The present invention is directed to a piezoelectric flexural sensing structure having increased sensitivity and decreased noise, without sacrificing bandwidth.
Conventionally, a piezoelectric coefficient d31 value of piezoelectric materials, such as PZT, <100> poled PMN-PT single crystals, is a half value of its piezoelectric coefficient d33. Due to reduced piezoelectric properties compared to the d33 mode, a heavy mass (large size sensors) or narrow bandwidth must be adapted to achieve high piezoelectric output. All the old solutions suffered from either lower piezoelectric output (high noise level) or reduced bandwidth when a senor was kept to the same size.
A purpose of the present invention is to increase the sensitivity and decrease the noise of a piezoelectric flexural sensing structure by utilizing the <011> poled PMN-PT single crystal, which possesses the highest piezoelectric coefficient d31 value, and a novel lateral constraint (clamping effect) alleviation mechanism.
By utilizing a <011> poled PMN-PT single crystal, which possesses the highest piezoelectric coefficient d31 value, combined with a novel lateral constraint (clamping effect) alleviation mechanism, a piezoelectric flexural sensing structure with much higher charge sensitivity and lower noise can be realized.
The present invention is directed to a piezoelectric flexural sensing structure which is made up of a proof mass, a beam with a base and optionally having castellated bonding surfaces and two <011> poled bending mode PMN-PT crystal plates mounted on the beam or the castellated bonding surfaces if the beam has such surfaces. The use of castellations to improve sensor performance is disclosed in U.S. Pat. No. 6,715,363 issued to Deng et al. and entitled “Method and Apparatus for Strain Amplification for Piezoelectric Transducers.” U.S. Pat. No. 6,715,363 is incorporated by reference herein.
A first embodiment of the invention is shown in the
A second embodiment of the invention is shown in the
Referring now to the drawings, a first embodiment of the invention is shown in
In a second embodiment of the invention, a bending mode using two piezoelectric crystals on a beam is also selected as a basic sensing element, but with an additional feature. This sensing structure 110, which is shown in
The old methods employ <100> poled PMN-PT single crystals or other piezoelectric materials, which have low piezoelectric coefficient d31 values, and results in low piezoelectric output and high noise. In contrast, the current invention utilizes new piezoelectric materials, a <011> poled single crystal and a unique bonding surface. This results in the piezoelectric flexural sensing structures presenting a higher sensitivity and lower noise with same dimensions of the sensing structure.
The performance comparison shows that the application of <011> poled crystal with a bending mode sensing structure results in an increase of the piezoelectric output for the sensing structure by a factor of two (˜6 dB). Most significantly, it decreases noise level by 6 dB, which meet today's high technology demands on the sensor noise level.
The invention has been disclosed broadly and illustrated in reference to two representative embodiments described above. Those skilled in the art will recognize that various modifications can be made to the present invention without departing from the spirit and scope thereof.
The present invention was made under United States Navy Office of Naval Research Contract No. N00014-02-M-0171.
| Number | Date | Country | |
|---|---|---|---|
| 60529107 | Dec 2003 | US |