1. Field of the Invention
This invention describes a method of using x-rays or radiation to inspect an object or a parcel. This method is specially suited for large objects such as palletized cargo.
2. Description of the Related Art
X-ray scanning is used for inspection of baggage and cargo at airports, at ports of entries, at entry points of facilities and buildings, at check points and at various other places where security demands. The scanning of larger cargo or palletized cargo is often done by x-ray machines that have either a single or dual sources of x-ray. In a single view machine, a single source of x-ray is used, it emits a fan shaped beam which penetrates through the object being scanned and is detected by the detectors at the opposite end of the x-ray source. Often a single scan image thus obtained is not sufficient to examine the contents of the cargo, therefore a second source of x-ray is used that directs it beam at ninety degrees to the first to get a second view of the object.
A simplified schematic of a cross section of a typical palletized cargo scanner according to prior art is shown in
The speed with which the object or cargo is scanned relative to the x-rays depends on the material properties of the object. If the object is higher density with higher coefficient of absorption as is the case with seafood compared to a low density cargo of flowers, then very little x-rays penetrate through the cargo to reach the detectors. In order for sufficient x-ray photons to be collected at the detector, the scanning speed is slowed down. For palletized cargo, the scan speed is often slowed down to less than fifteen pallets per hour and even much slower for cargo that is of higher density. This slows down the commerce and results in large indirect financial loss. Therefore the object of this invention is to provide a method of scanning at high speeds.
The use of a second source requires a second x-ray generator of high energy along with its high voltage generator and associated housing. This results in extra cost. Therefore an additional object of this invention is to use a single source and reduce the cost.
Another problem with dual source x-ray systems with the second source located on top of the tunnel is that the height of the scanning machine is large. As an example, most of the machines used for scanning pallets 48 inches wide and 60 inches high have a tunnel that is 60 inches wide and 65 inches high. The location of the second source on top of the tunnel that is 65 inches tall results in a overall height of such machines in the range of ten to more than twelve feet. This is higher than most ceilings which are just 8 feet, therefore the use of such machines often requires facilities modifications which results in a substantial additional or installation costs. Therefore another object of this invention is to build a system that is lower in height.
Accordingly, the objects of this invention are to overcome the above limitations as stated next.
It is, accordingly, an object of the invention to provide a method of scanning large objects or palletized cargo at high speeds.
It is also an object of this invention to build a relatively compact scanner that is less than 8 ft high which is the height of ceilings in most buildings in USA, thereby avoiding costly facilities modifications and excessive installation costs.
It is also an object of this invention to use a single radiation source so that costs can further be reduced.
These and other objects will become apparent in the description that follows.
A dual view x-ray system for inspection of cargo is presented. The system described in this invention uses a novel beam arrangement that results in high speed scans of tall palletized cargo, has a low height that can easily fit in rooms with ceilings of 8 ft, and uses a single x-ray or radiation source thereby resulting in low cost.
According to the method of this invention, the object or the cargo is translated through a tunnel where it is illuminated by two beams that are at right angle to each other and at 45 degrees to the direction of translation of the object, further for a rectangular pallet or object, the object is rotated 45 degrees before it is translated through the tunnel. This 45 degree rotation of the object results in minimal path of the x-rays through the object and hence minimal absorption of x-rays by the object. The x-ray source used is located near the floor level and emits radiation in the horizontal direction. The x-ray source has a collimator so that two fan shaped beams are generated which are at 90 degrees to each other. The placement of the x-ray source at floor level leads to a low height of the scanning system. This arrangement of the x-ray source and radiation beams results in high speed scans for objects that are taller than their transverse dimensions.
There are several embodiments, objects and advantages to this invention that will be apparent to one skilled in the art. The accompanying figures and description herein should be considered illustrative only and not limiting or restricting the scope of invention, the scope being indicated by the claims.
In describing the preferred embodiment and its alternatives, specific terminology will be used for the sake of clarity. However, the invention is not limited to the specific terms so used, and it should be understood that each specific term includes all its technical equivalents which operate in a similar manner to accomplish similar purpose.
In order to understand the physics behind the novel method of this invention, reference is made to the prior art of
Therefore, according to the method of this invention, the second view is not obtained using a vertical beam, instead both the views are obtained with beams being horizontal but at right angles to each other as shown in
With reference to
The differentiation of the novel beam arrangement according to this invention from that of the prior art is clearly illustrated by comparing
Further, the arrangement of
It should also be noted that the novel arrangement shown in
The description given above is a preferred embodiment of the invention, but there are several ramifications possible.
In an alternate embodiment of the invention, a second source 60 is used as shown in
It should be noted that with reference to
In another ramification of the method, it should be noted that more than two beams can be used to generate more than two views. For example, with reference to
In another ramification of the method, it should be noted that the object 80 need not be rotated by forty five degrees before it is put on the conveyor 71.
Another embodiment of the invention is shown in
As will be apparent to a person skilled in the art, there are several embodiments that can realize the method of this invention which is to scan an object by two beams which are generally in the horizontal direction as this is beneficial when scanning tall objects which result in much larger attenuation along the vertical direction leading to a poor quality image due to the vertical beam. Stated differently, the object should be oriented such that the difference between the path length of first radiation through the object and the path length of second radiation through the object is minimized or not significant. Thus if the two beams travel equal distances within the object, they suffer equal amounts of attenuation, otherwise the beam with longer path through the object is attenuated much more which could lead to substantial degradation or even total loss of signal detected. It is desired that the orientation of the object relative to the beams is such that the beam with the longer path length through the object is not attenuated significantly by the object compared to the other beam with shorter path length through the object.
It should be noted that it is not necessary to use x-ray sources, instead gamma sources like Cesium 137 or Cobalt 60 or any other suitable radiation source could be used.
Further, as is well known to a person skilled in the art, it is not necessary to translate the object, the object need only be relatively translated to the radiation beams.
In the above description, the details of the means to generate radiation, the means to translate the object, the detectors, the detector electronics, the data acquisition, the image generation, the analysis of detected signals from the detectors, and other details have been omitted as they are well known to a person skilled in the art.
The foregoing description of the invention and its embodiments should be considered as illustrative only of the concept and principles of the invention. The invention may be configured in a variety of ways, shapes and sizes and is not limited to the description above. Numerous applications of the present invention will readily occur to those skilled in the art. Therefore, it is desired that the scope of the present invention not be limited by the description above but by the claims presented herein.