This invention relates to high security paper and to a process for the manufacture of high security paper.
The technology of machine reading security features needs expensive chemicals, pigments and DNAs. Being machine readable and invisible to the naked eye, the security features need to be positioned discreetly so as to enable the reader to accept or reject the final security documents or bank notes. Precise delivery of these expensive chemicals/security features is needed to identify location and control final costs.
The cost of currency notes includes the cost of the paper plus the cost of ink (60%) and other hidden costs (40%) like vending/distribution costs to the end user. High strength currency paper is necessary and 100% polymer currency, also known as “plastic” currency, has been in circulation in various countries. This “plastic” currency has inherent disadvantages. For example they cannot have a security watermark. Deadfold is not like paper, special inks are needed to adhere to polymer substrate, security threads cannot be inserted/embedded so surface security (like printing, embossing) is the only method of securing these kinds of “plastic” currency notes. This has been perceived by many countries to be a compromise, which many Reserve Banks are ready to accept in line of the phenomenal strength that this “plastic” currency can impart. Banknotes with lower denominations having lower working life are being promoted as targets for these “plastic” currency notes.
Several patents have been filed on delivering security features to the paper but the invention addresses the need for delivering several types of security features at precise location with minimum costs as well as give the combined strength of a paper plus film.
One such patent is U.S. Pat. No. 4,552,617 wherein thin strips soluble in water are printed with security features and these individually printed strips are then acetylated or heat treated prior to locating on the paper web. The thin strips dissolve during the dewatering and drying stage and the microprinted indicia will remain in the paper. Problems arise for accurately locating individual strips on the paper web. Also, it is not possible to deliver security features of high dimension using very thin strips.
Accordingly, it is an object of the present invention to provide an improved method of producing high security paper with security features at precise locations.
According to a first aspect of the invention, there is provided a process of delivering one or more security features at precise places into security paper used for bank notes, passport paper, visa paper, security documents, etc. using polymeric film(s) as a carrier for the security feature(s).
By this invention, the security feature(s) is/are embedded/embossed/printed within/on the polymeric film and this pre-formed polymeric film containing the security feature(s) is incorporated into the security paper during the paper making process.
In preferred embodiments, the security features are printed on a continuous web of polymeric film that is incorporated in the paper during the papermaking process. In this way, the security features can be embedded/embossed/printed at precise locations onto the continuous web of polymeric film so as to accurately position the security features when the paper and polymeric film webs are brought together. This method allows security features having a wide range of to be embedded in the finished paper. Also, multi-coloured multi security features can be incorporated in a reliable manner.
In this way, the invention addresses the need for delivering several types of security features at precise location with minimum costs.
As used hereinafter in the description and claims, the following terms shall have the meaning defined
WSF (water soluble film): By definition shall mean Water Soluble film(s) of all types. WSF can be manufactured by process of direct casting on a conveyor, by casting on a detachable liner, by casting from a T-die casting, by blowing film on extrusion machines, or by extrusion via T-die extrusion. The formulation of the WSF shall determine the temperature of water in which the WSF shall easily dissolve. This range of water temperature varies between 5° C. to 100° C. For the purpose of this invention it is clarified that WSF encompass all types of WSF made from any of the above methods, including direct coating of WSF film forming resins.
For the purpose of this invention it is clarified that CWSF means cold water soluble film, which becomes tacky, break and finally dissolve in temperature ranging from 5° C. to 40° C., preferably from 10° C. to 40° C., more preferably from 20° C. to 40° C. The time of tack, break and dissolution of the CWSF shall range between 1 second to 3 minutes upon contact with water/water pulp slurry. However, this shall depend upon the CWSF formulation.
Similarly, for the purpose of this invention it is clarified that HWSF means hot water soluble film, which shall become tacky, break and finally dissolve in temperature ranging from 40° C. to 100° C., preferably from 45° C. to 90° C., more preferably from 50° C. to 85° C. The time of tack, break and dissolution of the HWSF shall range between 5 seconds to 5 minutes upon contact with hot water/water pulp slurry. However, this shall depend upon the HWSF formulation.
Similarly, for the purpose of this invention it is clarified that NSHF means non soluble hydrophilic film, which shall become tacky and may break/crack at certain places but shall not dissolve on contact with water/water pulp slurry. The tack and break time shall range between 7 seconds to 10 minutes, which can depend upon the formulation of the non soluble hydrophilic film and the temperature of water.
