660 Prevot et al. Oct 1990 A
4973091 Paulson Nov 1990 A
5077992 Su Jan 1992 A
5092144 Fleming et al. Mar 1992 A
5118151 Nicholas, Jr. et al. Jun 1992 A
5125703 Clancy et al. Jun 1992 A
5171050 Mascotte Dec 1992 A
5172944 Munich et al. Dec 1992 A
5197771 Kaup et al. Mar 1993 A
5265452 Dawson et al. Nov 1993 A
5290077 Fleming Mar 1994 A
5364138 Dietrich Nov 1994 A
5373716 MacNeil et al. Dec 1994 A
5382060 O'Toole et al. Jan 1995 A
5388875 Fleming Feb 1995 A
5404737 Hotzl Apr 1995 A
5456503 Russell, IV Oct 1995 A
5482334 Hotzl Jan 1996 A
5495731 Riznik Mar 1996 A
5513505 Dancs May 1996 A
5516160 Kajuch May 1996 A
5524941 Fleming Jun 1996 A
5524942 Fleming Jun 1996 A
5609372 Ponelle Mar 1997 A
5620216 Fuller Apr 1997 A
5707090 Sedley Jan 1998 A
5716154 Miller et al. Feb 1998 A
5722704 Chaput et al. Mar 1998 A
5782114 Zeus et al. Jul 1998 A
5791700 Biro Aug 1998 A
5820170 Clancy Oct 1998 A
5820173 Fuller Oct 1998 A
5865479 Viney Feb 1999 A
5878606 Chaput et al. Mar 1999 A
5890753 Fuller Apr 1999 A
5896763 Dinkelborg et al. Apr 1999 A
5901989 Becken et al. May 1999 A
5906403 Bestler et al. May 1999 A
5915764 MacDonald Jun 1999 A
5918916 Kajuch Jul 1999 A
5951068 Strong et al. Sep 1999 A
6050115 Schroter et al. Apr 2000 A
6094869 Magoon et al. Aug 2000 A
D433916 Frey Nov 2000 S
6148650 Kibble Nov 2000 A
6174004 Picard et al. Jan 2001 B1
6196599 D'Hooge Mar 2001 B1
6209931 Von Stoutenborough et al. Apr 2001 B1
6217087 Fuller Apr 2001 B1
6250842 Kruger Jun 2001 B1
6257030 Davis, III et al. Jul 2001 B1
6264252 Clancy Jul 2001 B1
6266981 von Resch et al. Jul 2001 B1
6282929 Eller et al. Sep 2001 B1
6283516 Viney Sep 2001 B1
6293598 Rusiana Sep 2001 B1
6318769 Kang Nov 2001 B1
6327881 Grundler et al. Dec 2001 B1
6389855 Renz et al. May 2002 B2
6443506 Su Sep 2002 B1
6454322 Su Sep 2002 B1
6502435 Watts et al. Jan 2003 B2
6516641 Segawa Feb 2003 B1
6637784 Hauber et al. Oct 2003 B1
6672632 Speed et al. Jan 2004 B1
6688656 Becken Feb 2004 B1
6733051 Cowper May 2004 B1
6776441 Liu Aug 2004 B2
6810699 Nagy Nov 2004 B2
6871451 Harger et al. Mar 2005 B2
6935662 Hauber et al. Aug 2005 B1
6971686 Becken Dec 2005 B2
6994383 Morris Feb 2006 B2
7025394 Hunt Apr 2006 B1
7083206 Johnson Aug 2006 B1
7155946 Lee et al. Jan 2007 B2
7207199 Smith et al. Apr 2007 B2
7249791 Johnson Jul 2007 B2
7261330 Hauber Aug 2007 B1
7404306 Walls et al. Jul 2008 B2
7418845 Timothy Sep 2008 B2
7513540 Hagemeyer et al. Apr 2009 B2
7634928 Hunt Dec 2009 B2
7677067 Riznik et al. Mar 2010 B2
7707862 Walls et al. May 2010 B2
7726705 Kim Jun 2010 B2
7735882 Abdollahzadeh et al. Jun 2010 B2
7856856 Shvartz Dec 2010 B2
7878034 Alber et al. Feb 2011 B2
8182002 Fleming May 2012 B2
8348308 Hagemeyer et al. Jan 2013 B2
8376414 Nakanishi et al. Feb 2013 B2
8382166 Hagemeyer et al. Feb 2013 B2
8398126 Nakanishi et al. Mar 2013 B2
8628126 Hagemeyer et al. Jan 2014 B2
8840153 Juha Sep 2014 B2
8850744 Bauman Oct 2014 B2
20020104339 Saner Aug 2002 A1
20030159478 Nagy Aug 2003 A1
20040004360 Huang Jan 2004 A1
20040107746 Chang Jun 2004 A1
20040239121 Morris Dec 2004 A1
20050103066 Botha et al. May 2005 A1
20050144848 Harger et al. Jul 2005 A1
20050229657 Johansson Oct 2005 A1
20070068205 Timothy Mar 2007 A1
20070080541 Fleming Apr 2007 A1
20070113603 Polster May 2007 A1
20070170725 Speyer et al. Jul 2007 A1
20080087052 Abdollahzadeh et al. Apr 2008 A1
20080092606 Meekma Apr 2008 A1
20080141740 Shvartz Jun 2008 A1
20080150300 Harger et al. Jun 2008 A1
