The present disclosure relates to devices and method for perforating a subterranean formation.
Hydrocarbons, such as oil and gas, are produced from cased wellbores intersecting one or more hydrocarbon reservoirs in a formation. These hydrocarbons flow into the wellbore through perforations in the cased wellbore. Perforations are usually made using a perforating gun that is generally comprised of a steel tube “carrier,” a charge tube riding on the inside of the carrier, and with shaped charges positioned in the charge tube. The gun is lowered into the wellbore on electric wireline, slickline, tubing, coiled tubing, or other conveyance device until it is adjacent to the hydrocarbon producing formation. Thereafter, a surface signal actuates a firing head associated with the perforating gun, which then detonates the shaped charges. Projectiles or jets formed by the explosion of the shaped charges penetrate the casing to thereby allow formation fluids to flow through the perforations and into a production string.
In certain instances, it may be desirable to form a relatively large number of perforations within a pay zone. More generally, there may be activities that require a tool capable of providing a high density of perforating jets, such as in connection with well abandonment. The present disclosure addresses the need for perforating guns that can provide high shot density.
In aspects, the present disclosure provides a perforating gun having high shot density characteristics. The perforating gun may include a carrier; a charge tube disposed inside the carrier; a plurality of sets of shaped charges axially distributed along the charge tube and the initiation tube, each shaped charge of the plurality of shaped charges being supported at an opening in the charge tube; and a plurality of detonator cords, each detonator cord of the plurality of detonator cords connecting to one shaped charge in each set of shaped charges.
It should be understood that certain features of the invention have been summarized rather broadly in order that the detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will in some cases form the subject of the claims appended thereto.
For detailed understanding of the present disclosure, references should be made to the following detailed description taken in conjunction with the accompanying drawings, in which like elements have been given like numerals and wherein:
The present disclosure relates to devices and methods for perforating a formation intersected by a wellbore. The present disclosure is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein.
Referring now to
As best seen in
The initiation tube opening 110 receives the shaped charge 112 at the closed end 120 and supports the connection between the post 122 and the detonator cord 124 (
In the illustrated embodiment, six sets of shaped charges 112 are axially distributed along the charge tube 104. Each set has five shaped charges 112 circumferentially distributed along a plane 126 transverse to a longitudinal axis 128 of the perforating gun 100 or a component of the perforating gun 100, e.g., the carrier 102. The angular positions of the shaped charges 112 of adjacent sets are phase-shifted. That is, the shaped charges 112 of adjacent sets point radially in different directions. This angular offset allows the space between two shaped charges 112 of one set to be partially occupied by a shaped charge 112 of an adjacent set. Circumferentially offsetting the angular position of the shaped charges 112 in this manner increases the number of shaped charges 112 that can be packed within the internal volume of the perforating gun 100. Of course, greater or fewer sets of shaped charges 112 may be used at each plane 126 depending on the size and configuration of the perforating gun 100. Likewise, a greater or fewer number of shaped charges 112 may be used within each set.
As best seen in
In other embodiments, the shaped charges 112 of a given set may be detonated by a common detonator cord 124. More generally, any detonation mechanism that allows the shaped charges 112 to be shifted radially outward and away from the tool axis may be used.
Referring to
As shown in
Referring to
In one mode of use, the perforating gun 100 may be conveyed into the wellbore 12 and positioned at a desired depth. Thereafter, a suitable signal is transmitted to activate the detonator(s) 60, which then fires the perforating gun 100. The projectiles formed by the shaped charges 112 may perform any number of functions including, but not limited to, perforating the formation or a wellbore tubular such as casing or liner. These projectiles may also be used to sever a wellbore tubular so that the tubular may be extracted from the wellbore 12.
The foregoing description is directed to particular embodiments of the present invention for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope of the invention. It is intended that the following claims be interpreted to embrace all such modifications and changes.
This application claims priority from U.S. Provisional Application Ser. No. 62/213,235, filed Sep. 2, 2015, the entire disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62213235 | Sep 2015 | US |