The water soluble films mentioned in this invention are made from materials selected from various film forming resins like polyvinyl alcohol copolymer ionomers, polyvinyl alcohol homopolymer, non-ionomeric poly vinyl alcohol polymer, polymethacrylate, polyvinyl alcohol, polyacrylamide, polymethacrylamide, polyacrylic acid, polymethacrylic acid, polyurethane, polyethyleneglycol, polyvinylpyrrolidone, proteinaceous binders such as gelatin, modified gelatins such as phthaloyl gelatin, polysaccharides such as starch, gum Arabic, pullulan and dextrin and water soluble cellulose derivatives or combination thereof. The cellulose derivatives used are methyl cellulose, hydroxy propyl cellulose, hydroxy propyl methyl cellulose, hydroxy propyl ethyl cellulose, hydroxy ethyl cellulose, carboxy methyl cellulose. However, these are by no means limiting.
Addition and inclusion of certain additives like ammonium chloride and other such alkaline chemicals will render the film to be non soluble hydrophilic film.
NSNHF: This is a non soluble non hydrophilic type of film. This type of film is readily available in the market and can be selected from PP (Poly propylene), PE (Poly ethylene), LDPE (Low density poly ethylene), HDPE (high density polyethylene), LLDPE (Linear low density polyethylene), HIPS (High impact polystyrene), HMHDPE (High molecular high density polyethylene), BOPP (Biaxially oriented poly propylene). However, these are by no means limiting.
This non soluble non hydrophilic film can also be made out of biodegradable materials such as PLA (Poly Lactic Acid), PHA (polyhydroxyalkanoic acid) or thermoplastic starch materials or biodegradable polyesters such as ecoflex.
NSNHF is necessarily combined with a layer of CWSF polyme on one or both sides, depending upon its end use.
Film combinations: The films used for increasing the strength of the paper may be a cold or hot water soluble film or non soluble hydrophilic film or non soluble non hydrophilic film or a combination of these films as mentioned below:
Paper pulp: The paper pulp used for manufacturing this high strength paper is selected from a mixture of fibers of hardwood and softwood, cotton fibres such as cotton linters and cotton rags, linen, flax, jute, hemp, kozo, mitsumata, gampi, grass fibres such as esparto, bamboo, giant nettle, rice straw and rattan; and wood pulp. However, these are by no means limiting.
Security Features: The security features embedded in the water soluble film may include although not limited to micro-printed text, logos, metallised/demetallised particles/fibres, bar-codes, watermarks, nano-particles which may be machine readable, micro-taggants, DNA (synthetic, natural), UV, PCR, computer, machine readable, RFID devices, etc.
The polymeric film may be a cold water soluble film or hot water soluble film or water insoluble hydrophilic film or water insoluble non hydrophilic film or a combination of cold+hot+cold water soluble films or cold+hot water soluble films or cold+non soluble hydrophilic film or cold+non soluble hydrophilic+cold water soluble films or cold+non soluble non hydrophilic films or cold+non soluble non hydrophilic+cold films or slit strips of one or many of these combinations woven or intertwined offline or strips of polymeric films inserted/cast/coated onto another polymeric film and incorporated into the paper during the paper making process.
The term “polymeric film” is to be construed accordingly to include all of these for the purpose of this invention.
Preferably, perforations are used for HWSF or NSHF or NSNHF types of polymeric films or their combinations, but this shall not be limiting as far as all types of polymeric films and their combinations are concerned.
The polymeric film may be plain or perforated wholly, partially or randomly.
One of the embodiment of the invention provides for strengthening the security paper by incorporating a water soluble film or non soluble hydrophilic film or non soluble non hydrophilic film or a combination of these films during the paper making process.