20080156048 Topfer Jul 2008 A1
20080156049 Topfer Jul 2008 A1
20080178530 Ellerton et al. Jul 2008 A1
20080179893 Johnson Jul 2008 A1
20080184749 Alber et al. Aug 2008 A1
20090064737 Fan Mar 2009 A1
20090078011 Avni Mar 2009 A1
20100107707 Viviano May 2010 A1
20100154490 Hagemeyer Jun 2010 A1
20100213724 Uyeda Aug 2010 A1
20100236302 Uyeda Sep 2010 A1
20100327610 Nakanishi Dec 2010 A1
20110289987 Chiou et al. Dec 2011 A1
20120146346 Hagemeyer et al. Jun 2012 A1
20120306220 Hagemeyer et al. Dec 2012 A1
20130019643 Tagtow et al. Jan 2013 A1
20130152647 Terei et al. Jun 2013 A1
20130234449 Dery et al. Sep 2013 A1
20140060127 Hemmingsen et al. Mar 2014 A1
20140125068 Hagemeyer et al. May 2014 A1
20160108650 Hagemeyer Apr 2016 A1
Foreign Referenced Citations (66)
Number Date Country
844928 Jan 1920 AT
1002656 Feb 1957 DE
1584112 Sep 1969 DE
2639065 Mar 1977 DE
3032086 Mar 1982 DE
3836693 May 1990 DE
9011216 Oct 1990 DE
4224909 Feb 1993 DE
29807860 Aug 1998 DE
10253240 May 2004 DE
202012002743 Apr 2012 DE
202013000920 Apr 2013 DE
202013000921 Apr 2013 DE
202013001328 May 2013 DE
0007397 Feb 1980 EP
0231042 Aug 1987 EP
341173 Nov 1989 EP
359284 Mar 1990 EP
661409 Jul 1995 EP
792987 Sep 1997 EP
1106761 Jun 2001 EP
1867817 Dec 2007 EP
2128362 Dec 2009 EP
2273046 Jan 2011 EP
2339099 Jun 2011 EP
2581531 Apr 2013 EP
2584123 Apr 2013 EP
2584124 Apr 2013 EP
21883 Apr 1921 FR
1142316 Mar 1957 FR
1162406 Sep 1958 FR
1201087 Dec 1959 FR
2339723 Sep 1977 FR
2342390 Sep 1977 FR
2344695 Oct 1977 FR
2502673 Oct 1982 FR
226170 Apr 1925 GB
264373 Jan 1927 GB
612094 Nov 1948 GB
1498849 Jan 1978 GB
1575900 Oct 1980 GB
2051214 Jan 1981 GB
2076879 Dec 1981 GB
2115055 Sep 1983 GB
2122244 Jan 1984 GB
2126644 Mar 1984 GB
2134170 Aug 1984 GB
2136045 Sep 1984 GB
2168747 Jun 1986 GB
2196375 Apr 1988 GB
2212849 Aug 1989 GB
2225052 May 1990 GB
2230294 Oct 1990 GB
2242702 Oct 1991 GB
2244512 Dec 1991 GB
2265935 Oct 1993 GB
2270343 Mar 1994 GB
2280474 Feb 1995 GB
2318382 Apr 1998 GB
2364545 Jan 2002 GB
2496911 May 2013 GB
614960 Jan 1961 IT
309372 Mar 1969 SE
9625576 Aug 1996 WO
0233202 Apr 2002 WO
2007104499 Sep 2007 WO
Non-Patent Literature Citations (7)
Entry
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html, accessed Oct. 27, 2011, original publication date unknown, 3 pgs.
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html?page=2&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs.
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html?page=3&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs.
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/Maco—multipoint—lock—2—cams—2—shootbolt—attachment.html, accessed Oct. 27, 2011, original publication date unknown, 5 pgs.
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/upvc—Locks.html, accessed Oct. 27, 2011, original publication date unknown, 6 pgs.
“uPVC Window Hardware and uPVC Door Hardware online”, http://www.upvc-hardware.co.uk/, accessed Oct. 27, 2011, original publication date unknown, 2 pgs.
PCT International Search Report and Written Opinion in Application PCT/US2009/069007, mailed Dec. 19, 2008, 9 pgs.
Related Publications (1)
Number Date Country
20140159387 A1 Jun 2014 US
Provisional Applications (1)
Number Date Country
61139127 Dec 2008 US
Continuations (3)
Number Date Country
Parent 13752594 Jan 2013 US
Child 14135252 US
Parent 13093739 Apr 2011 US
Child 13752594 US
Parent 12641632 Dec 2009 US
Child 13093739 US