In another embodiment of the invention, the security feature(s) is/are delivered through a cold water soluble film wherein the security feature(s) is/are embedded/printed within/on the cold water soluble film. The cold water soluble film will solubilise within the pulp fibres and hence deliver the security features at the desired location.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a hot water soluble film, optionally perforated selectively, wherein the security features are embedded/printed within/on the hot water soluble film. The hot water soluble film—carrying the security feature(s)—will remain intact due to the differential temperature of pulp+water slurry and deliver the security features at the desired location, thereby solving the problem of micro-text words or logos floating within the matrix of the paper pulp which may happen when using only a CWSF, or strips of CWSF. It will also give added strength to the final product.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a non soluble hydrophilic film, optionally perforated selectively, wherein the security feature(s) is/are embedded/printed within/on the non soluble hydrophilic film. This film will not dissolve into the pulp fibres but will become tacky due to its hydrophilic nature and shall adhere to the partially formed bed of pulp. Hence the film will remain intact and deliver the security feature(s) at the desired location. It will also give added strength to the final product. This film can be used particularly when the water-pulp slurry temperature is a little higher. It will also give added strength to the final product.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a non soluble non hydrophilic film wherein the security features are embedded/printed within/on the NSNHF. The non soluble non hydrophilic film will not dissolve into the pulp fibres and also will not become tacky but will be sucked inside as it is perforated, hence delivering the security features at precise place and increasing the strength of the paper.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a combination of cold+hot water soluble film, wherein the HWSF is optionally perforated selectively and the security feature(s) is/are embedded/embossed/printed within/on the hot water soluble film. The cold water soluble film will solubilise into the pulp fibres increasing the strength of the paper while the hot water soluble film containing the security feature(s) will remain intact and hence deliver the security features at the desired place. It will also give added strength to the final product.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a combination of cold+hot+cold water soluble films, wherein the HWSF is optionally perforated selectively and security feature(s) is/are embedded/embossed/printed within/on the hot water soluble film. The cold water soluble films will solubilise into the pulp fibres increasing the strength of the paper while the hot water soluble film consisting security features will remain intact due to the differential temperature of the pulp+water slurry, to locate the security feature(s) at the desired place and give added strength to the final produce.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a combination of cold+non soluble hydrophilic films, wherein the NSHF is optionally perforated selectively and the security feature(s) is/are embedded/embossed/printed within/on the non soluble hydrophilic film. The cold water soluble film will solubilise into the pulp fibres increasing the strength of the paper while the non soluble hydrophilic film will not dissolve into the pulp fibres but will become tacky due to its hydrophilic nature and shall adhere to the partially formed bed of pulp. Hence the film will remain intact and deliver the security feature(s) at the desired place. It will also give added strength to the final product.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a combination of cold+non soluble hydrophilic+cold water soluble films, wherein the NSHF is optionally perforated selectively and the security feature(s) is/are embedded/embossed/printed within/on the non soluble hydrophilic film. The cold water soluble films will solubilise into the pulp fibres increasing the strength of the paper while the non soluble hydrophilic film consisting security features will not dissolve into the pulp fibres but will become tacky due to its hydrophilic nature and shall adhere to the partially formed bed of pulp. Hence the film will remain intact and deliver the security feature(s) at the desired place. It will also give added strength to the final product.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a combination of cold+non soluble non hydrophilic films, wherein the NSNHF is optionally perforated selectively and the security feature(s) is/are embedded/embossed/printed within/on the non soluble non hydrophilic film. The cold water soluble film will solubilise into the pulp fibres increasing the strength of the paper while the non soluble non hydrophilic film will not dissolve into the pulp fibres. Hence the film will remain intact and deliver the security feature(s) at the desired place. It will also give added strength to the final product.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a combination of cold+non soluble non hydrophilic+cold water soluble films, wherein the NSNHF is optionally perforated selectively and the security feature(s) is/are embedded/embossed/printed within/on the non soluble non hydrophilic film. The cold water soluble films will solubilise into the pulp fibres increasing the strength of the paper while the non soluble non hydrophilic film consisting security features will not dissolve into the pulp fibres. Hence the film will remain intact and deliver the security feature(s) at the desired place. It will also give added strength to the final product.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a combination of polymeric films including strips of films wherein the strips are inserted/cast/coated onto another film, to deliver security features that are embedded/printed within/on the film strips.
E.g. strips of HWSF consisting security features are inserted/cast/coated on a cold water soluble film. The cold water soluble film will solubilise into the pulp fibres increasing the strength of the paper while the hot water soluble film with security features will remain intact due to the differential temperature of pulp-water slurry, thus solving the problem of micro-text words or logos floating within the matrix of the paper pulp which may happen while only using only CWSF, or strips of CWSF.
In yet another embodiment of the invention, the security feature(s) is/are delivered through a film matrix wherein the security features embedded/printed within/on the polymeric film strips or on the PVA threads are inter-woven by a warp and weft method. E.g. The strips may be a combination of cold+hot water soluble films or only hot water soluble strips or non soluble hydrophilic strips or only cold water soluble strips, to deliver the security features that are embedded/printed within/on the hot water soluble film. The HWSF or NSHF used are optionally perforated selectively The cold water soluble strips will solubilise into the pulp fibres increasing the strength of the paper while the hot water soluble strips containing the security feature(s) will remain intact and hence deliver the security features at the desired place. It will also give added strength to the final product.
According to a second aspect, the present invention provides security paper made by the method according to the first aspect of the invention.
Embodiments of the invention will now be described in more detail, by way of example with reference to the accompanying drawings, wherein:
Referring to
Similarly, the polymeric film containing security features can also be incorporated during the fourdrinier process of paper making.
During step 3, if the film is a CWSF embedded/embossed/printed with security features, then the film will start dissolving as soon as it comes in contact with the pulp bed and will be sucked into the paper when it passes through vacuum boxes and the security features will remain intact in the pulp bed.
If the film is a HWSF or NSHF or NSNHF or any of the combination having at least one layer or strip of HWSF/NSHF/NSNHF, then the film will not dissolve and will stay on the surface of the pulp bed due to lower capacity of the vacuum suction box. Hence, if a HWSF or NSHF or NSNHF or any other combinations of films consisting HWSF/NSHF/NSNHF have to be incorporated into the pulp bed, a Twin former process may be required, depending upon the needs and ultimate quality of paper required.
As shown in
A polymeric film or either a combination of polymeric films embedded/embossed/printed with security features, as unwound from the unwinder (15), is incorporated into the first ply of the wet paper web with the help of a guide roll (16) as shown in the figure.
A second ply of wet paper is formed on the polymeric film side of the first ply of wet paper by the second former (14). The cylinder (14), covered with a wire cloth, rotates in the vat (17) containing pulp-water slurry. As the cylinder rotates, water is removed from the inside of the cylinder, while a layer of pulp fibres is formed on the outside. This is consolidated by the couch roll (18), which squeezes more water away. The couch roll also peels the wet paper cleanly off the cylinder and transfers it to the moving continuous belt, which carries it to the press section. The second ply of wet paper formed by the second former constitutes of 20% of wt/thickness of the final paper.
More water is removed at the press section (19), and the two ply paper is further sent to dryers for further evaporating the moisture from the paper web.
The polymeric film or combination of polymeric films containing the security features may be any of the types previously described where the security features are incorporated during the paper making process at precise locations using the polymeric film as a carrier to position the security features precisely in the final paper.
The following experiments were conducted in the lab to prove that a polymeric film when incorporated into the paper will increase the strength of the paper:
The following experiments were conducted in the lab to prove the invention:
Similarly, a C-H combination of WSF (20 microns) was incorporated into the paper as per the above process.
Care was taken that the thickness of the paper incorporated with polymeric film was kept constant.
The strength comparison of paper, paper incorporated with CWSF, paper incorporated with HWSF and paper incorporated with C-H combination of WSF is shown table 1:
Experiment were also done to
To prove that we can now embed many visible and invisible security elements and ensure that the same are released at a desired location on the web of paper and therefore, in the final sheet of paper, for example a Bank Note.
Experiment of Security element “Printed” on a zone cast film using combination of CWSF and HWSF methods.
Experiment of Security element “Printed” on a zone cast film using combination of CWSF and HWSF methods.
As will be appreciated, the present invention provides a process for making security paper in which one or more security features is accurately positioned in the paper and the paper is optionally strengthened using polymeric film as the carrier for the security feature(s) during the manufacturing process. The polymeric film may be a water soluble film selectively soluble at temperatures above or below the temperature of the water contained in the paper substrate to which it is applied during the process. In this way we can control the manner in which the water soluble film is incorporated and hence the location of the security feature(s) in the finished product. For example the water soluble film may dissolve or remain intact and we may employ combinations of films which may dissolve or remain intact or combinations of any of these with or without other films such as non soluble hydrophilic films.
According to another aspect of the invention we provide a method of making security paper comprising providing a carrier film containing one or more security features at predetermined locations, forming a paper web, applying the carrier film to the web to position the security feature(s) at desired places on the web wherein the carrier film includes water soluble films, non soluble hydrophilic films and non soluble non hydrophilic films.
The water soluble film may solubilise and be absorbed into the web leaving the security feature(s) at desired places on the web. Alternatively, the water soluble film may remain intact to position the security feature(s) at desired places on the web.
The carrier film may comprises two or more films having different solubilities where the differential solubilities of the films can be used to position the security feature(s) at desired locations during the paper making process and optionally to strengthen the paper. For example the carrier film may comprise a combination of any two or more of cold water soluble film, hot water soluble film, non soluble hydrophilic film and non soluble non hydrophilic film. The security feature(s) may be incorporated in any one or more of the films making up the carrier film.
Number | Date | Country | Kind |
---|---|---|---|
312/MUM/2005 | Mar 2005 | IN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IN2006/000100 | 3/22/2006 | WO | 00 | 9/24/2007 |